

Last June, I disclosed a use-after-free (UAF) vulnerability in Internet Explorer (IE) to Microsoft. It was

rated as critical, designated as CVE-2019-1208, and then addressed in Microsoft’s September Patch

Tuesday. I discovered this flaw through BinDiff (a binary code analysis tool) and wrote a proof of concept

(PoC) showing how it can be fully and consistently exploited in Windows 10 RS5.

UAF vulnerabilities like CVE-2019-1208 are a class of security flaws that can corrupt valid data, crash a

process, and, depending on when it is triggered, can enable an attacker to execute arbitrary or remote

code. In the case of CVE-2019-1208, an attacker successfully exploiting this vulnerability could gain the

same rights as the current user in the system. If the current user has administrative privileges, the

attacker can hijack the affected system — from installing or uninstalling programs and viewing and

modifying data to creating user accounts with full privileges.

A more tangible attack scenario would entail attackers sending socially engineered phishing emails to

unwitting users and tricking them into accessing a malicious website (containing an exploit for CVE-2019-

1208) via Internet Explorer. Alternatively, an attacker can send spam emails with attachments containing

an exploit for the vulnerability. These attachments can be a Microsoft Office document that has the IE

rendering engine enabled, or application files embedded with an ActiveX control that, in turn, contains an

exploit for the vulnerability. Attackers could also compromise and host an exploit on legitimate websites,

like those that accept content or input (i.e., advertisements) from users.

Starting from BinDiff
When using BinDiff to compare changes and updates made on vbscript.dll between May and June, there

are some interesting changes in the functions VbsJoin and VbsFilter. As shown in Figure 2, the functions

rtJoin and rtFilter are surrounded with SafeArrayAddRef, SafeArrayReleaseData, and

SafeArrayReleaseDescriptor, which seems to be for addressing a bug.

Figure 1. Snapshot of updates made in vbscript.dll between May and June via BinDiff

https://cwe.mitre.org/data/definitions/416.html
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-1208
https://blog.trendmicro.com/trendlabs-security-intelligence/september-patch-tuesday-bears-more-remote-desktop-vulnerability-fixes-and-two-zero-days/
https://blog.trendmicro.com/trendlabs-security-intelligence/september-patch-tuesday-bears-more-remote-desktop-vulnerability-fixes-and-two-zero-days/
https://www.zynamics.com/bindiff.html
https://support.microsoft.com/en-ph/help/17469/windows-internet-explorer-use-activex-controls
https://www.zynamics.com/bindiff.html

Figure 2. Differences in VbsJoin (top) and VbsFilter (bottom)

SAFEARRAY specifies a multidimensional array of OLE Automation types. Here is the syntax of

SAFEARRAY:

typedef struct tagSAFEARRAY {
 USHORT cDims;
 USHORT fFeatures;
 ULONG cbElements;
 ULONG cLocks;
 PVOID pvData;
 SAFEARRAYBOUND rgsabound[1];
} SAFEARRAY;

The following are the functions:

 cDims — Specifies the number of dimensions

 fFeatures — Specifies the feature of an array, like how it is allocated or which element it saves

 cbElements — Specifies the size of an array element (generally, the size is 10 bytes)

 cLocks — Saves the number of times the array has been locked without a corresponding unlock

 pvData — Saves the pointer to the array buffer

 rgsabound — A SAFEARRAYBOUND structure that saves the bound information for each
dimension

Here is the syntax of SAFEARRAYBOUND:

typedef struct tagSAFEARRAYBOUND {
 ULONG cElements;
 LONG lLbound;
} SAFEARRAYBOUND, *LPSAFEARRAYBOUND;

The following are the functions:

 cElements — Specifies the number of elements in the dimension

 lLbound — Specifies the lower bound of the dimension

Figure 3 shows a simple example of the memory layout of one SAFEARRAY:

Figure 3. Example of a memory layout of SAFEARRAY

From the syntax of SAFEARRAY, it can be seen that SafeArray doesn’t have a reference count attribute.

Therefore, the functions SafeArrayAddRef, SafeArrayReleaseData, and SafeArrayReleaseDescriptor add

the ability to use reference counting to pin the SafeArray into memory before calling from an untrusted

https://docs.microsoft.com/en-us/cpp/mfc/automation?view=vs-2019

script into an IDispatch method that may not expect the script to free that memory before the method

returns.

SafeArrayAddRef increases the pinning reference count of the descriptor for the specified SafeArray by

one. The pinning reference count of the data for the specified SafeArray may increase by one if that data

was dynamically allocated, as determined by the descriptor of the SafeArray (shown in Figure 3).

SafeArrayReleaseData decreases the pinning reference count for the specified SafeArray data by one.

When its reference count reaches 0, the memory for that data is no longer prevented from being freed.

SafeArrayReleaseDescriptor decreases the pinning reference count for the descriptor of the specified

SafeArray by one. When its reference count reaches 0, the memory for that descriptor is no longer

prevented from being freed.

Figure 4. Code snippets of SafeArrayAddRef (top), SafeArrayReleaseData (center),

and SafeArrayReleaseDescriptor (bottom)

https://docs.microsoft.com/en-us/windows/win32/api/oaidl/nn-oaidl-idispatch
https://docs.microsoft.com/en-us/windows/win32/api/oleauto/nf-oleauto-safearrayaddref
https://docs.microsoft.com/zh-cn/windows/win32/api/oleauto/nf-oleauto-safearrayreleasedata
https://docs.microsoft.com/zh-cn/windows/win32/api/oleauto/nf-oleauto-safearrayreleasedescriptor

When these are all put together, with a focus on the reference count addition/subtraction operation of

SafeArrayDescriptor and SafeArrayData, a code flow can be generated, as shown in Figure 5. VbsJoin is

used as an example.

Figure 5. Code flow of VbsJoin

There seems to be no problem about the reference count addition/subtraction operation of

SafeArrayDescriptor and SafeArrayData in native code. But if a VBScript callback in rtJoin is made and

the reference count of SafeArrayDescriptor and SafeArrayData is modified by script, will this code flow

still have no problem?

Giving a callback in rtJoin
Inspired by the previous vulnerability (CVE-2018-8373) I found in 2018, I used VBScriptClass’ ‘Public

Default Property Get’ function to give me a callback in VbsJoin. Figure 6 shows the PoC.

Figure 6. Initial PoC of CVE-2019-1208

This vulnerability’s trigger flow can be simplified through these steps, as shown in Figure 7:

1. arr = Array(New MyClass) — Create a SafeArray and save the VBScriptclass: MyClass in arr[0]:
2. Callback: arr = Array(0) — Join(arr) will trigger MyClass ‘Public Default Property Get’ function

callback. In this callback, create a new SafeArray to variant arr and, as shown in Figure 7, this new
SafeArray is not protected by function SafeArrayAddRef. Thus, the normal code flow assumption in
Figure 5 is broken by this callback, meaning something will go wrong later.

3. arr(0) = Join(arr) — When back from the ‘Public Default Property Get’ callback, the code flow in
VbsJoin will call SafeArrayReleaseData and SafeArrayReleaseDescriptor to decrease the reference
count of SafeArrayData and SafeArrayDescriptor. But since the new SafeArray is not protected by
SafeArrayAddRef, the reference count of SafeArrayData and SafeArrayDescriptor is 0. Therefore, the
new SafeArray’s SafeArrayData and SafeArrayDescriptor will be freed in the functions
SafeArrayReleaseData and SafeArrayReleaseDescriptor.

When saving the VbsJoin return value to arr(0), however, the PoC crashes in vbscript!AccessArray

because the SafeArrayDescriptor is freed (shown in Figure 8) and the Variant arr still saves the pointer of

the freed SafeArrayDescriptor.

https://blog.trendmicro.com/trendlabs-security-intelligence/use-after-free-uaf-vulnerability-cve-2018-8373-in-vbscript-engine-affects-internet-explorer-to-run-shellcode/

Figure 7. Code snippets showing: arr = Array(New MyClass) in memory (top); arr = Array(0) in memory (center);
and the callback (highlighted, bottom)

Figure 8. Code snippet showing the initial PoC crashing in vbscript!AccessArray

From limited UAF to Read/Write primitive
From the previous process, a dangling pointer ‘arr’ results from the PoC. However, it is a limited UAF

because the dangling pointer ‘arr’ must point to SafeArrayDescriptor structure (see Figure 3) and the free

memory is 0x18 bytes. Some data is needed to reuse the freed 0x18 bytes memory hole and make a fake

SafeArrayDescriptor like this: 08800001 00000001 00000000 00000000 7fffffff 00000000.

The data structure I chose is basic string/binary string (BSTR). But it doesn’t work when BSTR is used to

occupy the freed 0x18 bytes because the memory size of BSTR is a multiple of 0x10 bytes (shown in

Figure 9).

Figure 9. Code snippet of oleaut32! SysAllocStringLen

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/automat/bstr

The memory size of BSTR should be 0x10 bytes, 0x20 bytes, or 0xX0, and cannot be 0x18 bytes.

However, I was still able to make 0x20 bytes of freed memory and get it reused by BSTR.

As already mentioned, SafeArray is a multidimensional array. The offset 0x10 of SAFEARRAY is an array

that saves every SAFEARRAYBOUND structure of the dimensions. For example, a one-dimensional

array has one SAFEARRAYBOUND structure whose memory size is 0x8 bytes while a two-dimensional

array has two SAFEARRAYBOUND structures whose memory size is 0x10 bytes. Hence, the memory

size of two-dimensional SafeArray is 0x20 bytes. Since VbsJoin can process only one-dimensional arrays,

I tried to change the SafeArray dimensions in the callback, as shown in a modified PoC in Figure 10.

Unfortunately, that doesn’t work. It throws a runtime error saying the array type does not match in Join.

Because VbsJoin can process only a one-dimensional array, there will be a runtime error even if the arr in

the two-dimensional array in the callback is modified.

Figure 10. Snippets showing the PoC with the modified SafeArray dimensions (top)
and the runtime error (bottom)

To bypass the runtime error, I used On Error Resume Next, which specifies that when a runtime error

occurs, control immediately goes to the statement where the error occurred, and execution continues

from that point. Using On Error Resume Next bypassed the runtime error and resulted in a 0x20-byte

dangling pointer arr, as shown in Figure 11.

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/on-error-statement

Figure 11. Code snippets of the PoC using On Error Resume Next (top) and the faked SafeArray (bottom)

After getting 0x20 bytes of freed memory, I used BSTR with a size of 0x20 bytes to fake a big-size

SafeArray:

Unescape("%u4141%u4141%u4141%u4141%u4141%u4141%u0001%u0880%u0001%u0000%u0000%u0000%u0000%u

0000%uffff%u7fff%u0000%u0000")

By using heap feng shui, this BSTR can stably reuse the 0x20-byte freed memory. Figure 11 (bottom)

shows how I was able to get a fake, one-dimensional SafeArray whose element number is 0x7ffffffff and

element size is 1 byte.

So far, I have shown a fake SafeArray that can be used to read or write memory from 0x00000000 to

0x7fffffff. To leak some read/write address for exploitation, I applied Simon Zuckerbraun’s research on

CVE-2019-0752 (another vulnerability in IE already patched). I used heap spray in order to have some

fixed read/write address (0x28281000), as shown in Figure 12. By using the fixed read/write memory

address named ‘util_memory’ (0x28281000) and faked SafeArray named ‘fake_array’, the read/write

memory function is easily made.

https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Whitepaper/bh-eu-07-sotirov-WP.pdf
https://www.thezdi.com/blog/2019/5/21/rce-without-native-code-exploitation-of-a-write-what-where-in-internet-explorer

Figure 12. Code snippets showing the fixed address for read/write (top)
and the read/write memory function (bottom)

Just pop out a calculator
To demonstrate and carry out remote code execution (RCE), I used the Scripting.Dictionary object as

introduced in Simon Zuckerbraun’s research. Unlike in the case of CVE-2019-0752, however, this

vulnerability can’t be used to write memory 1 byte by 1 byte because every Variant in vbscript.dll occupies

0x10 bytes.

To get around this, I used BSTR to make a fake Dictionary through these steps:

1. Use read/write memory function to read the original Dictionary memory, save its data to one
BSTR, and replace VBADictionary::Exists to kernel32!Winexec.

2. Write the Winexec parameter (\..\calc.exe) to this BSTR.
3. Save this BSTR to util_memory + 0x1000, and modify ‘util_memory + 0x1000 – 8 = 9’ to make

fake_array(util_memory + 0x1000) an object.
4. Use fake_array(util_memory + &h1000).Exists "dummy" to trigger the function Winexec, as

shown in Figure 13.

Figure 13. Screenshot showing the faked Dictionary’s memory layout

Figure 14. Screenshot showing the RCE being successfully carried out

What does this vulnerability mean?
On August 13, 2019, VBScript, which has already been disabled in Windows 10, was disabled for Internet

Explorer 11 in Windows 7, 8, and 8.1. Therefore, the PoC detailed here was developed in local mode. But

as Microsoft says, this setting can still be enabled via Registry or Group Policy. All the same, users and

organizations should always adopt best practices: Keep systems patched and updated, disable

components if they are not needed (or restrict use), and foster cybersecurity awareness on vectors that

may be used by attackers, such as spam emails and other socially engineered threats.

TREND MICROTM RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and

supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in

vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

http://www.trendmicro.com/

