

Technical Analysis of the FlowerPippi Backdoor
In the campaign that we observed targeting Japan, Philippines, and Argentina on June 20, we saw TA505

use a seemingly new malware that we named “FlowerPippi,” from the malware’s algorithm name and the

unused string in the malware (pipipipip). This malware can also be found on VirusTotal.

Some of FlowerPippi’s variants were packed by a custom packer — the same one that TA505 uses. The

unpacked payload is written in C++ and works as backdoor or downloader malware. FlowerPippi doesn’t

have an AutoRun function by itself; it is standalone and straightforwardly retrieves the payload.

FlowerPippi’s C&C Communication
FlowerPippi collects some of the user’s information, which it sends to the C&C server. When collecting

information, FlowerPippi generates the victim ID from the system’s MAC address using the FNV-1a hash

algorithm.

Figure 1. Generating user ID from MAC address by using FNV-1a hash

On its first connection to the C&C server, the stolen information will be URL-encoded via the following

format, and will be encrypted by RC4 with a hardcoded key:

id=<VICTIM_ID>&domain=<DOMAIN_NAME_OR_WORKGROUP>

&proxy=<PROXY_SETTING>&rights=<IS_ADMIN>&os=<OS_VERSION_STR>&x64=<IS_X64>

Figure 2. The RC4-encrypted data (top) and hardcoded RC4 key (bottom)

FlowerPippi’s Backdoor Commands

If the C&C server is active, FlowerPippi will receive binary-formed data. Figure 3 shows the data values.

Figure 3. Snapshot of code showing response from the C&C server

The payload part is also encrypted in RC4 with the same key used to send data. The behaviors are based

on the following commands:

Command Behavior

0 Nothing

1
Download an executable from a specific URL and save it in %temp%\<RANDOM>.exe, then

execute and delete it

2
Download a DLL from a specific URL and save it in %temp%\<RANDOM>.dll, then load it via

LoadLibrary and delete it

3 Run arbitrary command

4 Delete self by using bat file

Table 1. Commands from FlowerPippi’s C&C server

The payload of the aforementioned C&C response will be decrypted, downloading the file from a URL

(hxxp://krselectrical[.]co[.]uk/pes1[.]exe) and execute it.

Technical Analysis of the Gelup Downloader Malware

In the same June 20 campaign, we also found another apparently new, undisclosed malware, which we

named “Gelup”. A custom packer was also used to pack some variants of this malware. Again, it uses the

same packer that TA505 has been using.

The unpacked payload is written in C++ and basically works as a downloader for another malware. What

makes Gelup different, however, is its obfuscation technique and UAC-bypassing function by mocking

trusted directories (spoofing the file’s execution path in a trusted directory), abusing auto-elevated

executables, and using the dynamic-link library (DLL) side-loading technique.

Gelup has anti-static analysis techniques.
First, Gelup resolves most Windows application programming interfaces (APIs) by using the hash just

before calling it — a common technique used by a lot of malware families.

Second, the strings in Gelup’s code are decrypted at runtime. There are two methods to decrypt stings in

Gelup, as shown in Figure 4. One is for global values by using AES256-ECB, whose key is a hex string

and the encrypted strings encoded by Base64. The second method uses XOR and Bit-shift for stack

values.

Figure 4. Dynamically resolved Windows API form hash (top); decrypted strings using AES256-ECB at

runtime (center); and decrypted strings on stack using XOR and Bit-shift at runtime (bottom)

Gelup has anti-dynamic analysis function.
This is carried out by checking analysis/VM tools in the process, and if it’s running in a debugger,

emulator, or sandbox.

Figure 5. Snapshots of code showing Gelup’s anti-dynamic analysis capabilities:

checking anti-virus (AV), VM, and analysis tools in the process (top); checking if the cursor is moving,

but not the result (center left); checking if it’s running under Wine tool, a subsystem that runs

Windows binary in a UNIX system (center right); checking if it’s run by debugger (bottom left);

and examining exception by closing protected Handle (bottom right)

Gelup has multilayered steps for installing itself into the system.
Gelup’s infection chain has several steps, detailed below:

1. Checking environment and user’s privilege. Gelup checks if it’s the first infection by examining if
“%AppData%\MSOCache” already exists. Gelup also determines the user privilege of the infected
system by using the NetUserGetInfo API. The system’s user privileges will be summed up and
checked if it’s bigger than 5, that is, all the privileges obtained by NetUserGetInfo is not
USER_PRIV_GUEST(0x0). Or in simpler terms, Gelup checks if the user in the infected system is a
Guest or not.

https://docs.microsoft.com/en-us/windows/win32/api/lmaccess/nf-lmaccess-netusergetinfo

In case the user/account is Guest, Gelup copies itself into “%AllUsersProfile%\{RANDOM}.exe” and
sets itself in the registry’s Run key. If the infected system’s user/account has the proper privileges, it
proceeds with the UAC bypass process.

Figure 6. Snapshot of code showing how Gelup uses NetUserGetInfo to check the user's privilege

2. Bypassing UAC by mocking trusted directories. After checking the user privileges, Gelup tries to
bypass UAC by “mocking” trusted directories and using DLL side-loading. This UAC-bypass
technique was previously demonstrated by one of Tenable’s researchers last November 2018 as a
proof of concept (PoC). This is the first time we've seen this technique used in the wild.

As Tenable’s research demonstrated, if a specific executable satisfies the conditions listed below, it
can be run with auto-elevation without the UAC dialog:

 The executable must be configured for auto-elevation, that is, privileges are elevated
automatically. To configure it, Windows OS will check if the executable has the “autoElevate”
key enabled in its manifest. If the value is “true”, it will be passed onto the next check.

 The executable must be properly signed.

 The executable must be run in a trusted directory, such as C:\Windows\System32.

Gelup follows the aforementioned method to bypass UAC. First, Gelup tries to create a directory
named “C:\\Windows ” (the space after “Windows” is not a typo). However, Windows does not allow
the creation of a trailing spaced directory. In order to bypass this restriction, it abuses the
CreateDirectoryW API with the “\\?\” universal naming convention (UNC) prefix. This technique can
bypass this filtering and successfully create a trailing spaced directory.

Next, Gelup creates a “System32” directory in the trailing spaced directory and copies a legitimate
ComputerDefaults.exe from %Windir%\System32 to that directory. In Tenable’s PoC, the copied
example file was winSAT.exe. However, the target file can be accepted if it’s properly signed and
autoElevate is enabled. In fact, the copied ComputerDefaults.exe is signed by Microsoft and has the
autoElevate key set as true.

https://medium.com/tenable-techblog/uac-bypass-by-mocking-trusted-directories-24a96675f6e
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createdirectorya

Figure 7. Snapshot of code showing how a UNC prefix is used to create a trailing spaced directory (top);

and how the autoElevate key is enabled in the ComputerDefaults.exe manifest (bottom)

After that, Gelup copies itself into the trailing spaced directory and renamed as “propsys.dll”. During
this time, Gelup trickily overwrites the Characteristics entry in its PE header with 0x2102
(IMAGE_FILE_DLL | MAGE_FILE_32BIT_MACHINE | IMAGE_FILE_EXECUTABLE_IMAGE) in
order to work as a DLL.

Figure 8. Snippets of code showing: how Gelup overwrites the flag in

Characteristics entry of PE header with 0x2102 (top); and a comparison of code

of the overwritten DLL showing only one byte patched (bottom)

Gelup next executes the copied ComputerDefaults.exe by calling ShellExecuteExW. This legitimate
program is affected by the DLL side-loading of propsys.dll. Finally, the renamed Gelup, as propsys.dll,
will be successfully executed under the context of ComputerDefaults.exe without UAC dialog.

Gelup will then create the directory “%AppData%\MSOCache” with the HIDDEN attribute. This
directory creation will change the program flow at the start of execution.

https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexw

Figure 9. propsys.dll automatically loaded via DLL side-loading

3. Performing Autorun technique by dropping shortcut file and using schetasks.exe. Once it
successfully runs in the trailing space directory, it will check for the presence of
%AppData%\MSOCache, and then it checks if the following files exist: C:\Windows\api.config,
%TEMP%\up.config, and %TEMP%\tmpaddon_bak. The first two files will never exist upon second
execution, and accordingly, we have to see the file tmpaddon_bak first.

The tmpaddon_bak file contains the global atom value, which is related to the original filepath. Global
atom is a kind of global variable for running processes. A process can use this function to pass and
receive data to or from remote processes. Gelup adds the current execution path in the global atom
table and writes the global atom value into %TEMP%\tmpaddon_bak during the first execution. By
checking the existence of this file, Gelup can determine that the current execution is the second time.
If tmpaddon_bak exists, Gelup receives the original filepath by accessing the global atom table using
the value in tmpaddon_bak, and then deletes the original file and tmpaddon_bak.

https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-tables#global-atom-table
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-tables#global-atom-table
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-tables#global-atom-table

Figure 10. Screenshot of code showing how Gelup accesses global atom using tmpaddon_bak and

delete the original file (top); and the shortcut file binary embedded in Gelup (bottom)

After cleanup, Gelup creates the shortcut file “C:\$Recycle.Bin\<RANDOM>\<RANDOM>.lnk”, which
is for C:\Windows \System32\ComputerDefaults.exe. It’s worth mentioning that Gelup doesn’t create
a shortcut file at runtime; it literally has a shortcut file binary in itself. Gelup adds this shortcut file to
the task scheduler by running the schetasks.exe command, shown below. This command will be
executed with the highest privilege upon login:

schetasks.exe /create /rl highest /tn <RANDOM> /sc logon /tr

C:\$Recycle.Bin\<RANDOM>\<RANDOM>.lnk

After successfully running this command, Gelup copies C:\Windows\write.exe, which is a legitimate
file, into C:\Windows\api.config. This file can be considered a sign indicating that scheduled tasks are
being added. Once installation is finished, Gelup processes C&C communication next.

Gelup’s C&C Communication

Before starting C&C communication, Gelup writes a random string

in %AppData%\MSOCache\<RANDOM>.xml. This XML file will be used as a sign to identify if the current

connection is the first C&C connection or not — if it exists, it must be during the second or later time.

Gelup uses HTTP (but using socket API) and JavaScript Object Notation (JSON) to communicate with its

C&C server. Configurations for the C&C server will be decrypted just before connection.

Figure 11. Decryption of configuration before C&C communication (top); the information that will be sent

in the first connection (center); or the second or later connection (bottom)

Gelup collects the infected system’s user information with the following format, then sends it to the C&C

server. The information will be changed if it’s a first-time connection or not:

 tid — hashed username and hardware ID

 os — OS version as strings

 arch — if system is a x64-based machine

 rights — if system’s user is Administrator

 cmd — the result of command

The JSON information will be encrypted by AES256-ECB, whose key

(736769476A5162373558736B71703962) is embedded in config, and is put in a JSON value of the key

“w”, which is also embedded in the config. Gelup next builds an HTTP request header by itself and set

this JSON as the body before it sends it by POST to its C&C server.

Figure 9. Encrypted information sent with HTTP POST

Further analysis showed that the C&C server looks active, but we couldn’t get a response from it. But as

a result of our analysis, we saw that the response is also in JSON format with the command encrypted

with the same key by AES256-ECB. The following are the accepted commands from the C&C server:

Command Behavior

100 Uninstall itself using MoveFileEx

200 Nothing

300 Save received file to %temp%\<specified_name>, then execute it

301 Save received file to %temp%\<specified_name>, then execute it via cmd.exe /C

302 Save received file to %temp%\<specified_name>, then load it (LoadLibrayryEx)

Table 1. Commands from Gelup’s C&C server

Analyzing the Shortcut File

The shortcut to the target file, which is used to bypass UAC, is embedded in Gelup’s binary itself. Thus,

this shortcut file could be created in the attacker’s environment. Below are some of the extracted

metadata as a result of parsing the shortcut file:

Created Timestamp (UTC): 2019/05/24 16:53:20
Accessed Timestamp (UTC): 2019/05/24 16:53:20
Serial No: F8EFD32C
MAC Address: 08:00:27:CB:5D:D2 (CADMUS COMPUTER SYSTEMS (VirtualBox))

As the MAC Address shows, it appears the attackers also abuse VirtualBox, an open-source hosted

hypervisor, to create this shortcut and develop their malware or other tools.

TREND MICROTM RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and

supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in

vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

http://www.trendmicro.com/

