

Novter’s attack chain
Novter’s attack chain

Novter communicates with its command-and-control (C&C) servers and downloads multiple JavaScript

modules for different purposes. We have identified three Novter modules, which include:

1. A module that shows a technical support scam page on the victim’s machine
2. A module that abuses WinDivert (Windows packet divert, a tool that enables network packets

sent to and from Windows network stacks to be captured, modified, or dropped) to block the
communication from processes like those from antivirus (AV) software

3. A module (which we dubbed as “Nodster”) that is written with NodeJS and socket.io for proxying
network traffic. We consider it’s a module to build proxy network for supporting their new AD click-
fraud operation.

KovCoreG’s attacks are socially engineered malvertisments that lure unwitting users into downloading a

software package needed to update their supposedly out-of-date Adobe Flash application. However, it

instead drops a malicious HTML application (HTA) file, named Player{timestamp}.hta. When the victim

executes the HTA file, it will load additional scripts from a remote server (communication is RC4-

encrypted) and run a PowerShell script that appears to take inspiration from the open-source Invoke-

PSInject project.

The PowerShell script, in turn, will disable Windows Defender and Windows Update processes. It runs a

shellcode to bypass User Account Control (UAC) via the CMSTPLUA COM interface (related to

connection management). The PowerShell script is also embedded with Novter, which will be executed

filelessly via the PowerShell Reflective Injection technique.

Figure 1. Code snippet of the PowerShell script for disabling Windows Defender- and Windows Update-

related procedures, bypassing UAC, and launching Novter

https://reqrypt.org/windivert.html
https://nodejs.org/en/
https://socket.io/
https://github.com/EmpireProject/Empire/blob/master/data/module_source/management/Invoke-PSInject.ps1
https://github.com/EmpireProject/Empire/blob/master/data/module_source/management/Invoke-PSInject.ps1
http://www.endurant.io/cmstp/detecting-cmstp-enabled-code-execution-and-uac-bypass-with-sysmon/
https://www.trendmicro.com/vinfo/us/security/news/security-technology/security-101-defending-against-fileless-malware#memoryexploits
https://powersploit.readthedocs.io/en/latest/CodeExecution/Invoke-ReflectivePEInjection/

Analysis of the Novter malware
Novter is a backdoor in the form of an executable file. Immediately after its execution,it performs the

following anti-debugging and anti-analysis checks:

 Searching for blacklisted processes and modules by comparing the CRC32 algorithms of their
names with a list of hardcoded CRC32s

 Checking if the number of cores is too small

 Checking if the process is being debugged

 Checking if the Sleep function is being manipulated

If it finds any of aforementioned information, it is then reported to the C&C server. Note that it uses

different sets of C&C servers for different purposes. One set, for instance, is solely used for anti-analysis

reporting. After the affected machine’s environment is double-checked and reported, the malware goes to

sleep for a long time.

Figure 2. Snippets of code showing how anti-analysis information is reported to the C&C server (top), and

how the malware is configured to sleep for a certain duration

The malware then performs the following routines:

1. Disable processes related to Windows Defender and Windows updates
2. Set persistence through the following:

 Dropping a randomly named .HTA file to %APPDATA%\Roaming, where the routine body
contains a hardcoded string with .HTA file contents and %s markers, which are replaced
with randomly generated strings at runtime. This .HTA file contains JavaScript code,
which reads and executes a PowerShell payload from registry.

 Creating three randomly named registry subkeys in HKLM or HKCU (based on account
privileges) SOFTAWARE\<random string>. The first two registry subkeys have
hardcoded templates in the malware body, and the %s strings are randomized in a way
similarly to how it was done in the .HTA file.

The code stored in both registry subkeys are actually PowerShell scripts. The first script reads
and executes the second script, which is obfuscated by abusing EmpireProject’s Invoke-PSInject
open-source project. The third subkey contains the hex-encoded binary of the dropper, as
shown in Figure 5.

https://github.com/EmpireProject/Empire/blob/master/data/module_source/management/Invoke-PSInject.ps1

Figure 3. Code snippet showing the PowerShell script stored in the registry subkeys

Figure 4. Code snippet showing how the malware is linked in the Run registry key

 Creating a randomly named link to the .HTA file in the Run registry key, which executes
PowerShell code stored in the first registry subkey. This executes the PowerShell code
stored in the second registry subkey, which then loads the binary file stored in the third
registry subkey. Infection from the next reboot of the system thus becomes fileless.

3. Start a thread that parses an embedded configuration in JSON format and starts regular

heartbeat communication — beacons that informs attackers that the infected machine is
alive/working — by sending empty POST requests with the “accl” servers specified in the
configuration file

Figure 5. Code snippet showing the “accl” servers specified in the configuration file (top), and how the

configuration file is retrieved (bottom)

4. Start a thread that queries the “acll” server (shown in Figure 7) to get the dynamic configuration

file. The request interval is six hours; the configuration file is encrypted by RC4 with a hardcoded
password.

5. Start a thread that constantly queries the C&C server, and execute a command, if requested, via
the ShellExecute function.

6. Start communication with one of “accl” servers specified in the dynamic configuration file.
Communication is RC4-encrypted with a hardcoded password. However, this password is
different from the thread where the configuration file is updated.

The backdoor commands that Novter supports are:

 killall — Terminate a process and delete a file (for all modules)

 kill — Terminate a process and delete a file (for a specific module)

 stop — Terminate process without deleting its file (for a specific module)

 resume — Start a process (for a specific module)

 modules — Download and execute an additional module

 update — Download a new version and install the update

 update_interval — Set an interval between two consecutive update attempts

Novter’s notable modules
Below is a list and our analysis of Novter’s most important modules:

 ‘call_02’ module — The module will use a Invoke-PSInject script to load a binary
embedded inside it. The loaded binary will connect to a remote server to retrieve data
and pop up a full-screen window that will display the technical support scam page to the
victim.

 ‘block_av_01’ module — This module is a JavaScript code and has the following
functions:
1) Extract from resources, debase64, and drop the WinDivert DLL and drivers
2) Run a shellcode embedded in a PowerShell script via some kind of Invoke-Shellcode

The shellcode will iterate through all running processes and attempt to match the ROR-

13 hashes of their names to its own list of hardcoded ROR13 hashes. If it finds matches,

process IDs of the detected processes are used in the WinDivert filter. This will make the

WinDivert filter look like: ((processId=560 or processId=676 or processId=724 or

processId=848 or processId=888) and (remotePort==80 or remotePort==443)). As a

result, certain process communication via HTTP and HTTPS are diverted.

https://github.com/EmpireProject/Empire/blob/master/data/module_source/management/Invoke-PSInject.ps1
https://reqrypt.org/windivert.html

Figure 6. Snapshot of code showing the important parameters ofWinDivertOpen (top) and the list of

hardcoded ROR13 hashes (bottom)

According to the documentation, the WINDIVERT_FLAG_RECV_ONLY flag “forces the

handle into receive only mode which effectively disables WinDivertSend(). This means

that it is possible to block/capture packets or events but not inject them.” This creates a

communication blocker for processes with certain names. Figure 8 (bottom) shows the

complete list of hardcoded ROR13 hashes. After trying some known process names, we

found that some of these process names belong to anti-malware solutions.

 ‘all_socks_05’ (Nodster) module — A JavaScript code we named “Nodster” that has
the following functions:
1) If the OS is Windows 7, it will download and install the update KB3033929

(Availability of SHA-2 Code Signing Support for Windows 7 and Windows Server
2008 R2). WinDivert documentation shows that it requires this update for it to be
installed in the system.

2) Try to modify the affected system’s TTL value, TCP Window Size, and maximum

transmission unit (MTU) settings, but it needs to have administrator privileges to do
so. The following commands/registry values are run/set:
netsh interface tcp set heuristics ws=disabled

https://reqrypt.org/windivert-doc.html#divert_open
https://reqrypt.org/windivert-doc.html#divert_send
https://reqrypt.org/windivert.html

This disables Windows Scaling heuristics. For Windows 7 and Vista, the TCP auto-
tuning feature is enabled by default. This feature does not always operate effectively
and it may result in some websites communicating with significantly reduced speed.

TCP window size is set to Tcp1323Opts 0x02, as the lower erased bit indicates that
using window scaling is not encouraged. MTU is set in the registry to 1440 (smaller
than standard Ethernet datagram 1500), likely to prevent fragmentation.

3) Download and install Node.JS, a JavaScript runtime environment

4) Extract to a separate folder a script that contains a base64-encoded resource, which

is a ZIP archive (contents shown in Figure 9).

Figure 7. Contents of the ZIP archive

5) Execute divergent or mdivergent based on OS version, a random value, and a fixed
probability threshold. Both files can be found as standalone executables or
shellcodes. In case of shellcodes, they are base64-encoded and embedded in some
kind of Invoke-Shellcode-style PowerShell scripts. The shellcode uses the WinDivert
library and drivers to manipulate packets in the following ways:

 Divert only outbound TCP packets with tcp.Syn and tcp.Ack != 1, and ignore
local loopback packets

 Check TCP options; if a combination of certain bits in the TCP header is set
(e.g., CWR - Congestion Window Reduced, URG - urgent pointer, etc.), the
window size in the TCP packet is also manipulated; the IP Type of Service
flag Reliability is also set to 1

These settings likely ensure the packets’ high reliability, which is needed for a

SOCKS proxy communication.

Figure 8. Snapshots of code showing the WinDivert library and drivers are abused to manipulate network

packets

6) Execute node.js with app.js and base64-encoded configuration address as

parameters

7) Check the configuration address (via app.js and getip) to obtain the SOCKS proxy IP
address, then backconnect it to the C&C server. The C&C server instructs the victim
machine to visit specified/requested websites. app.js uses an implementation of
Socket.io, a real-time protocol for web application based on WebSocket or HTTP(S)
protocol. The following events were listened to and processed via the Socket.io
connection: connect, firstmessage, closed, message, disconnect, error and
connect_error.

To start a new proxy connection, the attacker’s server will send the firstmessage,
which typically comprises the following: length (126), separator(:), some flags
specifying the type of the message followed by the message type itself (firstmessage),
and the last part, which is a JSON object with data, shown in Figure 11.

The notable aspect in the JSON object is the connection ID, shown in Figure 9. This
message immediately follows another message with the actual data. The message
has the length, followed by two base64-encoded blobs of data separated by the :
separator.

https://socket.io/
https://en.wikipedia.org/wiki/WebSocket

Figure 9. Code snippet showing the firstmessage (top) and the connection ID (bottom)

Figure 10. Code snippet of the JSON object’s connection ID parameter (top), which, when decoded,

reveals the connection the malware creates (center) and receives (bottom)

The first part of the code, once decoded, reveals Part 1 decodes to how the malware

uses the socks4a [17] protocol, with these parameters/values:

 0x04 = version

 0x01 = establish TCP stream connection

 0x1bb = 443 port,

 61 64 73 … 6e 65 74 = adservercheck.net = domain name

The second part, once decoded, is the TLS client hello message, which has

parameters/values that include the following:

 0x16 = TLS record type

 0x03 0x01 = TLS version (major/minor)

 0x02 0x00 = Length of data in the record (excluding the header itself)

 0x01 = CLIENT_HELLO

 0x00 0x01 0xfc = length

 0x03 0x03 = SSL/TLS version

Similarly, a closed message (Figure 13) is where the connection ID is an important

parameter passed in the JSON object.

Figure 11. Snippet of the closed message containing the connection ID

As with a proxy’s typical routine, Nodster will create a new TCP connection to

connect back to the server, receive the network request, and then send back the

response. A “message” event can send data over an established connection by

indicating the existing ID of a connection until it receives a “close” event. Nodster can

handle multiple TCP proxy connections at the same time.

https://en.wikipedia.org/wiki/SOCKS

TREND MICROTM RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and

supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in

vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

http://www.trendmicro.com/

