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The internet of things (IoT) has swiftly become a seemingly indispensable part of our daily lives. The IoT 
devices in pockets, homes, offices, cars, factories, and cities make people’s lives more efficient and 
convenient. It is little wonder, then, that IoT adoption continues to increase. In 2019, the number of 
publicly known IoT platforms grew to 620, which was double the number of platforms in 2015. This year, 
31 billion IoT devices are expected to be installed globally. Consequently, cybercriminals have been 
developing IoT malware such as backdoors and botnets for malicious purposes, including digital 
extortion. As reported in Trend Micro’s latest annual security roundup, the number of brute-force logins 
made by IoT botnets in 2019 was triple the corresponding number in 2018.  

Through the years, cybersecurity researchers have developed various helpful algorithms to identify large 
numbers of malicious files quickly and accurately as an effective measure in the fight against malware. 
But on the IoT front, as threats and attacks geared toward web-connected devices continue to grow 
exponentially, cybersecurity experts need to have a means to make their defensive measures systematic, 
accurate, and strong.  

With the support of Trend Micro and my fellow cybersecurity researchers, I have created telfhash, an 
open-source clustering algorithm that effectively clusters malware targeting IoT devices running on Linux 
— i.e., Linux IoT malware — created using Executable and Linkable Format (ELF) files.  

A historical look at how similar malware files are 
found 

 

Figure 1. A timeline of algorithms created to find similar malware files 

Several years ago, back when Windows was almost exclusively used as the default operating system in 
most users’ machines, cybersecurity experts waged a war against malware, suspicious executables, and 
malicious scripts. In order to win the battle, they needed to find malicious files in a quick, effective, and 
automated manner. 



 

Because of the massive use of Windows, the Windows Portable Executable (PE) was the format mainly 
used by virus writers and cybercriminal groups in creating malicious files. And in order to mitigate the 
spread of malicious PE files, malware researchers used several techniques to efficiently find similar PE 
files to investigate. These techniques also enabled researchers to better track cybercrime campaigns; 
once they found a single malicious file, which likely had a single set of command-and-control (C&C) 
servers, they could pivot on it to find other files belonging to the same campaign or cybercriminal group. 

Different solutions appeared, like the regular hashing algorithms — such as MD5, SHA-1, and SHA-256 
— that are applied to certain structures of a PE file. Another example of a good solution is peHash. The 
idea behind peHash is simple: Instead of calculating a hash value considering the whole PE file, only 
some of its structural parts (such as the file’s field values and section headers) are examined. Some 
implementations of this hash function have been widely available for use. 

Other researchers, meanwhile, developed similarity digests using Context Triggered Piecewise Hashes 
(CTPH) aka fuzzy hashes, which are able to identify known files that contain inserted, modified, or 
deleted data. These algorithms have two main features: They generate a hash, and they offer a 
comparison operation to determine similarity. 

A widely used program for computing CTPH is ssdeep, with the help of its own library that is used to 
generate or compare fuzzy hashes, libfuzzy. Ssdeep, which is not limited to just executable files, 
examines the whole file — including all of its bytes — and generates the hashes of the most interesting or 
notable parts. Similar files would have a high probability to have similar but not identical hashes. 

With cryptographic one-way hashes like MD5 or the SHA family, a single byte change could result in a 
totally different hash. This is because cryptographic hashes seek to preserve uniqueness (one to one), 
while similarity hashes like CTPH seek to preserve similarity (many to one). Similarity hashes provide a 
probabilistic number that represents similarity (usually between 0 and 100). To better illustrate how 
cryptographic and similarity hashing techniques work, we took six different samples from TheMoon 
malware, which targeted IoT devices in 2018. Despite each sample’s having different MD5 values, the 
ssdeep hashes show similar values, as seen in the parts highlighted in yellow and blue in Figure 2. 

 

Figure 2. A comparison between MD5 and ssdeep hashing techniques 

The way ssdeep works involves hashing different pieces of a file and combining the results to generate a 
final hash value. 

Over time, new hashing schemes have been developed. Similarity digest hash (sdhash), for instance, 
takes a totally different approach from ssdeep. It looks for sequences with the lowest probability of being 
randomly found in a file, hashes them, and places them into a probabilistic set representation called the 



 

Bloom filter. It is safe to say that sdhash compensates for the accuracy and scalability limitations of 
ssdeep.  

In an effort to deal with the shortcomings of both hashing techniques, Trend Micro created Trend Micro 
Locality Sensitive Hash (TLSH), a type of fuzzy hashing technique that highlights the locality-sensitive 
nature of a file instead of its similarity, and can be used in machine learning extensions of whitelisting. If a 
file is found to be similar to known legitimate files, it is deemed safe to run on a system. TLSH has proved 
that it can detect malware evasion techniques because sequence reordering does not change the hash. It 
is also a scalable tool with its fixed-length hash, which means that it is not dependent on the size of the 
input. In 2018, we used TLSH to analyze 2 million signed files to uncover a massive certificate signing 
abuse by a marketing adware plug-in called Browsefox. 

Import hashing 
I would like to highlight two solutions that are important in the development of telfhash. One of them is 
import hashing (ImpHash), which is primarily used in identifying malware binaries belonging to the same 
malware family. It analyzes similar malware files by getting the imported functions of a PE file (from the 
import directory) and its related library names, and creating a comma-separated list. Afterward, the list will 
be hashed using the MD5 checksum algorithm. In the example shown in Figure 3, we took a sample of 
Lokibot, a malware variant that is able to steal sensitive data from victim machines, to illustrate how 
ImpHash works. 

 

Figure 3. Imported functions from a Lokibot sample as seen in the import directory 

From the KERNEL32.DLL library, this sample imports GetTempPathA(), GetFileSize(), 
GetModuleFileNameA, and other functions. The imported functions from all of the imported libraries are 
considered in generating the ImpHash. This way, similar files, regardless if new data is added, would 



 

have the same ImpHash value — unless the developers changed its features by using (and therefore 
importing) a new function or removing a previously used one. 

The other hashing technique I wish to highlight is impfuzzy, which generates a similarity digest based on 
the same input ImpHash is based on. It was created in 2016 but did not gain much popularity. In fact, I 
was only recently made aware of its existence during the review process of this article. 

Analyzing Linux IoT malware 
The aforementioned techniques work well for Windows executables, and algorithms like TLSH, ssdeep, 
and sdhash actually work for any type of file. 

In 2018, I was overwhelmed by the number of IoT malware families and the number of samples that had 
been compiled for different architectures. People who closely follow the IoT malware trend would be 
familiar with file listings such as the one shown in Figure 4, which is that of an IoT botnet. 

 

Figure 4. An example of an open directory in an IoT botnet download server 

Usually, IoT botnet samples are based on the Tsunami, Gafgyt, or Mirai botnets. It is not unheard of to 
find combinations of these variants to create a spectrum of IoT malware types. Some of them are 
sophisticated, while others are not so. Some become improved versions of their predecessors, while 
others become buggy at best. Keeping updated on all of the variants that are constantly being developed, 



 

correctly detecting malware samples, and accurately grouping them according to their real malware family 
(e.g., correctly detecting a sample according to what specific Mirai variant it is as opposed to tagging it as 
generic “Mirai”) can be challenging — especially since IoT malware is mostly made using ELF files.  

Thus, I thought of creating “ImpHash for IoT malware,” which basically uses ImpHash techniques in 
analyzing ELF executables. After looking into the specifics of the study and conducting my own research, 
I found that no such project existed. So I decided to start my own. 

My goal was to get imported functions of an ELF file and use them to feed a similarity digest algorithm 
that I could use to cluster similar files. The symbol extraction becomes straightforward when the ELF file 
has a symbol table, as seen in the example in Figure 5. 

 

Figure 5. Getting the symbols, including imported functions, from a dynamically linked ELF file that did not 
have its symbols removed (stripped) 

ELF symbols include not only the function names but also other symbols, so I wrote a basic piece of code 
to extract, sort (making my implementation resistant to symbol ordering changes), and generate a hash 
out of them.  

It worked, but I was faced with two challenges. One was making a locality-sensitive hash that is resistant 
to small changes applied on files. The solution needs to be able to still track a malicious file that had two 
or three functions added to it, therefore making a new variant. The other was ensuring that the solution is 
able to accurately identify “stripped binaries,” or binaries whose imports have been deliberately removed 



 

by a malicious creator. But since stripped binaries have no symbols, how could I calculate a checksum 
out of them? 

The telfhash approach 
I aptly (albeit admittedly a tad unimaginatively) named our tool telfhash — for Trend Micro ELF Hash — 
because it specifically deals with ELF files. For the following cases, we have learned the functions used 
by the binary from its symbol table: 

• Statically linked with symbols (non-stripped binaries) 
• Dynamically linked with symbols (non-stripped binaries) 
• Dynamically linked with no symbols (stripped binaries) 

 
There is a caveat in the last case. Although we can strip a dynamically linked binary to remove its 
symbols, the symbols related to the external functions used are not removed from the binary — otherwise 
the loader would have no way to resolve it during loading time. 

I decided to use TLSH instead of MD5 (the algorithm that ImpHash uses) or any other cryptographic 
hash. This way, I would be able to take advantage of its locality-sensitive nature without losing the 
structural approach of using a function list as an input for the algorithm. 

With this, I was able to calculate the same telfhash value for different versions of a given ELF executable 
using the -g / --group switch, as exemplified in Figure 6. 

 

Figure 6. Clustering two versions of the same program wih the -g / --group switch of the telfhash tool 

This was a good start, but it was simply not enough — especially since IoT malware samples are usually 
compiled for different architectures, too.  

Multi-architectural challenge  
To address the dilemma of IoT malware being compiled for different architectures, telfhash needs to 
produce an output of similar values regardless of the architecture the binaries were compiled in (in case 
they were compiled using the same source code). With this addressed, telfhash could be used to find the 
same malware compiled for a different architecture.  

In order to achieve this, I carefully inspected many malware files and some regular programs that I had 
written in C and compiled for different architectures like x86, x86-64, Advanced RISC Machine (ARM), 
and Microprocessor without Interlocked Pipelined Stages (MIPS). I prioritized them based on their 
popularity among malware samples. 



 

By ignoring the architecture-specific functions added by the compiler — I used the GNU C Compiler 
(GCC) toolchain in my tests — I had the interesting results shown in Figure 7. 

 

Figure 7. Clustering multi-architecture versions of a program using telfhash with the -g switch 

Using telfhash, I was able to cluster different binaries compiled for different architectures. But despite 
moving toward the right direction, it was not enough. I still had not been able to analyze statically 
compiled binaries without symbols using telfhash.  

How telfhash deals with statically linked stripped 
binaries 
No symbols, no win — and I had to think of a creative solution for my statically compiled binary issue. 
Thankfully, during a nice brainstorming session with my colleague Joey Costoya, I was able to think of a 
possible idea: to get the destination addresses for the function calls in the binary, create a list out of them, 
and feed it to telfhash. 

To get this to work, I made telfhash look for the argument of the instruction that calls a function in each 
supported architecture. Figure 8 shows a code excerpt that illustrates just that. 



 

 

Figure 8. Source code that implements the “call counting” feature 

We see this feature at work in Figure 9. 

 

Figure 9. Telfhash dealing with statically linked stripped ELF binaries 



 

Finally, I have an algorithm that is architecture-agnostic. The only obvious downside of it is that a telfhash 
value of a statically linked stripped binary does not match the others (as shown in Groups 1 and 2 of 
Figure 9), but will still be grouped together with other files compiled for multiple architectures.  

Using telfhash on real malware 
All these efforts would have been in vain if telfhash did not work with real malware. Thus, we used 
telfhash to try to analyze some malware samples, such as the XorDDoS backdoor, as shown in Figure 
10. 

 

Figure 10. Telfhash clustering all XorDDoS malware samples in one group 

I also collected samples of Momentum, an IoT botnet that affected devices running on Linux, and ran 
telfhash against them, as shown in Figure 11. 

 

Figure 11. Momentum botnet samples compiled for different architectures  

By using telfhash and the TLSH distance measure (with a threshold set to 50), I ended up clustering the 
Momentum botnet samples in three similar groups, as indicated in Figure 12. 



 

 

 

Figure 12. Clustering Momentum botnet samples in three groups (telfhash values redacted for brevity) 

Currently, telfhash supports x86, x86-64, ARM, and MIPS. I decided to primarily build support for these 
architectures because they cover the majority of IoT malware samples. The binaries compiled for 
PowerPC and Renesas are therefore not yet on the list. 

 

 



 

 

Making telfhash available for all  
As an open source supporter, I always intended to make telfhash an open-source tool. Thankfully, I had 
all the support that I needed from Trend Micro to make that a reality. 

We have been using telfhash internally. But there is no reason not to share it with the cybersecurity 
community so that we can discuss new features, make improvements, fix bugs, and take advantage of all 
of the benefits that only the open source community can offer. Therefore, we have publicly released 
telfhash and made its source code available on Github. 

We are offering telfhash as a Python library (a huge thank-you goes out to Joey for turning my ideas into 
professional Python code and helping improve it) so that it can be easily integrated in Python scripts in 
order to generate a similarity digest for ELF files.  

I would be happy to discuss any weaknesses, bugs, improvements, and ideas pertaining to telfhash. It is 
my sincere hope that telfhash proves to be an essential tool in combating Linux IoT malware. 

 

 

 

 

 

 

 

 

TREND MICROTM RESEARCH 

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.  

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and 
supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in 
vulnerability disclosures, and publishes innovative research on new threat techniques. We continually work to anticipate new 
threats and deliver thought-provoking research.   

www.trendmicro.com 

 


