<
@Y IREND research

Telthash: An Algorithm That Finds
Similar Malicious ELF Files Used
In Linux loT Malware

By Fernando Mercés (Threat Researcher)
and with contributions from Joey Costoya

The internet of things (loT) has swiftly become a seemingly indispensable part of our daily lives. The IoT
devices in pockets, homes, offices, cars, factories, and cities make people’s lives more efficient and
convenient. It is little wonder, then, that loT adoption continues to increase. In 2019, the number of
publicly known loT platforms grew to 620, which was double the number of platforms in 2015. This year,
31 billion loT devices are expected to be installed globally. Consequently, cybercriminals have been
developing IoT malware such as backdoors and botnets for malicious purposes, including digital
extortion. As reported in Trend Micro’s latest annual security roundup, the number of brute-force logins
made by IoT botnets in 2019 was triple the corresponding number in 2018.

Through the years, cybersecurity researchers have developed various helpful algorithms to identify large
numbers of malicious files quickly and accurately as an effective measure in the fight against malware.
But on the loT front, as threats and attacks geared toward web-connected devices continue to grow
exponentially, cybersecurity experts need to have a means to make their defensive measures systematic,
accurate, and strong.

With the support of Trend Micro and my fellow cybersecurity researchers, | have created telfhash, an
open-source clustering algorithm that effectively clusters malware targeting loT devices running on Linux
—i.e., Linux loT malware — created using Executable and Linkable Format (ELF) files.

A historical look at how similar malware files are
found

Trend Micro
Locality
Sensitive

Hash (TLSH)
Authenticode

PE Image
Hash*

Lempel-Ziv

2006 2006 2007 2008 2009 2010 201 2012 2013 2014 2016 2016 2017

* Applicable only to PE files.

Figure 1. A timeline of algorithms created to find similar malware files

Several years ago, back when Windows was almost exclusively used as the default operating system in
most users’ machines, cybersecurity experts waged a war against malware, suspicious executables, and
malicious scripts. In order to win the battle, they needed to find malicious files in a quick, effective, and
automated manner.

Because of the massive use of Windows, the Windows Portable Executable (PE) was the format mainly
used by virus writers and cybercriminal groups in creating malicious files. And in order to mitigate the
spread of malicious PE files, malware researchers used several techniques to efficiently find similar PE
files to investigate. These techniques also enabled researchers to better track cybercrime campaigns;
once they found a single malicious file, which likely had a single set of command-and-control (C&C)
servers, they could pivot on it to find other files belonging to the same campaign or cybercriminal group.

Different solutions appeared, like the regular hashing algorithms — such as MD5, SHA-1, and SHA-256
— that are applied to certain structures of a PE file. Another example of a good solution is peHash. The
idea behind peHash is simple: Instead of calculating a hash value considering the whole PE file, only
some of its structural parts (such as the file’s field values and section headers) are examined. Some
implementations of this hash function have been widely available for use.

Other researchers, meanwhile, developed similarity digests using Context Triggered Piecewise Hashes
(CTPH) aka fuzzy hashes, which are able to identify known files that contain inserted, modified, or
deleted data. These algorithms have two main features: They generate a hash, and they offer a
comparison operation to determine similarity.

A widely used program for computing CTPH is ssdeep, with the help of its own library that is used to
generate or compare fuzzy hashes, libfuzzy. Ssdeep, which is not limited to just executable files,
examines the whole file — including all of its bytes — and generates the hashes of the most interesting or
notable parts. Similar files would have a high probability to have similar but not identical hashes.

With cryptographic one-way hashes like MD5 or the SHA family, a single byte change could result in a
totally different hash. This is because cryptographic hashes seek to preserve uniqueness (one to one),
while similarity hashes like CTPH seek to preserve similarity (many to one). Similarity hashes provide a
probabilistic number that represents similarity (usually between 0 and 100). To better illustrate how
cryptographic and similarity hashing techniques work, we took six different samples from TheMoon
malware, which targeted IoT devices in 2018. Despite each sample’s having different MD5 values, the
ssdeep hashes show similar values, as seen in the parts highlighted in yellow and blue in Figure 2.

)$ mdS TheMoon*arm7*bin

MDS (TheMoon.arm?.dynamic.2018.01.0.bin) = f9d87043d2e99098f35a27237925992f

MDS (TheMoon.arm?.dynamic.2018.01.1.bin) = b731e5136f0ced58618af98c7426d628

MDS (TheMoon.arm?.dynamic.2018.01.2.bin) = 4d90e3al4ebb282bcdf3095e377c8d26

MD5 (TheMoon.arm?7.dynamic.2018.01.3.bin) = b8e16a37997ada06505667575f8577d6

MD5 (TheMoon.arm?7.dynamic.2018.01.4.bin) = 20f9f7ae@c6d385b@bedcdd618c478dc

MD5 (TheMoon.arm?7.dynamic.2018.01.5.bin) = 27002860c26c2298a398c0a8f0093ef6

h$

}$ ssdeep -1 TheMoon*arm7*bin | h 384 768 bmkxf8BgnWJonZDm nnnnnnnnnnn

ssdeep,1.1--blocksize:hash:hash,filename
768:1tp2QED3/aFWjPrhaqaojd+aFXjXsTEQAIXkC5Pb616DnXwB : 1t1jD3/agjlfLO+a9swq9XIPbpcB, "TheMoon.arm?.dynamic.2018.01.0.bin"

384 : bmkxf8BgnWJonZDm94sFnnnnnnnnnnnf0aZWf JjC/0RXKzb/2KxkQhx7/4]] :bPf8Bq7ZDmesIOhfIbG/2KuUx7/yj, "TheMoon.arm?7 .dynamic.2018.01.1.bin"
384 : bmkxf8BgnWJonZDmzSennnnnnnnnnnf0aQWf J jC/0RXKzb/2KxkQhx7/4] 7 :bPf8Bq7ZDmzSA02fIbG/2KuUx7/y]j , "TheMoon . arm?7 .dynamic.2018.01.2.bin"
384 :amjBfxnSc+wGqSY/ jnnnnnnnnnnnPvSZHyhJqol cC/E13EESGESGXG68YYgopolE :aofxy9qSY/ryMIqoLgU0sG1hwClE, "TheMoon.arm?7.dynamic.2018.01.3.bin"
768: e1p+QED3/aFWjPrhaqaoj@+RSuSVIr7jYR2q2TZBp: e103jD3/agj1fL@O+46Dp, "TheMoon.arm? .dynamic.2018.01.4.bin"
384:GmidfcixagkwB51bGnnnnnnnnnnnx7LBCKrnnrAYmeC3oWgUMGNbou82+djgFE : Gdf cQzBS1budmnrAgeXpbowwgFE , "TheMoon . arm?7 . dynamic.2018.01.5.bin"

Figure 2. A comparison between MD5 and ssdeep hashing techniques

The way ssdeep works involves hashing different pieces of a file and combining the results to generate a
final hash value.

Over time, new hashing schemes have been developed. Similarity digest hash (sdhash), for instance,
takes a totally different approach from ssdeep. It looks for sequences with the lowest probability of being
randomly found in a file, hashes them, and places them into a probabilistic set representation called the

Bloom filter. It is safe to say that sdhash compensates for the accuracy and scalability limitations of
ssdeep.

In an effort to deal with the shortcomings of both hashing techniques, Trend Micro created Trend Micro
Locality Sensitive Hash (TLSH), a type of fuzzy hashing technique that highlights the locality-sensitive
nature of a file instead of its similarity, and can be used in machine learning extensions of whitelisting. If a
file is found to be similar to known legitimate files, it is deemed safe to run on a system. TLSH has proved
that it can detect malware evasion techniques because sequence reordering does not change the hash. It
is also a scalable tool with its fixed-length hash, which means that it is not dependent on the size of the
input. In 2018, we used TLSH to analyze 2 million signed files to uncover a massive certificate signing
abuse by a marketing adware plug-in called Browsefox.

Import hashing

| would like to highlight two solutions that are important in the development of telfhash. One of them is
import hashing (ImpHash), which is primarily used in identifying malware binaries belonging to the same
malware family. It analyzes similar malware files by getting the imported functions of a PE file (from the
import directory) and its related library names, and creating a comma-separated list. Afterward, the list will
be hashed using the MD5 checksum algorithm. In the example shown in Figure 3, we took a sample of
Lokibot, a malware variant that is able to steal sensitive data from victim machines, to illustrate how
ImpHash works.

File name: Z:/target/nass.ex_

D& Import ? X
DIl Name OriginalFirstThunk Name FirstThunk

USER32.dlI 00008654 00008f7a 00008184
GDI32.dll 0000851c 0000900c 0000804c
SHELL32.dll 00008638 0000909a 00008168
ADVAPI32.dll 000084d0 00009194 00008000
COMCTL32.dlI 00008508 000091e0 00008038
ole32.dll 00008750 00009234 00008280
Thunk Ordinal
00008%e0 GetTempPathA
0000895¢ GetFileSize
0000896a GetModuleFileNameA
00008980 GetCurrentProcess
00008994 CopyFileA
000089a0 ExitProcess
00008%ae SetEnvironmentVariableA

100%

Figure 3. Imported functions from a Lokibot sample as seen in the import directory

From the KERNEL32.DLL library, this sample imports GetTempPathA(), GetFileSize(),
GetModuleFileNameA, and other functions. The imported functions from all of the imported libraries are
considered in generating the ImpHash. This way, similar files, regardless if new data is added, would

have the same ImpHash value — unless the developers changed its features by using (and therefore
importing) a new function or removing a previously used one.

The other hashing technique | wish to highlight is impfuzzy, which generates a similarity digest based on
the same input ImpHash is based on. It was created in 2016 but did not gain much popularity. In fact, |
was only recently made aware of its existence during the review process of this article.

Analyzing Linux loT malware

The aforementioned techniques work well for Windows executables, and algorithms like TLSH, ssdeep,
and sdhash actually work for any type of file.

In 2018, | was overwhelmed by the number of IoT malware families and the number of samples that had
been compiled for different architectures. People who closely follow the loT malware trend would be
familiar with file listings such as the one shown in Figure 4, which is that of an IoT botnet.

<« cC @ © #&¢:

Index of /bins

Name Last modified Size Description
& Parent Dircctory .
[?) a.arm 10-Nov-2019 11:20 37K
[?) a.arms 10-Nov-2019 11:20 29K
[?) aarm? 10-Nov-2019 11:20 106K
[?) ai686 10-Nov-2019 11:20 37K
[?) ampsl 10-Nov-2019 11:20 S0K
[?] ax86 10-Nov-2019 11:20 33K
[ﬁ shibui.arc 10-Nov-2019 11:19 41K
@ shibui.arm 10-Nov-2019 11:20 45K

@ shibui.arm5 10-Nov-2019 11:20 37K
[?) shibui.arm6 ~ 10-Nov-2019 11:20 55K
[ﬁ shibui.arm?7 10-Nov-2019 11:20 115K
@ shibui.i686 10-Nov-2019 11:19 45K

@ shibui kill 10-Nov-2019 11:20 41K
@] shibui.m68k 10-Nov-2019 11:20 46K
[?) shibuimips 10-Nov-2019 11:20 60K
@ shibui.mpsl 10-Nov-2019 11:20 62K
[?) shibui.ppc 10-Nov-2019 11:20 45K
@ shibui.sh4 10-Nov-2019 11:20 41K
Iz shibui.spc 10-Nov-2019 11:20 49K
[?) shibui.x86 10-Nov-2019 11:19 41K
Apache/2.2.15 (CentOS) Server at | Port 80

Figure 4. An example of an open directory in an loT botnet download server

Usually, loT botnet samples are based on the Tsunami, Gafgyt, or Mirai botnets. It is not unheard of to
find combinations of these variants to create a spectrum of loT malware types. Some of them are
sophisticated, while others are not so. Some become improved versions of their predecessors, while
others become buggy at best. Keeping updated on all of the variants that are constantly being developed,

correctly detecting malware samples, and accurately grouping them according to their real malware family
(e.g., correctly detecting a sample according to what specific Mirai variant it is as opposed to tagging it as
generic “Mirai”) can be challenging — especially since loT malware is mostly made using ELF files.

Thus, | thought of creating “ImpHash for loT malware,” which basically uses ImpHash techniques in
analyzing ELF executables. After looking into the specifics of the study and conducting my own research,
| found that no such project existed. So | decided to start my own.

My goal was to get imported functions of an ELF file and use them to feed a similarity digest algorithm
that | could use to cluster similar files. The symbol extraction becomes straightforward when the ELF file
has a symbol table, as seen in the example in Figure 5.

$ file hdump_32_dyn
hdump_32_dyn: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked, interpreter /lib/ld-linux.so.2, for GNU/Linux 2.6.32
, BuildID[shal]=31a8c3c64031ff57a275201c39ba7220ab3e7e83, not stripped
$
$ nm --dynamic hdump_32_dyn
08048f8c R _IO_stdin_used
U __ctype_b_loc
__gmon_start__
__libc_start_main
calloc
exit
fclose
fgetc
fileno
fopen64
fprintf
fread
free
fseek
ftell
getopt
optarg
printf
puts
gsort
rewind
select
stderr
strchr
strtoul

cCccCccCcccccccccccacaccaccacacacacaccas

Figure 5. Getting the symbols, including imported functions, from a dynamically linked ELF file that did not
have its symbols removed (stripped)

ELF symbols include not only the function names but also other symbols, so | wrote a basic piece of code
to extract, sort (making my implementation resistant to symbol ordering changes), and generate a hash
out of them.

It worked, but | was faced with two challenges. One was making a locality-sensitive hash that is resistant
to small changes applied on files. The solution needs to be able to still track a malicious file that had two
or three functions added to it, therefore making a new variant. The other was ensuring that the solution is
able to accurately identify “stripped binaries,” or binaries whose imports have been deliberately removed

by a malicious creator. But since stripped binaries have no symbols, how could | calculate a checksum
out of them?

The telfhash approach

| aptly (albeit admittedly a tad unimaginatively) named our tool telfhash — for Trend Micro ELF Hash —
because it specifically deals with ELF files. For the following cases, we have learned the functions used
by the binary from its symbol table:

e Statically linked with symbols (non-stripped binaries)
e Dynamically linked with symbols (non-stripped binaries)
e Dynamically linked with no symbols (stripped binaries)

There is a caveat in the last case. Although we can strip a dynamically linked binary to remove its
symbols, the symbols related to the external functions used are not removed from the binary — otherwise
the loader would have no way to resolve it during loading time.

| decided to use TLSH instead of MD5 (the algorithm that ImpHash uses) or any other cryptographic
hash. This way, | would be able to take advantage of its locality-sensitive nature without losing the
structural approach of using a function list as an input for the algorithm.

With this, | was able to calculate the same telthash value for different versions of a given ELF executable
using the -g / --group switch, as exemplified in Figure 6.

$ telfhash -g hdump_32_dyn*
hdump_32_dyn 4cb01247570b11c8557044614881319610836401fcbc2b000cO8c040000c183658e84f
hdump_32_dyn_stripped 4cb01247570b11c8557a44614881319610836401fcbc2b000c08c040000c183658e84f

Group 1:
hdump_32_dyn
hdump_32_dyn_stripped

Figure 6. Clustering two versions of the same program wih the -g / --group switch of the telfhash tool

This was a good start, but it was simply not enough — especially since loT malware samples are usually
compiled for different architectures, too.

Multi-architectural challenge

To address the dilemma of loT malware being compiled for different architectures, telfhash needs to
produce an output of similar values regardless of the architecture the binaries were compiled in (in case
they were compiled using the same source code). With this addressed, telfhash could be used to find the
same malware compiled for a different architecture.

In order to achieve this, | carefully inspected many malware files and some regular programs that | had
written in C and compiled for different architectures like x86, x86-64, Advanced RISC Machine (ARM),
and Microprocessor without Interlocked Pipelined Stages (MIPS). | prioritized them based on their
popularity among malware samples.

By ignoring the architecture-specific functions added by the compiler — | used the GNU C Compiler
(GCCQ) toolchain in my tests — | had the interesting results shown in Figure 7.

$ telfhash -g hdump_*_dyn*
hdump_32_dyn 4cb01247570b11c8557a446148813f9610836401f cbc2b000c08c040000c183658e84f
hdump_32_dyn_stripped 4cb01247570b11c8557a44614881319610836401f cbc2b000c08c040000c183658e84f
hdump_32_so_dyn 4cb01247570b11c8557a44614881319610836401f cbc2b000c08c040000c183658e84f
hdump_32_so_dyn_stripped 4cb01247570b11c8557a0446148813f9610836401fcbc2b000c08c040000c183658e84f
hdump_64_dyn 4cb01247570b11c8557a446148813f9610836401f cbc2b00dc08c040000c183658e84f
hdump_64_dyn_stripped 4cb01247570b11c8557044614881319610836401fcbc2b000c08c040000c183658e84f
hdump_64_so_dyn 4cb01247570b11c8557a44614881319610836401f cbc2b000c08c040000c183658e84f
hdump_64_so_dyn_stripped 4cb01247570b11c8557a0446148813f9610836401fcbc2b000c08c040000c183658e84f
hdump_arm32_dyn 4cb01247570b11c8557a44614881319610836401f cbc2b000c08c040000c183658e84f
4cb01247570b11c8557a446148813f9610836401f cbc2b00dc08c040000c183658e84f

Group 1:
hdump_32_dyn
hdump_32_dyn_stripped
hdump_32_so_dyn
hdump_32_so_dyn_stripped
hdump_64_dyn
hdump_64_dyn_stripped
hdump_64_so_dyn
hdump_64_so_dyn_stripped
hdump_arm32_dyn
hdump_arm32_dyn_stripped

Figure 7. Clustering multi-architecture versions of a program using telfhash with the -g switch

Using telfhash, | was able to cluster different binaries compiled for different architectures. But despite
moving toward the right direction, it was not enough. | still had not been able to analyze statically
compiled binaries without symbols using telfhash.

How telfhash deals with statically linked stripped
binaries

No symbols, no win — and | had to think of a creative solution for my statically compiled binary issue.
Thankfully, during a nice brainstorming session with my colleague Joey Costoya, | was able to think of a
possible idea: to get the destination addresses for the function calls in the binary, create a list out of them,
and feed it to telfhash.

To get this to work, | made telfhash look for the argument of the instruction that calls a function in each
supported architecture. Figure 8 shows a code excerpt that illustrates just that.

if code_section is not None:
for i in md.disasm(code_section.data(), ofs):
if arch in ("x86", "x64") and i.mnemonic = "call":
Consider only call to absolute addresses
if i.op_str.startswith('ox"'):
address = i.op_str[2:] # cut off 'Ox' prefix
if not address in symbols_list:
symbols_list.append(address)

elif arch = "ARM" and i.mnemonic.startswith("bl"):
if i.op_str.startswith('#0x'):
address = i.op_str([3:]
if not address in symbols_list:
symbols_list.append(address)

elif arch = "MIPS" and i.mnemonic = "lw":
if i.op_str.startswith("$t9, "):
address = i.op_str[8:-5]
if not address in symbols_list:
symbols_list.append(address)

return symbols_list

Figure 8. Source code that implements the “call counting” feature

We see this feature at work in Figure 9.

$ telfhash -g *

hdump_32_dyn 4cb@1247570b11c8557a44614881319610836401f cbc2b00OcO8c040000c183658e84f
hdump_32_dyn_stripped 4cb01247570b11c8557a44614881319610836401f cbc2b0POcO8c040000c183658e84f
hdump_32_so_dyn 4cb01247570b11c8557a44614881319610836401f cbc2b00OcO8c040000c183658e84f
hdump_32_so_dyn_stripped 4cb01247570b11c8557a446148813f9610836401fcbc2b00OcO8c040000c183658e84f
hdump_32_stat 7bc@8cc11d41280a4c63c9e4bc452bc31ee7dc4a69bd3d410180ccOBad2cade364f cOe
hdump_32_stat_stripped 5891d4636d799ce8b7105801825a31748a3aed3b69d039b15df364a0f 7b3e03563ad79
hdump_64_dyn 4cb01247570b11c8557a44614881319610836401f cbc2b00OcO8c040000c183658e84f
hdump_64_dyn_stripped 4cb@1247570b11c8557a44614881319610836401f cbc2b@0OcO8c040000c183658e84f
hdump_64_so_dyn 4cb@1247570b11c8557a44614881319610836401f cbc2b@0OcO8c040000c183658e84f
hdump_64_so_dyn_stripped 4cb@1247570b11c8557a44614881319610836401f cbc2b0ddcO8c040000c183658e84f
hdump_64_stat 7bc@8cc11d4f280a4c63c9edbca52bc31ee70c4a69bd3d410180cc@dad2cade364f cOe
hdump_64_stat_stripped d5717bb108fa24a466cbd511b322b415a93519e922ed35a1673778c4df c5fc128b6823
hdump_arm32_dyn 4cb@1247570b11c8557a44614881319610836401f cbc2b00DcO8c040000c183658e84f
hdump_arm32_dyn_stripped 4cb@1247570b11c8557a44614881319610836401f cbc2b0ddc08c040000c183658e84f
hdump_arm32_stat 7bc@8cc11d41280a4c63c9e4bc452bc31ee7dc4a69bd3d410f80cc@Bad2cade364f cOe
hdump_arm32_stat_stripped fa@lbd51ef19079c66d1939146ce65788afe30aca70@dbb28b587b5b5553ec@b21d833

Group 1:
hdump_32_stat
hdump_64_stat
hdump_arm32_stat

Group 2:
hdump_32_dyn
hdump_32_dyn_stripped
hdump_32_so_dyn
hdump_32_so_dyn_stripped
hdump_64_dyn
hdump_64_dyn_stripped
hdump_64_so_dyn
hdump_64_so_dyn_stripped
hdump_arm32_dyn
hdump_arm32_dyn_stripped

Cannot be grouped:
hdump_arm32_stat_stripped
hdump_32_stat_stripped
hdump_64_stat_stripped

Figure 9. Telthash dealing with statically linked stripped ELF binaries

Finally, | have an algorithm that is architecture-agnostic. The only obvious downside of it is that a telfhash
value of a statically linked stripped binary does not match the others (as shown in Groups 1 and 2 of
Figure 9), but will still be grouped together with other files compiled for multiple architectures.

Using telfhash on real malware

All these efforts would have been in vain if telfhash did not work with real malware. Thus, we used
telfhash to try to analyze some malware samples, such as the XorDDoS backdoor, as shown in Figure
10.

2e3162e118bc@c860de@ac145c7c3b82ca8b91771fa4961caf99cd89714f125f67bc@6
2e3162e118bc0c860de@acl45c7c3b82ca8b91771fa4961caf99cd897141125f67bc06
2e3162e118bc@c860de@ac145¢c7c3b82ca8b91771fa4961caf99cd89714f125f67bc@6
2e3162e118bc@c860de@ac145¢c7c3b82ca8b91771fa4961caf99cd89714f125f67bc@6
2e3162e118bc@c860de@ac145c7c3b82ca8b91771fa4961caf99cd89714f125f67bc@6
033161e118bc@c860ee@acl04c7d3f82ca8b917b1fa8961daf99cd89714f111f67bc0a
b73140e518bcOc860eedacl45c7d3b82ca8b927b1fa8962c9f99cd89754f115f66bcl6

XorDDos .
XorDDos.
XorDDos .
XorDDos .
XorDDos .
XorDDos.
XorDDos .

Figure 10. Telfhash clustering all XorDDoS malware samples in one group

| also collected samples of Momentum, an loT botnet that affected devices running on Linux, and ran
telfhash against them, as shown in Figure 11.

Figure 11. Momentum botnet samples compiled for different architectures

By using telfhash and the TLSH distance measure (with a threshold set to 50), | ended up clustering the
Momentum botnet samples in three similar groups, as indicated in Figure 12.

Group 1:
086f79f4ad@acfe6f23b1298d3ee858f56eabbc39c738858c6c@932aa7d29f61
3090610113d44c2188b244681e4eaa42a1530496454450089d3518948dbdc@bf
560125050b24089b1651c419b35c00bdfell1ad4421785714c88b39dbcde7c9cef
e3f03f0713076e5a9090703861d69663e34eff54ed3a7578036f01c9488caada
e48e3f4ea3168e2fb3e9e93fc4d3a146e1953a028e051e6ch6d616a11019d290

Group 2:
Qafffeda51doc11572e077720a2e3b84c4bc7d5e2fal7leadc2e@fb993466beb
10e95641e1d03950b09d4bd867ff816ce@89a92f6e341cacfac8344b90@1aldcd
1e9901479b1f90d42ea45ffb38782dd0879a289aa574567c2c@325e85f213beb
69c0bed26ea069c8b@025a953bclcb8dbaeaa50d21cf29fb10b58814bf499acd
74de649bcfbefb0a4806225ccd3bf3941d5018d23351dd2578d0880cf52b55dd
906dcaee54ce4c9cb3e237f0b291631378609db91a4b@ccd615f495eacd8bbc@
ae4f@ed7ebcebb83dcbad71042bedf977326b0ed2993d427180d257d6641096d
eb509ce80872ba42ed4aececdB89c169a32f201cddf79c81557932c95da97916¢

Group 3:
004c3d8ad74558d9560bfd23343c5d5a7637761855712b9e4f8cc895eeaf48ad
0@7cebb563a245f52d7d18c17167661a4d2c010424b7ebd5569315f116b6aldbc
Ob49efe340e81ba3a5elcc9013e550e3494fel1d4490db1617b66d9130133138¢C
13490afa959a0d7636d67fd01ead469714b77b5439c9eee58d9552175dad831d2
152e6de8fbefee3a78c79724475b58fececo8f750e5418dcof55ee74667b8fa2
1fc4b2d4e1935fdda4f908785ce761codff13778585a9ad15d865c0447bel702
229aeaee221dab8d70e@ab874ded4a067e36eea8fad31089a49b9e84e3dd015¢
22b594776e894c544fd7e5cac3f89528e8600df c1f00a212af62037bb9f 9186
26c9946dfe325365dodedcbb977fa28f447586ffc59dob3cfedbd13ccloadads
3c6d31b289c46b98be7908acd84086653a0774206b3310eeade6779e1f 4124
514988eb51eaacc548eb9616196ac454456701c338a93280454da48b2de28f14
5595396bba4d51ec52a55462ba86c@@bd706ee6alc654adbbf67aebelc2c68c4
5b5492a045bda33263e5c95e9de642d602c46eaf79b8cff2bdfca2f901c8caac
81b490013553014dc9b88dob3544a588430103f5fededd7efc97227fabedec25
8cd0795b0652c23b339a5e80ba77689a8d44d191e8403c1579b3d00daf1c58f5
b374f0201adea5518a8319a585a0268170d213305412e1645b7088febddca3bb
ba51alf9e48a3b60111eelc64134584af4c032b075f40f72ecalc9253f9b54d6
c2601450223761212ada9d8bd3fda9d8958c3428628301490a113b4328b792ec
c8386835395b917209361ec9e48c1bd734c139fd5d09205375998687061bad57
dodf3alcb7be@8348c61757568c48da2b241cc250d071fc11e480564125F465e
da85e99d16d534e22422e64af3d52a57442e4db5486020bbad7322da4cdbdbdd
f082adacdf2d85d1fad7@dc3d7781d7b85ed4c70442ef1842dcef683e516F888
fbec31f005ec81c5c6283a87902abc46ab9ae371c@53f6b243a9404533319d71

Figure 12. Clustering Momentum botnet samples in three groups (telfhash values redacted for brevity)

Currently, telfhash supports x86, x86-64, ARM, and MIPS. | decided to primarily build support for these
architectures because they cover the majority of loT malware samples. The binaries compiled for
PowerPC and Renesas are therefore not yet on the list.

Making telfhash available for all

As an open source supporter, | always intended to make telfhash an open-source tool. Thankfully, | had
all the support that | needed from Trend Micro to make that a reality.

We have been using telfhash internally. But there is no reason not to share it with the cybersecurity
community so that we can discuss new features, make improvements, fix bugs, and take advantage of all
of the benefits that only the open source community can offer. Therefore, we have publicly released
telfhash and made its source code available on Github.

We are offering telfhash as a Python library (a huge thank-you goes out to Joey for turning my ideas into
professional Python code and helping improve it) so that it can be easily integrated in Python scripts in
order to generate a similarity digest for ELF files.

| would be happy to discuss any weaknesses, bugs, improvements, and ideas pertaining to telfhash. It is
my sincere hope that telfhash proves to be an essential tool in combating Linux loT malware.

TREND MICRO™ RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and
supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in
vulnerability disclosures, and publishes innovative research on new threat techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

©2020 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo

L]
T R E N D '(are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company
" wrcne | research

names may be trademarks or registered trademarks of their owners.

