
 

 

 

 

 

 

 

  



 

Radio frequency (RF) technology is used in various settings and, considering its importance and impact, 

is a perennial subject of security research. In fact, early this year, we published a research on RF remote 

controllers used for heavy-duty equipment. We believe that it’s of paramount importance that security 

researchers develop skills in this field, especially since a growing number of devices associated with the 

internet of things (IoT) and industrial internet of things (IIoT) are and will be based on RF communication. 

This is the main motivation behind this educational report: providing a simple yet complete research 

target to get started with. 

RF is a common technology that can also be found in many nonindustrial applications. These include 

applications in the entertainment industry, where even if human lives and sensitive data are far from 

being at risk, security issues may be exploited to damage the image of an individual or organization 

directly involved in or otherwise attached to a production. For example, the reputation of the organizer of 

a certain event and the manufacturer or vendor of devices used in it may be called into doubt if the 

devices are compromised and abused to cause disruption or other undesirable outcomes. And in this 

scenario, the devices in question can be something as simple and accessible as LED wristbands, which 

are the research target covered by this report. 

LED wristbands are usually given out to guests in clubs or attendees at concerts, and they’re also used 

as part of the lighting systems of large shows and events, including broadcast ones where hundreds of 

thousands of people may be watching or attending. These wristbands can be remotely controlled 

manually — by a DJ, for example, who can set the LED lights to change colors, flash, or stay on in time 

with the song being played — or be integrated in a fully automated lighting control system. All in all, a 

LED wristband is a simple and harmless device used to set the ambiance and enhance the experience of 

an event. Despite its simplicity, though, it contains most of the basic components that are present in an 

IoT device: a microcontroller unit (MCU), a radio transceiver, some inputs, and some outputs (the LEDs, 

in this case). 

In May, we came across such wristbands at the Hack In The Box Amsterdam post-conference event, 

where we presented our research on industrial RF remote controllers. And being the security enthusiasts 

that we are, we proceeded to conduct a spontaneous research on-site. The following is a blow-by-blow 

account of our experience. 

Initial reconnaissance  

We need to record some legitimate transmission in order to have a repeatable testing dataset. To that 

end, we need to locate the transmitter. We spot an antenna on the DJ stage and immediately see a box, 

which looks like the transmitter. According to its label, it’s working at 869 MHz. We also notice on the 

label two hexadecimal (hex) numbers, 0x95 and 0x04, whose meaning will be clear later in this report. 

There is no brand on the wristbands, but we quickly find the vendor website by doing a web search for 

“Drome wristband,” given the hint on the transmitter box. 

Even on real targets, digging up information about a vendor is very important. Not only can it reveal 

relevant technical details, but it can also help in understanding the impact of security issues, if any: Is the 

vendor widespread? Are there other vendors that sell the same, rebranded products? Who are the 

customers of such vendors? And so on. These are questions that should be part of the initial 

reconnaissance. 

https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/attacks-against-industrial-machines-via-vulnerable-radio-remote-controllers-security-analysis-and-recommendations
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/attacks-against-industrial-machines-via-vulnerable-radio-remote-controllers-security-analysis-and-recommendations
https://www.trendmicro.com/vinfo/us/security/definition/internet-of-things
https://www.trendmicro.com/vinfo/us/security/definition/industrial-internet-of-things-iiot/
http://conference.hitb.org/files/hitbsecconf2019ams/materials/D2T1%20-%20Attacking%20Industrial%20Remote%20Controllers%20-%20Marco%20Balduzzi%20&%20Federico%20Maggi.pdf


 

 

Figure 1. Transmitter for the LED wristbands 

 

 

Figure 2. The control panel connected to the Drome transmitter module, which transmits signals to the 

LED wristbands 

Chip identification 
While inspecting the vendor’s website, we find out about DMX512 (Digital MultipleX 512), an industry 

protocol used in such applications as pyrotechnic movements of theatrical effects and, more commonly, 

stage lighting and effects. In large areas, over-the-wire DMX512 is simply inapplicable, for both practical 

and technical reasons: Not only are long cables expensive and difficult to deploy, but they also cause 

transmission errors. Thus, there are secondary data links that are used to transmit DMX512 packets, and 

wireless data links are clearly of interest. For example, the giant observation wheel known as the 

Singapore Flyer uses wireless DMX to control the lighting. In our humble case, the wristband itself is a 

simple DMX512-over-RF receiver, connected to a DMX512-to-RF transmitter (which in our case is on the 

DJ stage). 

  

https://www.pcmag.com/encyclopedia/term/57991/dmx512


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The LED wristband (top) and a detail of the RF receiver (bottom) 

The wristbands are fairly disposable: They’re quite cheap, and since we’re not required to return them to 

the organizer, we can even throw them away after the event. So it makes sense that there’s little more 

than a simple printed circuit board (PCB) inside the main component of one of these wristbands, 

embedded in which is a 4 mm. by 4 mm. radio chip. As seen in Figure 3, it’s a CC113L receiver, which is 

the receiver-only version of the well-known CC1101 transceiver. (We are no strangers to the CC11x 

family of semiconductors, as we encountered CC1120 in our industrial radio research.) 

SDR Captures 
Having confirmed the use of RF technology, we think it’s viable to analyze further. By this time, the party 

is almost over, but a few nerds — including us — are still on the dance floor, getting more and more 

bored. So we decide to spice up the party a little bit by bringing in our software-defined radio (SDR) 

equipment: a BladeRF SDR. The goal is to make as many RF captures in various conditions (on, off, 

constant on, specific flash patterns, etc.) as possible. This is essential since diverse samples will allow us 

to compare different packets and reveal the overall packet structure. Especially when looking at real RF 

systems, taking as many captures as possible under all pertinent conditions is an important step. It’s 

reasonable to assume that a packet’s content determines the light’s colors and flash speed or its 

displayed “effects.” In real systems, there may be buttons to press or similar inputs that influence the data 

exchanged over the air. 

We enlist the help of the DJ, who is justifiably intrigued by our equipment, in putting on various 

commands or conditions on the wristband, so that we can record the resulting packets in a more 

controlled way, rather than just at random. Having software tools such as Universal Radio Hacker (URH) 

http://www.ti.com/lit/ds/symlink/cc113l.pdf
http://www.ti.com/product/CC1101
https://github.com/jopohl/urh


 

makes the difference in these situations. It allows us to easily take quick captures, name them, and 

repeat the procedure for different conditions. 

At this point, we’ve already known the frequency but not much else about the signal. We haven’t been 

able to determine if the wristband uses frequency-shift keying (FSK), on-off keying (OOK), or another 

modulation scheme, but at this point it’s not yet crucial to find out. Before we can actually start capturing, 

we first need to guess the bandwidth and confirm the “exact” carrier frequency, of which we have a hint 

from the label. We use gr-fosphor to inspect the spectrum and the waterfall; the high resolution of gr-

fosphor makes it a great reconnaissance tool. After finding the carrier frequency and bandwidth, we tune 

the BladeRF slightly toward the left to avoid any DC noise — a technique called offset tuning — and start 

to capture. 

 

Figure 4. Our capture of the RF signals using SDR 

Testing for replay attack vulnerability 
With the captured signals, it’s possible to test for replay attack vulnerability. Moving away from the more 

powerful transmitter, we replay the different signals corresponding to specific effects to see if nearby 

wristbands will respond. Sure enough, some wristbands begin to flash different colors, making their 

wearers stand out from the crowd and allowing us to relish the interesting reactions of the non-security-

oriented folks. 



 

 

Figure 5. Replaying a signal 

RF communication analysis 

By this time, we have to leave the party because the club is about to close. Having enough captures and 

a working receiver with us, we’re able to continue our research back in our labs. Using the captured 

signals, we can then begin a more in-depth analysis. To do so, we need to clean or filter the signals to 

isolate only the signal that we need. This section largely involves the different features of URH that help 

filter the desired packets. 

Filtering or noise canceling 
The signals we captured were not perfect, as we had no control over the RF-noisy environment. We had 

to purposely use offset tuning to avoid DC spikes. Thus, we need to re-center the signal. 

 

Figure 6. Spectrogram with the DC noise line showing in the middle. 



 

In Figure 6, the solid orange line in the middle of the spectrogram is DC noise, and the signal is just 

above that line. The pattern looks like that of FSK, but at this point we cannot determine whether it’s 2-

FSK or 4-FSK. Because we can see more than two peaks, we are leaning toward 4-FSK, although this 

will still need further confirmation. This is another essential part of embedded-communication analysis: 

Always seek for multiple confirmations, even if they may sound redundant. 

At this point, we can either apply a bandpass filter or use noise cancellation. These two options are 

fundamentally “the same” under the hood. Bandpass filtering is a feature of URH as well as many other 

RF analysis software tools. URH makes it exceptionally easy to apply: In the spectrogram view, we can 

choose the “band” or part of the signal that we can “pass.” We make sure to keep our selection of the 

band wider than needed, as it’s better to risk a bit of noise than to cap the signal. Applying the bandpass 

filter creates a copy of the signal that can pass the filter.  

Figure 7. Using the bandpass filter 

URH also has a de-noising feature. From the analog view, we’re able to find the “silence” zone. Selecting 

this zone and setting it as “noise” makes the red area around the signal get narrower or ideally just a bit 



 

larger than the “noise,” as seen in Figure 8. This method does not create a copy of the signal, but it’s still 

easy to copy and paste an entire signal in URH (memory permitting). 

 

Figure 8. Using the noise canceling feature of URH 

Demodulation 
Since we’re dealing with a digital radio, we need to demodulate the analog signal to “see” the bits. In 

URH, we just switch to the “Demodulated” view, which results in the image in Figure 9.  



 

 

Figure 9. Using the demodulation feature of URH 

We don’t apply a bandpass filter in this example, so that the signal is still offset. Zooming in on this 

demodulated view reveals the packets in more detail, as seen in the bottom image of Figure 9. Since the 

center is still a bit offset, the demodulator interprets any sample of the signal above the threshold as 1. 

We just need to offset the threshold. A real (non-software) receiver does not require this adjustment since 

it’s tuned to the exact carrier frequency and has built-in DC-noise cancellation subsystems, thereby 

making offset tuning unnecessary. 

From the figure, it’s also possible to see something that looks like a preamble at the beginning of each 

packet. The preamble is necessary in any digital packet radio communication to “wake up” the receiver 

and provide a reference to set the symbol rate. In other words, the initial part of the packet is known and 

has to be “101010 …” (unless configured differently). 

 

Figure 10. Setting a series of high-lows to the “1010” pattern 



 

As seen in Figure 10, we use the preamble as a reference to set the symbol length (or bit length), 

assuming that one bit is one symbol in the alphabet. To do this, we select the shortest “pulse.” We find 

the shortest “symbol” in the preamble by choosing the point of the signal that crosses the threshold 

upward up to the point where the signal crosses back below the threshold.  

A more precise way of estimating is to take multiple equally spaced symbols (e.g., 12, consisting of six 1s 

and six 0s) and to count their size in several samples and divide this number by the number of symbols. 

The symbol size is expressed in “number of IQ-samples” here, so if the sample rate is changed while 

capturing signals with the SDR, URH will show a different bit length. For this signal, we set the bit length 

to 10 samples. 

After doing all this, our bitstream starts to look cleaner ( 11010101010101010101 ...). If we ignore the first 

1, which is the effect of having not taken the capture in the best conditions, we can safely take that as a 

preamble, with the packet coming right after it. 

Symbol interpretation and error correction 
Switched to the hex view, URH shows the result seen in Figure 11. Typically, we see “0xAAAAAA ...”as 

the preamble. However, this is not the case for most of the samples. 

 

Figure 11. Hex view of the signals in URH 

This result is strange, given that the sixth packet is decoded correctly — that is, showing the expected 

preamble. The challenge is to get all of the preambles decoded correctly. Two options are possible for 

remedying this problem, which can happen even when looking at other RF systems. We can either 

manually edit the signal and halve the length of the first “pulse” at the beginning of the preamble, or do 

this on the bitstream during post-processing. We choose the latter approach, although we describe how 

this can be done for a couple of packets. We just select the part of the signal that needs to be removed 

and delete it, as seen in Figure 12, thereby obtaining the signal in Figure 13. 



 

 

Figure 12. Removing part of the signal that is unnecessary 

 

Figure 13. Preambles in the right length after removal of the unnecessary parts 

To remove the extra 1 at the beginning of the preamble in post-processing, we go to the “Analysis” tab of 

URH, which offers a flexible decoding system and a good library of common decoders (e.g., Manchester, 

de-whitening). 



 

 

Figure 14. URH’s decoding system 

All of the packets contain a demodulation error in the first two bits of the preamble, except the first packet, 

which we fix manually on the “raw” signal. To fix the rest of the errors, we write a simple custom decoder, 

called “Fix preamble.” To create it, we go to “Configure Decoding,” as seen on the left side of Figure 14. 

This brings us to the window seen in Figure 15.  

 

Figure 15. Writing a simple decoder in URH 

We drag “Substitution” from the “Base Functions” list onto the “Decoder” area. We then enter a piece of 

preamble, one that includes the extra 1, in the “From” column. We copy the same preamble to the “To” 

column, this time without the extra 1. These steps are for a simple pattern substitution. To make sure that 



 

it works as intended, one can enter a valid full packet (or just a longer preamble to be fixed) in the “Test” 

line seen in the middle of the screen and check if the “Decoded Bits” are an expected value. 

 

Figure 16. Simple pattern substitution in URH 

We use this decoder for the rest of the packets. 

 

Figure 17. The fixed preambles 

Finally, we take a look at the sync word, which is usually placed after the preamble for packet filtering 

purposes. The radio chip compares whatever comes after the preamble with the sync word value set in its 

registers. If the two match, the packet is accepted. If not, the packet is discarded. From its datasheet, we 

know that CC113L defaults to a double 16-bit sync word after the preamble (0xd391 0xd391), which is 

http://www.ti.com/lit/ds/symlink/cc113l.pdf


 

exactly what we see. This confirms that we’re using the right demodulation parameters and that we’re 

going in the right direction. 

Obtaining the packet structure through diffing 
With the preambles fixed, we begin work on the packets in hex representation because it’s more 

compact, and we proceed to comparing the packets to determine how they differ — a technique known as 

diffing. By checking “Mark diffs in protocol,” as seen in Figure 18, we’re able to immediately notice the 

structure. Even when using tools other than URH, this is a very common approach when reverse-

engineering unknown communication protocols. By also checking “Show only diffs in protocol,” we’re able 

to notice that only two bytes changed: the byte after the sync word, which we’ve called “address,” and 

another byte. Figure 18 also shows an important step in RF protocol analysis: labeling. Labeling packets 

with their semantic notations (blue, white, and red, in our case) and labeling each packet field using a 

different notation (color, in our case) is essential in figuring out the structure and patterns. 

 

Figure 18. Marked differences in the protocol 

Interestingly, the Drome transmitter box is labeled with “0x95”, which we surmise is some form of 

address. We clearly see two types of packets: the “color packet” (address 0x95) and other “empty” 

packets (address 0x01 – 0x04). One interpretation of this is that this system can handle up to five 

independent “networks” of wristbands (from 1 to 4, plus 0x95). Another interpretation can be that those 

packets are synchronization “heartbeats,” but it’s hard to say at this point. The cyclic redundancy check 

(CRC) is a guess, but the datasheet comes in handy in this case. 



 

 

Figure 19. Packet format, according to the datasheet  

According to the datasheet, there should be two bytes of CRC-16. We have three bytes, meaning we 

have to find out what the last byte is, which we mark as “unknown.”  

At this point, we realize that we’ve analyzed only messages encoding red, green, and blue. We’ve been 

doing this because we’ve assumed that “white” is encoded as 0xffffff. Instead, we find that the payload 

structure is not 100% correct. The “white” is encoded as 0xffffff + 0xff (on the second, smaller LED, 

probably not an RGB). Accounting for this, we revise our initial field labeling and proceed to the next step. 

 

Figure 20. Accounting for the white messages encoding white light 



 

At this point, we can already design a transmitter in URH, since we know almost all of the details. The 

final missing piece is the CRC-16 implementation. Doing a web search for “CC1101 CRC implementation” 

(recall that CC113L is the receiver-only version of CC1101), we find out that there may be slightly 

different implementations. Indeed, testing with the default CRC-16 IBM, we aren’t able to match the CRC-

16 value. 

Using libscrc, we brute-force the polynomial using a known packet’s CRC-16 value ('6ca0'), as seen 

below. 

[x for x in [('{0:x}'.format(libscrc.ibm('\x95\xff\x00\x00\x00\x00\x00', i)), hex(i)) for i in 

range(0xffff+1)] if x[0] == '6ca0'] 

This reveals that to generate the CRC-16, we should use the polynomial below. 

'{0:x}'.format(libscrc.ibm(payload, 0xffff)) 

With this final step, we’re able to generate arbitrary packets with valid CRC-16 values that the receiver 

accepts. 

Embedded protocol analysis 

To design a precise transmitter, we need to know the exact radio parameters, which is why we need to 

dig deeper into the radio configuration. Again, multiple confirmations are very helpful in strengthening our 

knowledge of an embedded system. 

Typical for embedded packet radios, the radio chip is connected to the MCU via the serial peripheral 

interface (SPI). Although there are embedded radios that function in the opposite way, the most common 

design is that the MCU is the SPI master (M) while the radio is the SPI slave (S). 

 

Figure 21. Typical MCU and SPI functions of embedded radios 

Regardless of the specific code running on the MCU, at some point there must be a routine that sets up 

the radio. This is where the MCU sends SPI values and commands to the radio to make it ready to 

receive, transmit, or be in whatever state it needs to be to start functioning. This usually involves setting 

values onto certain registers and sending a series of commands, also known as “strobes.” Intercepting 

https://pypi.org/project/libscrc/


 

such SPI communication is very helpful in knowing how the radio is set up, including — most importantly 

— the modem parameters (e.g., frequency, modulation, frequency deviation, and bandwidth). 

Tapping into the SPI bus 
As previously mentioned, the radio chip is enclosed in a 4 mm. by 4 mm. package. We don’t have test 

clips for that size, so we have to do some soldering prior to connecting a logic analyzer. In principle, a 

logic analyzer works like an SDR: Instead of taking samples of a signal from an antenna, it takes samples 

of a signal measured between the ground and one or more other electrodes. With appropriate software, 

the samples are interpolated and the digital signal is reconstructed for subsequent analysis. 

Figure 22. Detailed view of the radio chip and soldering to break out the SPI pins 

We then hook up a simple logic analyzer — which, for starters, is more than enough to decode simple 

protocols — supported by Sigrok, an open-source signal analysis software. We first take a quick look with 

Sigrok’s pulse view, enabling only the four channels we need, and set it to a 2 MHz sample rate. With the 

wristband powered off (no battery), we start to capture signals — which are all flat, of course. While 

capturing, we connect the battery to the wristband, making sure not to do this intermittently as it will spoil 

the SPI capture. 

 

https://sigrok.org/


 

 

Figure 23. The signals as seen on Sigrok’s pulse view 

From the result shown in Figure 23, we can see, with a bit of zooming, the SS (slave select) signal going 

down to signal the beginning of an SPI transaction before going back to high, marking the end of the SPI 

transaction. We then try to decode the signal as a series of SPI transactions, without errors, as seen in 

Figure 24. With the shown good results, we can proceed and see if we can go beyond the SPI layer and 

interpret the higher-level CC113L proprietary protocol. 

 

Figure 24. Decoding the SS signal to the SPI 

 

 

 

 

 



 

Logic analyzer setup and CC1101/CC113L protocol decoding 
When we looked into the CC1120 chip in our previous research, we had to write a custom decoder 

because no known implementations of the CC1120 SPI protocols were available. But Sigrok now includes  

a CC1101 SPI decoder based on the Sigrok API, which we use on the radio chip at hand. Logically, chip 

manufacturers tend to keep the same SPI protocol across various products. So with this assumption, 

CC113L should have the same SPI protocol as CC1101, or at least a very similar one. Upon testing, we 

find our assumptions to be correct. 

To streamline the data collection, we switch the command line version of Sigrok as shown below: 

$ sigrok-cli --continuous \ 
    -P spi:clk=SCLK:mosi=MOSI:miso=MISO:cs=SS,cc1101 -A cc1101 \ 
    --channels D0=SS,D1=MISO,D2=SCLK,D3=MOSI \ 
    --config "samplerate=2 MHz" 

 

While doing this step, we have the wristband powered off. We then connect the wristband’s battery, and 

after a few warnings, we see interesting data (Figure 25), which is followed by some strobe commands to 

set the radio in receive or idle mode (Figure 26). 

 

Figure 25.  Recorded data after powering the wristband on and using the decoder 

https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/attacks-against-industrial-machines-via-vulnerable-radio-remote-controllers-security-analysis-and-recommendations
https://sigrok.org/wiki/Protocol_decoder:Cc1101


 

 

Figure 26. Strobe commands to set the radio in receive or idle mode 

We believe the firmware on the MCU is reusing “standard” library code to reset any CC11xx radio, 

because it’s sending SFTX probes (i.e., flush TX FIFO), which are not “available” in a receiver-only chip. 

Indeed, upon checking the datasheet, we see that the SFTX strobe isn’t listed on it. Since we’re using a 

decoder for a generic CC1101 (TX + RX), it’s decoded anyway. Interestingly, when we look at the SPI 

logs, we find out that the MCU sends the 0x3B strobe, which is SFTX for the CC1101, but is marked as 

“reserved” for the CC113L — confirming that different chips may use a common design. 

 

Table 1. List of command strobes and their descriptions, according to the datasheet 



 

Radio parameters 
The last step is to decode the register settings into meaningful radio parameters. Configuring CC11xx 

chips can be complicated, so Texas Instruments, their manufacturer, provides a configuration tool called 

SmartRF Studio. This tool can derive the exact registry values to obtain the desired RF parameters, and 

vice versa. Inputting the register values into SmartRF Studio will show the RF parameters. 

Figure 27 shows that we’re right about our assumption that the wristband is using 2-FSK. GFSK (as seen 

in the same figure) is just the Gaussian version of it, with a smoother transition. We’re also correct in the 

assumption that 0x95 is the address.  

 

 

 

Figure 27. Using SmartRF Studio to show RF parameters 

http://www.ti.com/tool/SMARTRFTM-STUDIO


 

 

Figure 28. A closer look at the packet structure 

A closer look at the packet structure, as shown in Figure 28, reveals that its length is equal to 0x07 bytes, 

with CRC enabled (auto-flushed on the receiver side so it won’t register as part of the payload in the RX 

FIFO) and two status bytes appended by the receiver (stripped off if the packet is accepted so it also 

won’t show up on the RX FIFO).  

Overall, since there is still one byte that we’re unable to see from our RF decoding, we’ve successfully 

reconstructed 99% of the packet structure. 

Application data 
We then check what SPI transactions we will record when the radio receives commands instead. To do 

this, we repeat the last procedure using the Sigrok command line front end Sigrok-cli. 

 

Figure 29. Repeated procedure using Sigrok-cli 

We purposely search only for packets matching the address. Most of the packets match what we see in 

URH, although the last byte is slightly off. This is because of the decoder: Since the fixed packet length is 

0x07, the eighth byte (0x0F) should not have been there. We assume that it’s a status byte value. Simply 

put, the decoder confuses the status byte returned on the MISO (master input, slave output) line with part 

of the RX FIFO burst transaction, or we haven’t set the logic analyzer’s sample rate high enough. 

Transmitter design 

Finally, we now have enough information to design our own transmitter. We use the following parameters, 

which we’ve collected and confirmed from the steps above: 



 

 Modulation: GFSK (we can use FSK and it will work anyway) 

 Precise carrier frequency: 869.524963 MHz 

 Bandwidth: 541.666667 kHz 

 Frequency deviation: 253.906250 kHz 

 Data rate: 249.939 kBaud 
 

We can use URH, GNU Radio, or any other SDR software to design our transmitter. Another way is to 

use an RF dongle featuring a CC1101 chip (e.g., YardStickOne, PandwaRF) or any other radio chip with 

enough bandwidth (e.g., RFQuack with the RFM69 shield), since we know how the registers are set. 

Equipped with a reliable transmitter, we’re able to forge packets and make the wristband flash lights in 

whatever way we want. 

Conclusion and security recommendations 

This was a very useful exercise that we decided to share as a learning experience. It led us to discover 

DMX512, a relevant industry protocol. It also allowed us to review and add to our knowledge of the 

CC11xx family. The use of the CC11xx family in a different setting and in a more novel and personal 

device gave us a more holistic understanding of it. 

From a broader perspective, although attacks on LED wristbands may have a decidedly lower impact 

than those on industrial radio controllers, this application of RF technology is still worth looking into. This 

case demonstrates the ubiquity of RF technology and consequently its wide attack surface. The use of 

RF technology in controlling lights alone is applied to large events, like concerts and theatrical 

presentations, and instances of compromise involving it can ruin the experience of these events. 

We did contact the vendor of the wristbands used in our research to disclose our findings, considering 

that, as previously mentioned, while small events may not offer any real opportunity to an attacker, large 

shows, especially broadcast ones, can. If the lighting system of an important show does not work as 

expected while thousands of people are watching, the reputation damage can be substantial. 

Vendors, integrators, and users alike have a responsibility to ensure the security of devices. Vendors 

should continue to build on well-known, standard protocols. And they should uphold security from the 

design phase by building radio transceivers that support encryption capabilities and applying tamper-

proof mechanisms that can hinder reverse engineering. Integrators and users should inspect the technical 

manuals of devices before purchasing and implementing them. In doing so, they should have a 

preference for vendors that offer dual-technology devices and use well-known, standard protocols. 

Researchers, for their part, should keep on analyzing obscure RF protocols, because by no means 

should “obscurity” rhyme with “security.” Researchers who are not familiar with these topics should not 

feel overwhelmed by the amount of knowledge needed to analyze embedded devices. As this report-cum-

tutorial shows, there are plenty of opportunities to get started and learn. 

 

 

  

https://documents.trendmicro.com/assets/white_papers/wp-a-security-analysis-of-radio-remote-controllers.pdf
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