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Almost every operating system (OS) now features different built-in tools and techniques for managing 

security vulnerabilities. Notable examples of these include control flow integrity (CFI) on Android 9 or 

pointer authentication codes (PAC) on iOS 12 hardware. Industry standard fuzzers like American fuzzy 

lop (AFL) and syzkaller are also being widely used. 
 

Because of these developments, the bug hunting space left for security researchers seems to be much 

smaller. Code reviewing based on expert threat knowledge seems to be a path that researchers can 

take, but it is time consuming and takes much effort. 
 

How do we break the deadlock? We developed a tool called LLDBFuzzer, a debug fuzzer for bug hunting, 

to help security researchers. This method is based on a next-generation debugger called 

Low Level Debugger (more popularly known as LLDB), from the LLVM Project. Based on our tests, it has 

proven to be an effective way to find and expand new attack interfaces, but it is also flexible, scalable, 

and scriptable for vulnerability research utilities. Moreover, we can demonstrate how to implement an 

LLDB debugger client within network extensions, which can help us fuzz within virtual machines to 

significantly improve efficiency. 
 

We tested the LLDBFuzzer on a Mac Pro running the latest OS at the time of experimentation, and our 

target was Apple Graphic Drivers. Our fuzzing methodology found dozens of vulnerabilities, including 

double free and out-of-bounds (OOB) read/write bugs that we will cover in the vulnerability analysis 

portion below. We discuss six vulnerabilities, but these are only a part of what we found. The others will 

be analyzed later and submitted to Apple. 

 

1. A look into LLDBFuzzer 
 

 
1.1. Comparing different bug hunting methods to LLDBFuzzer 

 
There are different methods used in bug hunting, and each has specific pros and cons. Some are only 

suitable for large-scale deployments, some hit the code coverage ceiling, and others cannot find new 

attack interfaces. We review the different methods, and compare them with LLDBFuzzer. 

https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/google/syzkaller
https://lldb.llvm.org/


 

Bug hunt method comparison 

 
 Key method Wait Time Find new attack 

interface 
Deep 
coverage 

Syzkaller/AFL Code coverage 
feedback 

Long No No or 
unknown 

Code Review Personal 
knowledge 

Unknown Yes Yes 

LLDBFuzzer Debug and 
taint 

Short Yes Yes 

Table 1. Typical Bug Hunt method comparison 
 

Code review - Code reviewing is usually a good way to find new attack interfaces and vulnerabilities 

hidden in deep locations, especially for logical vulnerabilities. However, this method is time 

consuming and its results are unpredictable. 
 

AFL & Syzkaller - AFL is an open source fuzz-testing tool developed by Michał Zalewski, while 

syzkaller is a kernel fuzzer. They are based on code coverage feedback that mutate strategy and 

target modules accordingly. Typically, an AFL-like fuzzer would mutate the input file on the bit level 

or reassemble the grammar elements according to some syntax for user mod targets. Syzkaller 

would mutate the system calls according to function prototype towards kernel mode code. 
 

AFL and Syzkaller are suitable for large-scale deployment. However, bug hunters will usually touch 

the code coverage ceiling — deep code location is difficult to reach for data dependency or code 

execution sequence dependency. They also can't help find new attack interfaces because fuzzing 

interfaces are typically configured by experts. 
 

LLDBFuzzer - LLDBFuzzer is based on the built-in debug mechanism of operating systems that 

intercept and break the execution of key API or the instruction at key points (selected according 

your system and security knowledge), and fuzzes corresponding data or code in an execution 

context. Since most data or code dependencies are kept during fuzzing, the fuzz activity can touch a 

deeper code branch compared to the sykaller/AFL-like methods. And since we do not designate the 

execution channel of the fuzzing, hidden attack interfaces would be exposed because of deep 

interception. 



 

Interception method comparison 

 
 System 

mode 
support 

Scriptable Control 
Grain 

Execution 
control 

Cross 
platform 

DTrace Kernel Yes API No/View only Easy 

Frida User Yes Instruction Yes Easy 

Inline hook Both No Instruction Yes Middle 
LLDBFuzzer Both Yes Instruction Yes Easy 

Table 2. Typical interception method compare 
 
 
 

Here is a brief comparison of the interception method (for Apple systems, in this example), which 

explains why we choose the debug path: 
 

DTrace and Frida are script based program execution tracing tools with well-documented interface APIs 

and good tracing capabilities at the API or instruction level. They are also good for cross platform 

development. However, we can disregard DTrace for its inability to modify the execution code and data 

at runtime. Frida is likely the best at user mode interception but not at kernel mode. 
 

While inline hook is good for instruction level control, the obvious drawback is that it is too “raw” and 

will take too much development effort for utility infrastructure and cross platform reconstruction. 

 
 
 

1.2. Kernel debugging and the LLDBFuzzer 

 
Kernel debugger overview 

MacOS supports two-machine kernel debugging using LLDB over an Ethernet or FireWire connection. 

The remote debugger protocol is called the Kernel Debugging Protocol (KDP). 
 

KDP protocol initialization process in XNU 

The KDP protocol is initialized during system bootstrap, as shown in Figure 1 below. During startup, 

the system creates a kdp init thread and implements a debugger trap. The kdp init thread is used to 

wait for Ethernet drivers registering send and receive handlers, while the debugger loop within the 

trap is responsible for polling, processing, and replying to the incoming debug command with those 

two handlers. What's more, XNU implements all the debugger command functions in the kdp.c file 

and registers them in a dispatch table; for example, `breakpoint set` command refers to the 

kdp_breakpoint_set function. These functions make up the debugger world. 
 

Kernel debugger mechanism within the Ethernet driver 

The debugger functions implemented within XNU are not enough. If the target machine supports a 

remote debugger, its Ethernet driver should implement the IOKernelDebugger service and its object 

http://dtrace.org/blogs/about/
https://www.frida.re/
https://blog.quarkslab.com/an-overview-of-macos-kernel-debugging.html


 

interfaces with the kernel debugger protocol (KDP) module and dispatches KDP requests to its 

target (provider). 
 

Figure 2 shows the support for remote debugging. The target, designated as the debugger device, 

must implement a pair of handler functions that are called to handle KDP transmit and receive 

requests during a debugging session. Only a single IOKernelDebugger in the system can be active at 

a given time. The active IOKernelDebugger is the one that has an IOKDP object attached as a client. 

 
 

The debugger device is usually a subclass of IOEthernetController. However, any IOService can 

service an IOKernelDebugger client, implement the two polled mode handlers, and transport the 

KDP packets through a data channel. However, KDP assumes that the debugger device is an 

Ethernet interface and therefore it will always send, and expect to receive, an Ethernet frame. 
 

Figure 3 shows the architecture of KDP debugger implementation in Drivers. From the figure, we 

can see that the subclass of IOEthernetController implements the receive and send handlers, and 

IOKernelDebugger registers these two handlers into XNU. Therefore, remote devices can operate 

the debugger command on the target machine. 
 

For FireWire debugging, KDP is used over a FireWire cable courtesy of a kernel extension 

(AppleFireWireKDP.kext) on the target machine and a translator program (FireWireKDPProxy) on 

the debugger machine. The translator routes data between the FireWire connection and UDP port 

41139 on the debugger system, and it acts as a local proxy for the target machine. LLDB still 

performs network-based debugging, except that it communicates with localhost instead of directly 

communicating with the shim on the target machine. 



 

   Register different  
interruptions with 

NMIInterruptHandler  

Kdp-remote xx.xx.xx.xx Kdp communication setup   

   
case T_DEBUG:  
case T_INT3:  

exception = EXC_BREAKPOINT; 

code = EXC_I386_BPTFLT;  
kdp_serial_send: kdp_serialize_packet  

seria lize  a nd deserialize  kdp pa ckets  
kdp_serial_receiv: kdp_unserialize_packet  

Regis ter send and receive ha ndler 

kdp_poll() kdp_reply() kdp_send() 

kdp_en_send_pkt = send; 
kdp_en_recv_pkt = receive; 

kdp_receive_data(pkt.data, &pkt.len, 3/* 

ms */); 
xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

kdp_en_recv_pkt -- receive handler 
kdp_en_send_pkt -- send handler 

kdp_send_data(void *packet, unsigned int 

len) 
xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

All the dispatch functions 

kdp_breakpoint_set: 
{ 

bytes[0] = 0xcc; // int 3 
*size = 1; 
} 

dispatch_table[KDP_INVALID_REQ 

UEST-KDP_CONNECT] = 
{ 

/* 0 */ kdp_connect, 
/* 1 */ kdp_disconnect, 
/* 2 */ kdp_hostinfo, 
/* 3 */ kdp_version, 

  

/* F */ kdp_breakpoint_set, 
/*10 */ kdp_breakpoint_remove, 

  
}; 

static kdp_dispatch_t 

ret = ((*dispatch_table[req - KDP_CONNECT])(rd, len, reply_port)); 
xnu-4903.221.2\osfmk\kdp\kdp.c 

kdp_packet((unsigned char *)&manual_pkt.data, &packet_length, &manual_port_unused); 

kdp_packet((unsigned char*)&pkt.data[pkt.off], (int *)&pkt.len, (unsigned short *)&reply_port) 
xnu-4903.221.2\osfmk\kdp\kdp.c 

kdp_send_exception(e 

xception, code, subcode); 
xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

kdp_raise_exception 
xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

handle_debugger_trap(exception, code, subcode, 

saved_state); 
xnu-4903.221.2\osfmk\kern\debug.c 

kdp_init() 
xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

kernel_thread_create 
xnu-4903.221.2\osfmk\kern\thread.c 

smp_init(); 
xnu-4903.221.2\osfmk\i386\mp.c 

i38 6 _ sm p _ ini t( LAP IC _ N M I_ IN T E R R U P T, N M IIn t er r u pt H a n  dle r , 

LAP IC _ VE C T O R( IN T E R P R O C ES S O R) , cp u _ sig n al_ h a n dle r)  

machine_init(); 
xnu-4903.221.2\osfmk\i386\AT386\ 

model_dep.c 

kernel_bootstrap 
xnu-4903.221.2\osfmk\kern\startup.c 

 
LLDB Debug World 

kdp_handler(saved_state) 
xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

kdp_debugger_loop(exception, code, 

subcode, saved_state); 
xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

kdp_register_send_receive 
xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

 
 
 
 

 
 

kdp_i386_trap(T_DEBUG, 

saved_state64(regs), 0, 0); 
xnu-4903.221.2\osfmk\kdp\ml\x86_64\kdp_machdep.c  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Process req and reply 

 
 

Figure 1. KDP protocol init process during kernel bootstrap 

 

 
typedef union { 

kdp_hdr_t  hdr;  

kdp_connect_req_t  connect_req; 

kdp_connect_reply_t  connect_reply; 

kdp_disconnect_req_t disconnect_req; 

kdp_disconnect_reply_t disconnect_reply;  

kdp_hostinfo_req_t host info_req; 

kdp_hostinfo_reply_t host info_reply;  

  

}   kdp_pkt_t; 



 

 
 

Figure 2. Drivers that support remote debugging 



 

kdpTransmitDispatcher kdpReceiveDispatcher 

_txHandler _rxHandler 

IONetworkController 

IONetworkingFamily.kext 
 

    virtual void receivePacket virtual void sendPacket  

BCM5701Enet 

AppleBCM5701Ethernet.kext 
 
 

sendPacket 
 

BCM5701Enet 

receivePacket 

IOEthernetController 

IOEthernetAVBController 

IONetworkController::attachDebuggerClient(I 

OKernelDebugger ** debugger) 
IONetworkingFamily-129.200.1\IONetworkController.cpp 

_activationChangeThreadCall = thread_call_allocate( 

(thread_call_func_t) handleActivationChange, 

(thread_call_param_t) this ); 

IONetworkingFamily-129.200.1\IOKernelDebugger.cpp 

debugger->message( kMessageDebuggerActivationChange, 0, 

change ); 
IONetworkingFamily-129.200.1\IOKernelDebugger.cpp 

registerHandler( _target, _txHandler, _rxHandler, _linkStatusHandler,  

_setModeHandler ); 
IONetworkingFamily-129.200.1\IOKernelDebugger.cpp 

 
::start(IOService *provider) 

 

 
void IONetworkController::debugTxHandler(IOService * 

handler, 
void *     buffer,    
UInt32 length) 

{ 
((IONetworkController *) handler)->sendPacket(buffer, length);  

} 

 
 
 

_target = target; 
_txHandler       = txHandler; 
_rxHandler       = rxHandler;    

_linkStatusHandler  = linkStatusHandler; 
_setModeHandler = setModeHandler; 

_state      = 0; 

 

 

 

 
 

kdp_register_send_receive( (kdp_send_t) kdpTransmitDispatcher, (kdp_receive_t) kdpReceiveDispatcher);  

xnu-4903.221.2\osfmk\kdp\kdp_udp.c 

  

 
Send/Receive 

handler 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The architecture of KDP debugger implementation in Drivers 

 

Driver like/BCM 

debugger->init( target, txHandler, rxHandler, linkStatusHandler, 

setModeHandler ) 

IONetworkingFamily-129.200.1\IOKernelDebugger.cpp 

IOKernelDebugger::debugger( this, 

&debugTxHandler, 
&debugRxHandler, 

&debugLinkStatusHandler, 
&debugSetModeHandler); 

IONetworkingFamily-129.200.1\IONetworkController.cpp 



 

 
 

Debugger Toolset available for MacOS 

Apple also provides some debug scripts that support kernel debugging, as shown in Figure 4. 
 

 

Figure 4. XNU debug scripts provided by Apple 
 

 

 

Figure 5. The XNU debug script file layout 
 

 
The Core directory provides many basic components used in the debugger process, such as API 

wrappers that encapsulate the basic LLDB Scripting Bridge APIs. The plugins directory contains a 

plugin that can create performance reports for zprint output. The xun.py file includes the LLDB 

initialization code, which is used to load plugins and additional debug commands. The process.py 

script mainly contains the debug commands implementation code. 

 

Kernel Debug Process 

 

Figure 6. Back trace after using NMI interruption 

https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/build/build.html


 

 
 

Figure 6 shows the back trace after using NMI interruption. For remote kernel debug, a NMI 

(Command-Option-Control-Shift-Escape) signal can be manually generated to interrupt the target 

machine during execution, which gives an opportunity for the remote debugger to connect. 

However, the configuration to enable the debugger and how to debug a remote device will not be 

introduced here. 
 

LLDBFuzzer overview 

Although LLDB is not suitable for debugging low-level kernel components, it can debug almost all the 

kernel extensions and XNU codes after the required hardware is operational. Based on these features, 

we introduce a novel fuzzing architecture we call LLDBFuzzer. 
 

The LLDBFuzzer architecture 

Figure 7 shows the architecture of our LLDB fuzz solution. As mentioned previously, this solution is 

based on the remote kernel debugger system, so our fuzz solution contains two machines. One is 

the remote machine, which runs our main fuzzing logic; and the other is the target machine, which 

is loaded with a custom kernel and deploys our fuzz point. The target machine can be a MacOS VM 

or a real device. 

 
 
 
 

 

 
Figure 7. The LLDBFuzzer architecture 



 

The following details each module: 
 

• Probe Setup - It will query the fuzz strategy, which contains all the attack surfaces we revised 
from XNU and KEXTs, and parse them for an executor to deploy probes on the target machine. 

• Mutation - Executor will break at probe point, then bit flip their input buffer. However, not all 
the inputs need mutation because the inputs are not always buffers; the executor will use the 
debug function (such as "showobject") to check them. 

• Crash Monitor - This module will monitor the status of target machines via the fuzzing log and 
return the signal. It can also use the manager toolset to restart or send core dump and panic logs 
to fuzzing servers for further reproduction. 

• Executor - This is a fuzz controller for all fuzzing steps. 
• Sanitizers - The target machine loads our custom XNU, which is compiled with a kernel address 

sanitizer (KSAN) and a kernel memory sanitizer (KMSAN). These two sanitizers were introduced 
in our BlackHat Europe 2018 presentation. 

• Remote Debugger Components: This module is an essential part of our whole fuzzing solution. 
It is implemented in the Ethernet driver; however, not all drivers implement the kernel debugger 
functions (an example would be the Intel Mausi Network Driver). Section 2.3 will introduce how 
to implement a remote kernel debugger in the open source driver. 

• XNU and KEXTs: Unusually, due to the features of an LLDB debugger, LLDBFuzzer will not only 
pay attention to the normal attack surface, such as "is_io_connect_method" and 
"unix_syscall64", but also to the deeper attack surface, such as the 
"IOAccelCommandStreamInfo" process functions in the AMDRadeonX4000_AMDSIGLContext 
service. 

 

1.3. The fuzz attack surface on Macintosh 

 
Hacking into AMD graphic drivers 

AMD Graphic Drivers are used to accelerate and optimize 2D, 3D, and video rendering. They contain 

many interfaces that the user space can access, so we chose them as our research target. 
 

Below, we will show how to uncover deeper and hidden potential attack surfaces that can allow 

malicious actors to hack into AMD accelerator family in Radeon Drivers. 

https://www.blackhat.com/eu-18/briefings/schedule/index.html#drill-apple-core-up-and-down---fuzz-apple-core-component-in-kernel-and-user-mode-for-fun-and-profit-12923


 

Determine the active accelerator in the target machine 
 
 

 

Figure 8. Class diagram of IOAccelerator and its derived class in AMD Graphic Driver 
 
 

Figure 8 shows the whole accelerator family in an AMDRadeonX4000 driver, each of them 

adaptable for different GPU models. Our Mac Pro test machine features two AMD FirePro GPUs 

(shown in Figure 9); AMDRadeonX4000_AMDPitcairnGraphicsAccelerator is active. 

 
 
 

 

Figure 9. The two AMD graphics accelerators in Mac Pro, featuring two AMD FirePro GPUs 



 

Get the usual attack surface for AMDPitcairnGraphicsAccelerator 

 

Figure 10. The pseudo code of the IOGraphicsAccelerator2::newUserClient function 
 
 

The newUserClient function is used to create a connection for an IOServce with a type that the 

caller specifies. Based on the pseudo code shown in Figure 10, IOAcceleratorFamily2.kext has many 

available associated services that can be accessed from user space using the IOServiceOpen 

function. Table 3 lists the actual derived services and access types. These derived services are also 

available if the device uses the Intel series GPU AppleIntelHD5000Graphics.kext or other kernel 

extensions. 

 
 

Open Type Parent Service Derived Service in AMDRadeonX4000.kext 

0 IOAccelSurface2 AMDRadeonX4000_AMDAccelSurface 

1 IOAccelContext2→ 
IOAccelGLContext2 

AMDRadeonX4000_AMDSIGLContext 

2 IOAccelContext2→ 
IOAccel2DContext2 

AMDRadeonX4000_AMDAccel2DContext 

3 IOAccelContext2→ 

IOAccelVideoContext2 

AMDRadeonX4000_AMDAccelVideoContext→ 

AMDRadeonX4000_AMDSIVideoContext 
4 IOAccelDisplayPipe2 AMDRadeonX4000_AMDAccelDisplayPipe 

5 IOAccelDevice2 AMDRadeonX4000_AMDAccelDevice 
6 IOAccelSharedUserClient2 AMDRadeonX4000_AMDAccelSharedUserClient 

7 IOAccelMemoryInfoUserClient  

8 IOAccelContext2→ 

IOAccelCLContext2 

AMDRadeonX4000_AMDAccelCLContext→ 

AMDRadeonX4000_AMDSICLContext 
9 IOAccelCommandQueue AMDRadeonX4000_AMDAccelCommandQueue 

Table 3. Graphic Services and its Open Type from User Space (A→B means B extends A) 



 

 
 

Besides getting these AMD services, getting the external methods dispatch is also essential so that 

we can find the first level of attack surfaces. IOUserClient::externalMethod and 

IOUserClient::getTargetAndMethodForIndex are the common override functions to reverse to get 

the dispatch table. Some of the services may fully rewrite these two functions, which makes reverse 

engineering a little difficult and not friendly for automation, but it can still be effective after some 

effort. Table 3 shows the main IOServices and their extended relationships. Table 6 shows the 

external method and its index of AMDRadeonX4000_AMDSIGLContext. Since IOAccelGLContext2 

extends IOAccelContext2, the other GL context operation functions are implemented in 

IOAccelContext2 class as shown in Table 4. 

 
 

index flags count 
1 

count2 Methods Name 

0 0 0 0 IOAccelContext2::finish(void) 

1 4 0 0xfffffff 
f 

IOAccelContext2::set_client_info(IOAccelClientInfo 
*,ulong long) 

2 3 0x88 0xfffffff 
f 

IOAccelContext2::submit_data_buffers(IOAccelConte 
xtSubmitDataBuffersIn 
*,IOAccelContextSubmitDataBuffersOut *,ulong 
long,ulong long *) 

3 3 8 0xfffffff 
f 

IOAccelContext2::get_data_buffer(IOAccelContextGet 
DataBufferIn *,IOAccelContextGetDataBufferOut 
*,ulong long,ulong long *) 

4 0 0 0 IOAccelContext2::reclaim_resources(void) 

5 0 1 0 IOAccelContext2::finish_fence_event(uint) 

6 0 0 0  

7 0 1 0 IOAccelContext2::set_background_rendering(uint) 

Table 4. The external method of IOAccelContext2 
 

 
Sele- 
ctor 

Scalar 
InputCount 

Structure 
InputSize 

Scalar 
Output 
Count 

Structure 
OutputSize 

Methods Name 

256 0 0x30 0 0 IOAccelGLContext2::s_set_surface( 
IOAccelGLContext2*,void 
*,IOExternalMethodArguments *) 

257 0 0x30 0 0x28 IOAccelGLContext2::s_set_surface 
_get_config_status(IOAccelGLCont 
ext2*,void 
*,IOExternalMethodArguments *) 

258 4 0 0 0 IOAccelGLContext2::s_set_swap_r 
ect(IOAccelGLContext2*,void 
*,IOExternalMethodArguments *) 



 

259 2 0 0 0 IOAccelGLContext2::s_set_swap_i 
nterval(IOAccelGLContext2*,void 
*,IOExternalMethodArguments *) 

260 1 0 0 0 IOAccelGLContext2::s_set_surface 
_volatile_state(IOAccelGLContext2 
*,void 
*,IOExternalMethodArguments *) 

261 0 0x20 0 0 IOAccelGLContext2::s_read_buffer 
(IOAccelGLContext2*,void 
*,IOExternalMethodArguments *) 

Table 5. The external method dispatch of IOAccelGLContext2 
 

 

index flags count1 count2 Methods Name 

512 4 0 0xfffffff 
f 

AMDRadeonX4000_AMDSIGLContext::readPixelsFBO( 
sATIGLContextReadPixelsFBOData *,ulong long) 

513 4 0 0x18 AMDRadeonX4000_AMDSIGLContext::SurfaceCopy(ui 
nt *,ulong long) 

Table 6. the external method of AMDRadeonX4000_AMDSIGLContext 
 

More Hidden Attack Surfaces 

Though the usual attack surfaces can be tested and fuzzed directly from user space, there are still 

multiple functions within the drivers that cannot be touched. Mainly, these functions contains three 

kinds of interfaces: 
 

1) Interfaces that are protected by filter driver, which researcher Yu Wang introduced in DEFCON 26 
2) Interfaces that are controlled by the shared memory 
3) Interfaces that cannot be indirectly touched by user space processes, but can be accessed by 

Safari and special processes 
 

We will illustrate the second and the third type of hidden and deep attack surfaces. 
 

A. Interfaces which are controlled by the shared memory 
 
 

AMDRadeonX4000_AMDSIGLContext provides a set of side band buffer process functions called by 

the "processSidebandToken" method and controlled through the IOAccelCommandStreamInfo 

object. 

https://www.youtube.com/watch?v=TEKOm0J2sHQ


 

 
 

Figure 11. The accelerator command stream info is controlled by shared memory 
 
 

Figure 11 shows that v5 points to the shared memory start address and offset 16 bit, and 

commandStreamInfo_offset32 points to the commandStreamInfo structure and offset 32 bit. Then, 

the following code assigns two words and one DWORD data of v5 to commandStreamInfo_offset32, 

and passes them to the AMDRadeonX4000_AMDSIGLContext::processSidebandToken function. This 

function gets the first word of commandStreamInfo_offset32 and subtracts 120 as the index of the 

ati_token_process_methods dispatch array, as shown in Figure 12. After that, the methods hide 

behind the IOAccelContext2::submit_data_buffers external method, which has a selector of “2” as 

shown in Table 4, and can be accessed. 



 

 
 

Figure 12. The side band buffer process functions hide behind the external method, which has a 
selector of 2 

 
 

The shared memory can be operated from user space using the code shown in Figure 13. Figure 14 

lists the main service class and their relationship to help analyze the IOAcceleratorFamily2.kext. The 

figure in the appendix shows the important field variables and their offsets in each service class. We 

will also clarify each service class’s main function and what role they play in the 

IOAcceleratorFamily extension below. 
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Figure 13. The demo showing how to operate the accelerator context share memory 
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Figure 14. The details of the AMD Accelerator driver 
 
 

B. Interfaces which cannot be indirectly touched by user space processes, but can be accessed by 
the Safari (and others) special processes 



 

The IOFramebuffer service defines APIs used to publish a linear framebuffer device. AMD device 

writers extend this class and provide an AMDFramebuffer driver. It creates three types of 

connections: kIOFBServerConnectType, kIOFBSharedConnnectType, and 

kIOFBDiagnoseConnectType. However, the kIOFBServerConnectType connection cannot be 

accessed through the normal user-mode process. 
 

But, that does not mean that there is no vulnerability there: one example of a bug would be CVE- 

2018-4462, which we reported to Apple (details will be introduced in vulnerability section below). 

The details of the external method dispatch can be referred to in 

IOFramebufferUserClient::externalMethod in the IOFramebufferUserClient.cpp file. However, the 

execution methods are those implemented in AMDFramebuffer.kext, as shown in Figure 15. 

 
 
 

Figure 15. The execution functions implement in AMDFramebuffer.kext 
 
 

Hacking into special syscalls 

Unix_syscall64 is the dispatch function for syscall in XNU and the corresponding function in user space is 

syscall. This is one of most important attack interfaces towards kernel privilege escalation crossing 

platforms (including OSX and iOS). 

 
 
 

 

Figure 16. unix_syscall64 in call stack (sysctl for example) 



 

Above is the typical system call backtrace, where we used sysctl as an example. From the brief 

implementation of unix_syscall64 listed below, we can get import system call info from the input 

argument “state” that includes registers of execution context, system call number, arguments zone in 

kernel mode, and so forth. 
 

    attribute ((noreturn)) void unix_syscall64(x86_saved_state_t *state) 

 
{ 

 
 

 
p = current_proc(); 

 
regs = saved_state64(state); 

 

//Get system call number from saved registers 

uSyscallNumber = regs->rax & SYSCALL_NUMBER_MASK; 

//uSyscallNumber = regs->rdi;//indirect system call 

callp = &sysent[uSyscallNumber]; 

 
 

//copy in user data to kernel address(vt or uthread->uu_arg) 

vt = (void *)uthread->uu_arg; 

copyin_count = (callp->sy_narg - args_in_regs) * sizeof(syscall_arg_t); 

 
//int copyin(const user_addr_t uaddr, void *kaddr, size_t len); 

error = copyin( 

(user_addr_t)(regs->isf.rsp + sizeof(user_addr_t)), 
 

(char *)&uthread->uu_arg[args_in_regs]/*kernel address*/, 

copyin_count); 

 
 

//Call system call 

 
error = (*(callp->sy_call))((void *) p/*current process*/, 

vt/*kernel address for arguments*/, 

&(uthread->uu_rval[0])); 

 
 

} 



 

 
 

We analyzed system call trigger statistics, taken for about 10 minutes in a typical runtime environment 

(which would happen for example playing 3D online games, website visits via Safari, running VLC media 

etc.) on the latest Mac OSX 10.14.4. The first column is the total hit number, the second column is the 

system call number, and the last column is the system call prototype. 
 

We have neglected less important system calls for passive fuzzing based on several principles. The basic 

idea is that the more data structure or buffers are accepted as user input, the more attack interfaces the 

system call will open. For example, for effective fuzzing, we ignore system calls with no input argument 

or all input arguments that are only integer compatible and so forth. 
 

Figure 17. Typical system call hit statistics 
 
 

To provide better references for fuzzing, we have classified the system call hit statistics into different 

categories according the system call hit number, as seen below. 



 

 

 
 
 

Figure 18. System call hit more than 100k 
 
 
 

 

 
Figure 19. System call hit between 100k and 10k 



 

 

 
 

 

Figure 20. System call hit between 10k and 1k 
 
 
 

1.4. The prototype of LLDBFuzzer 

 
This section details how to implement LLDBFuzzer, including how to setup a fuzz probe and how to 

mutate the buffer data and the main fuzz logic. 
 

Probe setup 

Our fuzzing interfaces contain the depth functions, so we should first get the MacOS kernel slide in order 

to parse the offset of functions or variables. The probe can be one of two different kinds, function 

address and function names. 



 

 
 

Figure 21. The code snippet for setting up the fuzz probe 
 

Fuzz executor 

After setting up the fuzz probe, the main fuzz logic is: 
 

1) Intercept the fuzz probe and capture the input data buffer 
2) Read the input data buffer, mutate it and write them to kernel memory, as shown in Figure 22 
3) Continue the interface, check the return value and monitor the fuzzing status 
4) In a crash, send the core dump and panic log to the fuzz server and restart the target machine, as 

shown in Figure 23 
 
 

 

Figure 22. Reading data memory, mutating it and writing it back 



 

 
 

Figure 23. Monitoring the fuzz status and managing the target machine after crash 
 

Mutation strategy 

We use the bit flip method to mutate the input data buffer. Then, some parameters are introduced in 

order to control the fuzz frequency for the fuzzing probe and fuzz ratio for data mutation, as shown in 

Figure 24. The parameters u_rand_limit, u_rand_min, and u_rand_max are used to control mutation 

ratio, while u_min_bytes and u_max_bytes control the minimum and the maximum mutation bytes. 
 

 
Figure 24. Code snippet of the bit flip mutation strategy 



 

Crash monitor 

The crash monitor module is separated independently from the target machine and is used to monitor 

target machine kernel panic caused by fuzzing, collect necessary crash core dump for reproduction, and 

reboot target machine for roll repeatedly. Below are the crash issues that the crash monitor generates 

automatically. 

 
 
 

Figure 25. Snapshot of crash issues 



 

 
 

Figure 26. LLDB monitor logic in brief 
 
 

As shown in the figure above, we have introduced the new LLDB command remote fuzz controller (RFC) 

in Python to monitor and remotely control the target machine. This command will query the target 

machine to crash in “kdp-remote” in a whole loop. Whenever an attachment to a target kernel is done, 

the backtrack stack, user client info, registers, and disassembly around IP (indicated in red boxes in 

figure above) will be collected using an internal LLDB command. Finally, it will reboot the target machine 

to roll repeatedly. 

 

1.5. Fuzzing best practices 

 
Trigger more fuzzing sources 

On the first day of our test, we got an OOB vulnerability (which allows for data exfiltration) in the 

AMDRadeonX4000.kext, as show in the Figure 27. This was not a surprise since this is the usual attacker 

surface. A deeper probe revealed many other crashes. All the vulnerabilities' details will be introduced in 

the section below. 



 

 
 

Figure 27. The OOB vulnerability we got using LLDBFuzzer 
 
 

LLDBFuzzer also belongs to passive fuzz. In order to touch deeper attack interfaces, the following 

methods can be very effective: 
 

• Run 3D games in the user space; 

• Run bench marking programs in the user space, like Xbench and GFXbench; 

• Run an active fuzzing tool in the user space. 

 
These methods can make the rendering function call more frequently than usual, which helps us 

improve the fuzzing efficiency. 



 

Timely reboot in kernel for anti-hang 

Figure 28. Kernel thread for timely reboots 
 
 

The biggest problem for kernel fuzzing would be to have the kernel actively hang but not crash. This 

condition would consume time and create a false busy run for kernel fuzzing, and it could be caused by 

multiple conditions such as a kernel waiting for a mistake event or a watchdog mechanism. 
 

We decided to introduce a kernel thread (kernel_thread_start API) to a timely reboot machine 

(“PEHaltReboot” and “halt_all_cpus” API, reversed from panic_hanlder) because the kernel thread 

would almost always be scheduled to execute in most “hang” conditions. 

 

2. Implementing a debugger for Hackintosh 
 

 
2.1. Why must it support kernel debugging? 

 
As we all know, many kernel extensions can only be active beyond the real hardware, so to discover the 

vulnerabilities within them, the real machines are essential. Because the hardware of VMs are emulated, 

the kexts do not work. However, it's different for syscall fuzz because of the monolithic XNU. We can 

simply deploy many fuzz instances using MacOS virtual machines to improve the efficiency. For 

hackintosh, it’s also necessary to install an open source network driver if the existing driver is not 

suitable for your network card. 



 

 
 

However, many open source network drivers do not support remote kernel debugger, such as 

AppleIntelE1000e, RealtekRTL8111, and IntelMausiEthernet. Therefore, making them support a remote 

kernel debugger is a necessary precondition. 

 

2.2. Kernel debugging implementation internals 

 
Above, Figure 3 has shown the architecture of the KDP debugger implementation with an Ethernet 

extension. Three steps can be taken to support kernel debugging, and we can illustrate the 

implementation of kernel debugging by reversing the AppleBCM5701Ethernet extension: 
 

1) Initialize a kernel debugger object and attach it 
2) Implement the sendPacket() and receivePacket() virtual methods in IONetworkController 
3) Implement the enable() and disable() virtual methods in IONetworkController 

 

Initialize the kernel debugger client 

The attachDebuggerClient() function in IONetworkController can allocate an IOKernelDebugger object 

and attach it as a client. This client is the bridge between the remote debugger and debugging world in 

XNU. Figure 29 shows how to attach a debugger client — it just declares a IOKernelDebugger object and 

calls attachDebuggerClient to attach it. 

 
 
 

Figure 29. Attach debugger client method in AppleBCM5701Ethernet 



 

Override the packet send and receive handler functions 

The sendPacket and receivePacket are the virtual methods used to declare an IONetworkController.h 

file. They are responsible for sending an outbound packet or polling for an incoming packet when the 

kernel debugger is active. An Ethernet driver that supports kernel debugging, as shown in Figure 30, 

must implement these two functions. 
 

 

Figure 30. The architecture for implementing kernel debugging 

 
The packet send handler implementation 

Figure 31 shows the one send packet cycle in AppleBCM5701Ethernet, and the following steps can be 

followed: 
 

1) Allocate a packet with a data buffer 
2) Move the send pkt info to the newly allocated buffer and set its length 
3) Call the transmitPacket to send the packet 
4) Call the transmitKick function to update the related status registers 
5) Check if there is a timeout 

 

 
Figure 31. The one send packet cycle in AppleBCM5701Ethernet 

XXXXEthernet.kext IONetworkFamily.kext 

 
IOEthernetController 
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kdpReceiveDispatcher _rxHandler virtual void sendPacket 
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If we only reference the reverse code of the transmitPacket function in AppleBCM5701Ethernet, it will 

be difficult to get how it transmits the packet. Luckily, there are many open source Ethernet drivers in 

GitHub as mentioned before, so we can research those codes such as "RTL8111::outputStart" in the 

RealtekRTL8111.cpp file or the "IntelMausi::outputStart" function in the IntelMausiEthernet.cpp file. 
 

To transmit the packet, follow these steps: 
 

1) Prepare the packet header and command bits according to the network protocol such as IPV4 or 
IPV6, as shown in Figure 32 

2) Get the physical segments of packet and compute the VLAN tag, as shown in Figure 33 
3) Set the VLAN tag for the descriptors in physical segments, as shown in Figure 34 
4) Update the polling bits in the register 

 

 

Figure 32. Prepare the packet header according to the network protocol 

https://github.com/chris1111/AppleIntelE1000e
https://github.com/RehabMan/OS-X-Realtek-Network
https://bitbucket.org/RehabMan/os-x-intel-network/src


 

 
 

Figure 33. Get the physical segments and VLAN tag 
 
 

 
Figure 34. Set the VLAN tag for the descriptor in each segment 

 
Implement the packet receive handler 

Figure 35 shows the implementation of the “receive handler” in AppleBCM5701Ethernet. This handler 

only calls the receivePackets function to complete its task. To analyze the receivePackets functions, we 

found that it's not just called by receivePacket; many other functions simply call this function to return. 

Another fact is that RxInterrupt is used for Ethernet to receive frames. Therefore, if other open source 

extensions implement it, we can simply refer to it. Luckily, it is implemented in RealtekRTL8111 and 

IntelMausi etc. drivers. 



 

 
 

Figure 35. The implementation of receive handlers in AppleBCM5701Ethernet 
 
 

 

Figure 36. The call diagram of BCM5701Enet::receivePackets function 
 
 

The packet receiving can be seen as the reverse process of packet sending by following these steps: 
 

1) Check the receive register (E1000_RXD_STAT_DD), receive the packet and move it to a new packet 
with a data buffer, as shown in Figure 37 

2) Get the packet's physical segment, its location, and VLAN tag, as shown in Figure 38 
3) For the RealtekRTL8111 we are working with, complete the extra length information of newPkt and 

enqueue the inputPacket queue, as shown in Figure 39. However, the debugger receive handler only 
receives one packet after calling the receivePacket function and returning it to XNU to parse the 
debugging command. So, copy the received packet to the reference parameter in the receivePacket 
function instead of enqueuing it. The copy code can be simply called the memcpy, such as 
"memcpy(pkt, newPkt, pktSize)" 

4) Update the descriptors for the segment if necessary 
5) Add the timeout check for receivePacket function to avoid hanging 

BCM5701Enet::receivePackets  

BCM5701Enet::receivePacket BCM5701Enet::pollInputPackets  BCM5701Enet::serviceRxInterrupt BCM5701Enet::serviceInterrupts  



 

 
 

Figure 37. Receive the packet and copy it to the new packet buffer 
 

 

 

Figure 38. Get the physical segment and its location 
 
 

 
Figure 39. Set the newPkt buffer length and enqueue input packet 

 
 

After overriding the send and receive handler, the Ethernet extensions can support remote kernel 

debugging. However, to control the active debugger, the enable and disable virtual methods should also 

be overriden. You can refer to the IONetworkInterface enable and disable functions in RealtekRTL8111 

for more details. 

https://github.com/RehabMan/OS-X-Realtek-Network/blob/master/RealtekRTL8111/RealtekRTL8111.cpp


 

 

 

3. Zero Day vulnerabilities found by LLDBFuzzer 
 

 
This section analyzes vulnerabilities with root causes that we know of. 

 
 
 

3.1. OOB read vulnerability found in AMDRadeonX4000_AMDAccelResource 

Initialize Process (CVE-2019-8519)  

 
* thread #1, stop reason = signal SIGSTOP 

 
* frame #0: 0xffffff7fa00965d3 

AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs*, unsigned long long) + 1525 

 

frame #1: 0xffffff7f9fea346b IOAcceleratorFamily2`IOAccelSharedUserClient2::new_resource(IOAccelNewResourceArgs*, 

IOAccelNewResourceReturnData*, unsigned long long, unsigned int*) + 1893 
 

frame #2: 0xffffff7f9fea4a41 IOAcceleratorFamily2`IOAccelSharedUserClient2::s_new_resource(IOAccelSharedUserClient2*, 

void*, IOExternalMethodArguments*) + 151 

 

frame #3: 0xffffff801d625ab8 kernel.development`IOUserClient::externalMethod(this=<unavailable>, selector=<unavailable>, 

args=0xffffff83dd4b3b58, dispatch=0xffffff7f9fee8260, target=0xffffff80854fd780, reference=0x0000000000000000) at 

IOUserClient.cpp:5358 [opt] 

 

frame #4: 0xffffff7f9fea4d98 IOAcceleratorFamily2`IOAccelSharedUserClient2::externalMethod(unsigned int, 

IOExternalMethodArguments*, IOExternalMethodDispatch*, OSObject*, void*) + 120 
 

frame #5: 0xffffff801d62eb7f kernel.development`::is_io_connect_method(connection=0xffffff80854fd780, selector=0, 

scalar_input=<unavailable>, scalar_inputCnt=<unavailable>, inband_input=<unavailable>, inband_inputCnt=2424, ool_input=0, 

ool_input_size=0, inband_output="", inband_outputCnt=0xffffff806ba03e0c, scalar_output=0xffffff83dd4b3ce0, 

scalar_outputCnt=0xffffff83dd4b3cdc, ool_output=0, ool_output_size=0xffffff8085919d5c) at IOUserClient.cpp:3994 [opt] 

 

frame #6: 0xffffff801cfbbce4 kernel.development`_Xio_connect_method(InHeadP=<unavailable>, 

OutHeadP=0xffffff806ba03de0) at device_server.c:8379 [opt] 

 

frame #7: 0xffffff801ce8d27d kernel.development`ipc_kobject_server(request=0xffffff8085919000, option=<unavailable>) at 

ipc_kobject.c:359 [opt] 

 

frame #8: 0xffffff801ce59465 kernel.development`ipc_kmsg_send(kmsg=0xffffff8085919000, option=3, send_timeout=0) at 

ipc_kmsg.c:1832 [opt] 

 

frame #9: 0xffffff801ce78a75 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:549 [opt] 

frame #10: 0xffffff801cff6323 kernel.development`mach_call_munger64(state=0xffffff806ca9c480) at bsd_i386.c:573 [opt] 



 

frame #11: 0xffffff801ce23486 kernel.development`hndl_mach_scall64 + 22 
 
 

 
Figure 40. Crash backtrace ZDI-19-569 

 

Root cause analysis 

This vulnerability could allow an attacker access to restricted memory. 
 

As shown in the table below, the register of rax is the address of the buffer that is created from the 

IOMalloc function. The r15 register is pointing to the structureInput buffer, which is controlled by 

usermode. The ecx register stores the length of IOMalloc buffer, and the rdx register is used as an index 

to copy the structureInput buffer content to IOMalloc buffer. However, here, ecx is taken directly from 

the usermode, which is structureInput offset 62 dword. If we set ecx at a big value, it will read overflow 

from the structureInput buffer. 

 
 
 

    text:000000000000E58E loc_E58E: ; CODE XREF: 

AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs *,ulong long)+58Dj 
 

    text:000000000000E58E mov ecx, [r15+0F8h] 
 

    text:000000000000E595 test rcx, rcx 
 

    text:000000000000E598 jz short loc_E603 
 

    text:000000000000E59A shl rcx, 3 
 

    text:000000000000E59E lea rdi, [rcx+rcx*2] 
 

    text:000000000000E5A2 call _IOMalloc 
 

    text:000000000000E5A7 mov [r12+178h], rax --- rax== buffer address which is created by IOMalloc 
 

    text:000000000000E5AF test rax, rax 
 

    text:000000000000E5B2 jz short loc_E62A 
 

    text:000000000000E5B4 or byte ptr [r12+186h], 8 
 

    text:000000000000E5BD mov ecx, [r15+0F8h] -------- r15==structureInput, ecx=( (uint32_t*) structureInput+62) 
 

    text:000000000000E5C4 mov [r12+180h], ecx 
 

    text:000000000000E5CC test rcx, rcx 
 

    text:000000000000E5CF jz short loc_E639 
 

    text:000000000000E5D1 xor edx, edx 
 

    text:000000000000E5D3 



 

 

    text:000000000000E5D3 loc_E5D3: ; CODE XREF: 

AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs *,ulong long)+621j 
 

    text:000000000000E5D3 mov rsi, [r15+rdx+98h] ----- mov structureInput+rdx+0x98 to rsi 
 

    text:000000000000E5DB mov [rax+rdx], rsi ---- mov rsi to rax+rdx, rax== buffer address which is created by 

IOMalloc 
 

    text:000000000000E5DF mov rsi, [r15+rdx+0A0h] 
 

    text:000000000000E5E7 mov [rax+rdx+8], rsi 
 

    text:000000000000E5EC mov esi, [r15+rdx+0A8h] 
 

    text:000000000000E5F4 mov [rax+rdx+10h], esi 
 

    text:000000000000E5F8 add rdx, 18h 
 

    text:000000000000E5FC dec rcx 
 

    text:000000000000E5FF jnz short loc_E5D3 
 

Table 7. The asm code snippet of AMDRadeonX4000_AMDAccelResource::initialize 
 
 
 

3.2. OOB read vulnerability found in AMDRadeonX4000_AMDAccelResource 

Initialize Process (CVE-2019-8692) 

 
(lldb) bt 

* thread #1, stop reason = signal SIGSTOP 

frame #0: 0xffffff7f9dcd9459 

AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs*, unsigned long long) + 947 

 
frame #1: 0xffffff7f9dc345ee IOAcceleratorFamily2`IOAccelSharedUserClient2::new_resource(IOAccelNewResourceArgs*, 

IOAccelNewResourceReturnData*, unsigned long long, unsigned int*) + 1886 

 
frame #2: 0xffffff7f9dc35bb5 IOAcceleratorFamily2`IOAccelSharedUserClient2::s_new_resource(IOAccelSharedUserClient2*, 

void*, IOExternalMethodArguments*) + 151 

 

frame #3: 0xffffff801b424978 kernel.development`IOUserClient::externalMethod(this=<unavailable>, selector=<unavailable>, 

args=0xffffffa76a5bb9b8, dispatch=0xffffff7f9dc79260, target=<unavailable>, reference=<unavailable>) at 

IOUserClient.cpp:5689 [opt] 

 

frame #4: 0xffffff7f9dc35f0b IOAcceleratorFamily2`IOAccelSharedUserClient2::externalMethod(unsigned int, 

IOExternalMethodArguments*, IOExternalMethodDispatch*, OSObject*, void*) + 119 

 

* frame #5: 0xffffff801b42da02 kernel.development`::is_io_connect_method(connection=<unavailable>, selector=0, 

scalar_input=<unavailable>, scalar_inputCnt=<unavailable>, inband_input=<unavailable>, inband_inputCnt=2424, ool_input=0, 



 

ool_input_size=0, inband_output="", inband_outputCnt=0xffffff80bf24e60c, scalar_output=0xffffffa76a5bbce0, 

scalar_outputCnt=0xffffffa76a5bbcdc, ool_output=0, ool_output_size=0xffffff80beec9d5c) at IOUserClient.cpp:4304 [opt] 

 

frame #6: 0xffffff801adbc386 kernel.development`_Xio_connect_method(InHeadP=<unavailable>, 

OutHeadP=0xffffff80bf24e5e0) at device_server.c:8379 [opt] 

 

frame #7: 0xffffff801ac948fd kernel.development`ipc_kobject_server(request=0xffffff80beec9000, option=3) at 

ipc_kobject.c:361 [opt] 

 

frame #8: 0xffffff801ac6088e kernel.development`ipc_kmsg_send(kmsg=0xffffff80beec9000, option=3, send_timeout=0) at 

ipc_kmsg.c:1868 [opt] 

 

frame #9: 0xffffff801ac800e3 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:553 [opt] 

frame #10: 0xffffff801adf702b kernel.development`mach_call_munger64(state=0xffffff80bd7429a0) at bsd_i386.c:580 [opt] 

frame #11: 0xffffff801ac2a476 kernel.development`hndl_mach_scall64 + 22 

 

 
(lldb) register read 

General Purpose Registers: 

rax = 0x0000000000003740 

rbx = 0x00000000000003c8 

rcx = 0x0000000000000000 

rdx = 0x00000000000003c8 

rdi = 0xffffff80cdadd400 

rsi = 0xffffff80beec9974 

rbp = 0xffffffa76a5bb850 

rsp = 0xffffffa76a5bb820 

r8 = 0xffffff80cdadd400 

r9 = 0xffffff801b6c7210 kernel.development`zone_array + 8336 

r10 = 0xffffff801b6c5180 kernel.development`zone_array 

r11 = 0x0000000000000000 

 
r12 = 0xffffff80c37dd700 

r13 = 0xffffff80beec95ac 

r14 = 0x0000000000000001 

r15 = 0xffffff80beec93c4 



 

rip = 0xffffff7f9dcd9459 AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs*, 

unsigned long long) + 947 

 

rflags = 0x0000000000010202 

cs = 0x0000000000000008 

fs = 0x0000000000000000 

gs = 0x0000000000000000 

Figure 41. Crash backtrace CVE-2019-8692 
 

Root cause analysis 
As shown in the backtrace above, the system will call the AMDRadeonX4000_AMDAccelResource::initialize 

function to initialize an AMD resource object and take structureInput and structureInputSize as parameters 

(structureInput is the inband input which can be controlled by the userspace directly). As shown in Figure 42, this 

function will first use the IOAccelResource2::initialize function to initialize some resource properties, like 

BYTE4(this->member21), BYTE5(this->member21), and BYTE6(this->member21), using the same parameters as 

AMDRadeonX4000_AMDAccelResource::initialize. 
 

However, in the following code, AMDRadeonX4000_AMDAccelResource::initialize directly uses BYTE6(this- 

>member21) << 6 as the offset to read the buffer of v36. Thus, we can control it and use it to read out of boundary 

memory. 

 
 
 

 
Figure 42. Root cause analysis for this OOB vulnerability 



 

 
 
 

3.3. Double free vulnerability found when AMDRadeonX4000_AMDSIGLContext 

processes a sideband token (CVE-2019-8635) 

 
* thread #1, stop reason = signal SIGSTOP 

 
frame #0: 0xffffff7f8d7adc37 IOAcceleratorFamily2`IOAccelResource2::clientRelease(IOAccelShared2*) + 13 

 
frame #1: 0xffffff7f8d880dad 

AMDRadeonX4000`AMDRadeonX4000_AMDSIGLContext::process_StretchTex2Tex(IOAccelCommandStreamInfo&) + 2893 

 

frame #2: 0xffffff7f8d79b5d5 IOAcceleratorFamily2`IOAccelContext2::processSidebandBuffer(IOAccelCommandDescriptor*, 

bool) + 273 

 

frame #3: 0xffffff7f8d8885e4 

AMDRadeonX4000`AMDRadeonX4000_AMDSIGLContext::processSidebandBuffer(IOAccelCommandDescriptor*, bool) + 182 

frame #4: 0xffffff7f8d79bae7 IOAcceleratorFamily2`IOAccelContext2::processDataBuffers(unsigned int) + 85 

frame #5: 0xffffff7f8d7a2380 IOAcceleratorFamily2`IOAccelGLContext2::processDataBuffers(unsigned int) + 804 

frame #6: 0xffffff7f8d798c30 

IOAcceleratorFamily2`IOAccelContext2::submit_data_buffers(IOAccelContextSubmitDataBuffersIn*, 

IOAccelContextSubmitDataBuffersOut*, unsigned long long, unsigned long long*) + 1208 

 
frame #7: 0xffffff800b027a3c 

kernel.development`::shim_io_connect_method_structureI_structureO(method=<unavailable>, object=<unavailable>, 

input=<unavailable>, inputCount=<unavailable>, output=<unavailable>, outputCount=0xffffff8742023968) at 

IOUserClient.cpp:0 [opt] 

 

frame #8: 0xffffff800b025ca0 kernel.development`IOUserClient::externalMethod(this=<unavailable>, selector=<unavailable>, 

args=0xffffff87420239b8, dispatch=0x0000000000000000, target=0x0000000000000000, reference=<unavailable>) at 

IOUserClient.cpp:5459 [opt] 

 

* frame #9: 0xffffff800b02ebff kernel.development`::is_io_connect_method(connection=0xffffff80b094e000, selector=2, 

scalar_input=<unavailable>, scalar_inputCnt=<unavailable>, inband_input=<unavailable>, inband_inputCnt=136, ool_input=0, 

ool_input_size=0, inband_output="", inband_outputCnt=0xffffff80b0d81e0c, scalar_output=0xffffff8742023ce0, 

scalar_outputCnt=0xffffff8742023cdc, ool_output=0, ool_output_size=0xffffff80ab5c7574) at IOUserClient.cpp:3994 [opt] 

 

frame #10: 0xffffff800a9bbd64 kernel.development`_Xio_connect_method(InHeadP=<unavailable>, 

OutHeadP=0xffffff8742023ce0) at device_server.c:8379 [opt] 

 

frame #11: 0xffffff800a88d27d kernel.development`ipc_kobject_server(request=0xffffff80ab5c7400, option=<unavailable>) 

at ipc_kobject.c:359 [opt] 

 

frame #12: 0xffffff800a859465 kernel.development`ipc_kmsg_send(kmsg=0xffffff80ab5c7400, option=3, send_timeout=0) at 

ipc_kmsg.c:1832 [opt] 



 

frame #13: 0xffffff800a878a75 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:549 [opt] 

frame #14: 0xffffff800a9f63a3 kernel.development`mach_call_munger64(state=0xffffff80af471bc0) at bsd_i386.c:573 [opt] 

frame #15: 0xffffff800a823486 kernel.development`hndl_mach_scall64 + 22 

Figure 43. Crash backtrace CVE-2019-8635 
 

Root cause analysis 

This is a double free vulnerability that an attacker can use to gain escalated privileges. We published an in- 
 depth discussion of it in June. 

 

In Figure 44 below, we can see that if v15 equals 0x8c00, the accelResource_offset8 and 
accelResource_offset12 are both taken from IOAccelShared2 with a shared memory offset 24 and 28 value 
as the index. 

 
This function will release accelResource_offset12 from IOAccelShared2 first, and if 
accelResource_offset8->member2 is not equal to 10, this function will also release the 
accelResource_offset8 from IOAccelShared2. However, if we set the shared memory offsets 24 and 28 to 
the same value, it will release the same accelResource twice. 

https://stackoverflow.com/questions/21057393/what-does-double-free-mean
https://blog.trendmicro.com/trendlabs-security-intelligence/cve-2019-8635-double-free-vulnerability-in-apple-macos-lets-attackers-escalate-system-privileges-and-execute-arbitrary-code/
https://blog.trendmicro.com/trendlabs-security-intelligence/cve-2019-8635-double-free-vulnerability-in-apple-macos-lets-attackers-escalate-system-privileges-and-execute-arbitrary-code/


 

 
 

Figure 44. The pseudo code snippet of AMDRadeonX4000_AMDSIGLContext process_StretchTex2Tex 
function 

 
 

From Figure 405 below, we can also see that the shared memory address is pointing to command 

stream info offset 24, but the command stream info buffer is set in the 

IOAccelContext2::processSidebandBuffer function, as shown in the same figure. We can also see that v5 

points to the shareMem offset 16, and this->member196 points to the commandStreamInfo offset 24. 



 

 
 

Figure 405 the pseudo code snippet of IOAccelContext2::processSidebandBuffer 
 
 

Figure 46 shows the pseudo code snippet of IOAccelContext2::clientMemoryForType function, which is 

the well-known API "IOConnectMapMemory64" that can map a userspace buffer to kernel space. When 

using the IOConnectMapMemory64 function, we set the connect object, memory type etc., and other 

args. Here, the connect object is the instance of IOAccelContext2, and memory type is 0. When we set 

memory type to 0, the clientMemoryForType function will create a buffer memory descriptor and return 

the start address to userspace, what's more, it will also set the buffer memory address to the 

"shareMem_start_vm_address_187" var which is named by the user. This var is exactly the value which 

is used in the IOAccelContext2::processSidebandBuffer function. Therefore, we can control the share 

buffer and set the two resource indexes to the same value, which can trigger the double free bug. 



 

 
 
 
 

Figure 46 the pseudo code snippet of IOAccelContext2::clientMemoryForType function 
 

 

3.4. Double free vulnerability found when AMDRadeonX4000_AMDSIGLContext 

class processes a sideband token (CVE-2019-8635) 

 

From Figure 7, we can see that if (cmdinfo+32) equals to 0x8c00, the IOAccelResource v10 and v11 both 

“get” from IOAccelShared2 with *(shareMem_start_address_187_offset16+8) and 

*(shareMem_start_address_187_offset16+12) value as index. This function will then release two 

accelerator resources using the IOAccelResource2::clientRelease() function. However, these two indexes 

can be directly controlled from user space by map memory with IOAccelContext2 userclient. If userspace 

maps the same index for lookupResource function, clientRelease will release the same resource client 

twice, so the double free vulnerability will occur. 

https://stackoverflow.com/questions/21057393/what-does-double-free-mean


 

The method for controlling the shared memory has been detailed in the above section covering CVE- 

2019-8635. 

 
 
 

 
Figure 47. The pseudo code snippet of AMDRadeonX4000_AMDSIGLContext: discard_StretchTex2Tex 

function 
 

 

3.5. OOB vulnerability found in the 

AMDRadeonX4000_AMDAccelSharedUserClient RsrcAndXorByteFlag 

function (CVE-2019-8691) 

 
(lldb) bt 

 
* thread #1, stop reason = signal SIGSTOP 

 
* frame #0: 0xffffff7f849d49a0 AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::AndXorByteFlag(unsigned short, 

unsigned char, unsigned char) + 164 



 

frame #1: 0xffffff7f849dad9d 

AMDRadeonX4000`AMDRadeonX4000_AMDAccelSharedUserClient::RsrcAndXorByteFlag(AMDRsrcAndXorByteFlagPacket 

const*, unsigned long long*) + 275 

 

frame #2: 0xffffff8001c27a3c kernel.development`::shim_io_connect_method_structureI_structureO(method=<unavailable>, 

object=<unavailable>, input=<unavailable>, inputCount=<unavailable>, output=<unavailable>, 

outputCount=0xffffffa77393bab8) at IOUserClient.cpp:0:9 [opt] 

 

frame #3: 0xffffff8001c25ca0 kernel.development`IOUserClient::externalMethod(this=<unavailable>, selector=<unavailable>, 

args=0xffffffa77393bb58, dispatch=0x0000000000000000, target=0x0000000000000000, reference=<unavailable>) at 

IOUserClient.cpp:5459:9 [opt] 

 

frame #4: 0xffffff7f8493af0b IOAcceleratorFamily2`IOAccelSharedUserClient2::externalMethod(unsigned int, 

IOExternalMethodArguments*, IOExternalMethodDispatch*, OSObject*, void*) + 119 

 
frame #5: 0xffffff8001c2ebff kernel.development`::is_io_connect_method(connection=0xffffff80bff43fd0, selector=262, 

scalar_input=<unavailable>, scalar_inputCnt=<unavailable>, inband_input=<unavailable>, inband_inputCnt=12, ool_input=0, 

ool_input_size=0, inband_output="", inband_outputCnt=0xffffff80bfc3260c, scalar_output=0xffffffa77393bce0, 

scalar_outputCnt=0xffffffa77393bcdc, ool_output=0, ool_output_size=0xffffff809d1e0b0c) at IOUserClient.cpp:3994:19 [opt] 

 

frame #6: 0xffffff80015bbd64 kernel.development`_Xio_connect_method(InHeadP=<unavailable>, 

OutHeadP=0xffffff80bfc325e0) at device_server.c:8379:18 [opt] 

 

frame #7: 0xffffff800148d27d kernel.development`ipc_kobject_server(request=0xffffff809d1e0a40, option=<unavailable>) at 

ipc_kobject.c:359:3 [opt] 

 

frame #8: 0xffffff8001459465 kernel.development`ipc_kmsg_send(kmsg=0xffffff809d1e0a40, option=3, send_timeout=0) at 

ipc_kmsg.c:1832:10 [opt] 

 

frame #9: 0xffffff8001478a75 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:549:8 

[opt] 

 

frame #10: 0xffffff80015f63a3 kernel.development`mach_call_munger64(state=0xffffff80be434b20) at bsd_i386.c:573:24 

[opt] 

 

frame #11: 0xffffff8001423486 kernel.development`hndl_mach_scall64 + 22 
 

(lldb) register read 
General Purpose Registers: 

rax = 0x00b600d000b50128 
rbx = 0x0000000000d20119 
rcx = 0x0000000000000000 
rdx = 0x0000000000000000 
rdi = 0xffffff80b333a710 
rsi = 0x0000000000000000 
rbp = 0xffffffa77393b9f0 
rsp = 0xffffffa77393b9c0 
r8 = 0xffffffa77393bab8 
r9 = 0x0000000000000000 
r10 = 0xffffff80bfc32610 
r11 = 0xffffff7f849dac8a 

AMDRadeonX4000`AMDRadeonX4000_AMDAccelSharedUserClient::RsrcAndXorByteFlag(AMDRsrcAndXorByteFlagPacket 
const*, unsigned long long*) 

r12 = 0x0000000000000000 
r13 = 0xffffff80b333a710 
r14 = 0xffffff809d1e0ae0 



 

r15 = 0x0000000000000000 
rip = 0xffffff7f849d49a0 AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::AndXorByteFlag(unsigned 

short, unsigned char, unsigned char) + 164 
rflags = 0x0000000000010202 

cs = 0x0000000000000008 
fs = 0x0000000000000000 
gs = 0x0000000000000000 

(lldb) dis 
0xffffff7f849d4990 <+148>: cmpl  %r12d, %ebx 
0xffffff7f849d4993 <+151>: jbe   0xffffff7f849d49ad ; <+177> 
0xffffff7f849d4995 <+153>: movq 0x1c8(%r13), %rax 
0xffffff7f849d499c <+160>: movzwl %r12w, %edx 

-> 0xffffff7f849d49a0 <+164>: andb (%rax,%rdx), %r15b 
0xffffff7f849d49a4 <+168>: xorb %cl, %r15b 
0xffffff7f849d49a7 <+171>: movb %r15b, (%rax,%rdx) 
0xffffff7f849d49ab <+175>: xorl %eax, %eax 
0xffffff7f849d49ad <+177>: addq $0x8, %rsp 
0xffffff7f849d49b1 <+181>: popq %rbx 
0xffffff7f849d49b2 <+182>: popq %r12 
0xffffff7f849d49b4 <+184>: popq %r13 
0xffffff7f849d49b6 <+186>: popq %r14 
0xffffff7f849d49b8 <+188>: popq %r15 
0xffffff7f849d49ba <+190>: popq %rbp 

0xffffff7f849d49bb <+191>: retq 

 

Figure 48. Crash backtrace CVE-2019-8691 
 

Root cause analysis 
In Figure 49, we can see that RsrcAndXorByteFlag function will first look up an 

AMDRadeonX4000_AMDAccelResource object from the IOAccelShared2 with "structureInput + 1" as the index. 

However, the structureInput is the buffer input from user space, and the system does not check for it. So, we can 

index any accelerator resource as our operation object, and use it as the parameter for the 

AMDRadeonX4000_AMDAccelResource::AndXorByteFlag function. The other three parameters can also be directly 

controlled from user space. 



 

 
 

Figure 49. Code snippet of AMDRadeonX4000_AMDAccelSharedUserClient::RsrcAndXorByteFlag function 
 
 

As seen in Table 8, the AndXorByteFlag function uses two values, one is the value which "rdi+0x1d0" points to — 

our research found that it is a buffer size. The other one is the value of "r13+1C8h", which is actually equal to 

"rdi+0x1c8", which is a buffer start address. 
 

From the table below, we can see that this function includes the following vulnerabilities: 
 

• If we input an invalid index to lookup the Resource, the IOAccelShared2::lookupResource(IOAccelShared2 

*this, unsigned int a2, void **a3) function will return '1' for a3. It is strange, but it actually happened, so 
crash point 1 will occur due to the access to protected memory. 

• If we input a valid index and lookup a resource but the resource is not a good one, then its buffer start 
address becomes an invalid address. It is like the value of RAX register as seen in the above Figure 48 (the 
register read instruction, highlighted in red). 

• If we input a valid index and also lookup a good resource, however, a bad rdx value in crash point 2 can be 
controlled from user space. It also an OOB vulnerability. 

 

    text:00000000000148FC push rbp 
 

    text:00000000000148FD mov rbp, rsp 
 

    text:0000000000014900 push   r15 
 

    text:0000000000014902 push   r14 
 

    text:0000000000014904 push   r13 
 

    text:0000000000014906 push    r12 
 

    text:0000000000014908 push   rbx 



 

 

    text:0000000000014909 push rax 
 

    text:000000000001490A mov r15d, edx 
 

    text:000000000001490D mov r12d, esi 
 

    text:0000000000014910 mov r13, rdi 

 

 

    text:0000000000014919 cmp     ebx, esi //compare [rdi+0x1d0] with the second parameter 
 

    text:000000000001491B ja short loc_1498B //if great than second para, then jump to loc_1498B 
 
 
 

--- omitted code --- 

 

 
    text:000000000001498B loc_1498B: ; CODE XREF: AMDRadeonX4000_AMDAccelResource::AndXorByteFlag(ushort,uchar,uchar)+1Fj 

 

    text:000000000001498B mov eax, 0E00002BDh 
 

    text:0000000000014990 cmp ebx, r12d 
 

    text:0000000000014993 jbe short loc_149AD 

 

 

    text:000000000001499C movzx edx, r12w 
 

    text:00000000000149A0 and r15b, [rax+rdx] // rax can be controlled by index different resource object. And rdx can be controlled by 

userspace structure input crash point2 
 

    text:00000000000149A4 xor r15b, cl 
 

    text:00000000000149A7 mov [rax+rdx], r15b 
 

    text:00000000000149AB xor eax, eax 
 

    text:00000000000149AD 
 

    text:00000000000149AD loc_149AD: ; CODE XREF: AMDRadeonX4000_AMDAccelResource::AndXorByteFlag(ushort,uchar,uchar)+97j 
 

    text:00000000000149AD add rsp, 8 
 

    text:00000000000149B1 pop rbx 
 
 
 

--- omitted code --- 

 

 
    text:00000000000149BB ZN31AMDRadeonX4000_AMDAccelResource14AndXorByteFlagEthh endp 

 

Table 8. The assembly code snippet of AMDRadeonX4000_AMDAccelResource::AndXorByteFlag function 

    text:0000000000014913 mov     ebx, [rdi+1D0h] // ebx is value of the resource object offset 0x1D0 crash point 1 

    text:0000000000014995 mov rax, [r13+1C8h] //here, rax is the value which rdi+0x1c8 point to. It actually is a buffer start address 



 

3.6. EoP (elevation of privilege) bug found in IOAccelSharedUserClient2 start 

process (CVE-2019-8616) 

 
(lldb) bt 

 
* thread #1, stop reason = signal SIGSTOP 

 
* frame #0: 0xffffff8012ba4050 kernel.development`memcpy + 11 

 
frame #1: 0xffffff7f98f0358b AppleIntelHD5000Graphics`IntelAccelerator::newGTT(unsigned int**, bool, IGAccelTask&) + 173 

frame #2: 0xffffff7f98eebce8 AppleIntelHD5000Graphics`IntelPPGTT::init(IntelAccelerator&, bool, IGAccelTask&) + 24 

frame #3: 0xffffff7f98ef47dc AppleIntelHD5000Graphics`IGAccelTask::prepare(IntelAccelerator&) + 38 

 
frame #4: 0xffffff7f98f0348b AppleIntelHD5000Graphics`IntelAccelerator::createUserGPUTask() + 219 

 
frame #5: 0xffffff7f98980382 IOAcceleratorFamily2`IOAccelShared2::init(IOGraphicsAccelerator2*, task*) + 48 

frame #6: 0xffffff7f9899513b IOAcceleratorFamily2`IOGraphicsAccelerator2::createShared(task*) + 51 

frame #7: 0xffffff7f98983921 IOAcceleratorFamily2`IOAccelSharedUserClient2::sharedStart() + 43 

 
frame #8: 0xffffff7f98ee4e22 AppleIntelHD5000Graphics`IGAccelSharedUserClient::sharedStart() + 22 

 
frame #9: 0xffffff7f9898191a IOAcceleratorFamily2`IOAccelSharedUserClient2::start(IOService*) + 156 

 
frame #10: 0xffffff7f98994a1a IOAcceleratorFamily2`IOGraphicsAccelerator2::newUserClient(task*, void*, unsigned int, 

IOUserClient**) + 1088 

 
frame #11: 0xffffff80133c9bc1 kernel.development`IOService::newUserClient(this=0xffffff8037dc4800, 

owningTask=0xffffff803be31760, securityID=0xffffff803be31760, type=6, properties=0x0000000000000000, 

handler=0xffffff9214a2bd10) at IOService.cpp:5856 [opt] 

 

frame #12: 0xffffff801342ce60 kernel.development`::is_io_service_open_extended(_service=0xffffff8037dc4800, 

owningTask=0xffffff803be31760, connect_type=6, ndr=<unavailable>, properties=<unavailable>, propertiesCnt=<unavailable>, 

result=0xffffff804e2b9bb8, connection=0xffffff9214a2bd60) at IOUserClient.cpp:3491 [opt] 

 

frame #13: 0xffffff8012dba714 kernel.development`_Xio_service_open_extended(InHeadP=0xffffff8046905504, 

OutHeadP=0xffffff804e2b9b7c) at device_server.c:8003 [opt] 

 

frame #14: 0xffffff8012c8c27d kernel.development`ipc_kobject_server(request=0xffffff80469054a0, option=<unavailable>) 

at ipc_kobject.c:359 [opt] 

 

frame #15: 0xffffff8012c58465 kernel.development`ipc_kmsg_send(kmsg=0xffffff80469054a0, option=3, send_timeout=0) at 

ipc_kmsg.c:1832 [opt] 

 

frame #16: 0xffffff8012c77a75 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:549 [opt] 

frame #17: 0xffffff8012df52c3 kernel.development`mach_call_munger64(state=0xffffff803c0fea00) at bsd_i386.c:573 [opt] 

frame #18: 0xffffff8012c22486 kernel.development`hndl_mach_scall64 + 22 



 

(lldb) 
 

Figure 50. Crash backtrace CVE-2019-8616 
 

Root cause analysis 

This vulnerability can also be used to gain escalated privileges. 
 

From Table 9 below, we can see that the memcpy destination address is the return value of the 

IOAccelSysMemory::lockForCPUAccess function. However, Table 10 shows that there are many places 

where the IOAccelSysMemory::lockForCPUAccess function will return an invalid address. Therefore, the 

memcpy is not secure here. 

 
 
 
 
 

    text:0000000000027537 call ZN16IOAccelSysMemory16lockForCPUAccessEP4taskj ; 

IOAccelSysMemory::lockForCPUAccess(task *,uint) 
 

    text:000000000002753C mov [r13+0], rax 
 

    text:0000000000027540 test   r12b, r12b ------------------here, it will test r12b, and jmp to loc_2756C 
 

    text:0000000000027543 jz short loc_2756C 
 

    text:0000000000027545 mov rcx, [rbx+1118h] 
 

    text:000000000002754C test rcx, rcx 
 

    text:000000000002754F jz short loc_275B9 
 

    text:0000000000027551 mov rdx, [rbx+1110h] 
 

    text:0000000000027558 xor esi, esi 
 

    text:000000000002755A 
 

    text:000000000002755A loc_2755A: ; CODE XREF: IntelAccelerator::newGTT(uint **,bool,IGAccelTask &)+8Aj 
 

    text:000000000002755A mov edi, [rdx+rsi] 
 

    text:000000000002755D mov ebx, esi 
 

    text:000000000002755F mov [rax+rbx], edi 
 

    text:0000000000027562 lea esi, [rsi+4] 
 

    text:0000000000027565 cmp rcx, rsi 
 

    text:0000000000027568 ja short loc_2755A 
 

    text:000000000002756A jmp short loc_275B9 
 

    text:000000000002756C ; --------------------------------------------------------------------------- 



 

 

    text:000000000002756C 
 

    text:000000000002756C loc_2756C: ; CODE XREF: IntelAccelerator::newGTT(uint **,bool,IGAccelTask &)+65j 
 

    text:000000000002756C mov rcx, [rbx+160h] --------------------- memcpy len 
 

    text:0000000000027573 mov rsi, [rcx+268h] ; void * ----------------- memcpy source address 
 

    text:000000000002757A mov edx, [rbx+1138h] 
 

    text:0000000000027580 shr edx, 0Ah ; size_t 
 

    text:0000000000027583 mov rdi, rax ; void * -------- memcpy destination address here, just move rax to rdi, 

however, rax is the return value of ZN16IOAccelSysMemory16lockForCPUAccessEP4taskj function 
 

    text:0000000000027586 call _memcpy 

 
    text:000000000002758B mov esi, [rbx+1140h] ; unsigned int64 

    text:0000000000027591 mov edx, [rbx+1148h] ; unsigned int64 

    text:0000000000027597 mov rdi, rbx ; this 

 

Table 9. The asm code snippet of IntelAccelerator::newGTT 
 
 
 
 
 

    text:000000000004740B loc_4740B: ; CODE XREF: IOAccelSysMemory::lockForCPUAccess(task *,uint)+102j 
 

    text:000000000004740B ; IOAccelSysMemory::lockForCPUAccess(task *,uint)+1D1j ... 
 

    text:000000000004740B mov rax, rbx 
 

    text:000000000004740E add rsp, 8 
 

    text:0000000000047412 pop rbx 
 

    text:0000000000047413 pop r14 
 

    text:0000000000047415 pop r15 
 

    text:0000000000047417 pop rbp 
 

    text:0000000000047418 retn 
 

    text:0000000000047419 ; --------------------------------------------------------------------------- 
 

    text:0000000000047419 
 

    text:0000000000047419 loc_47419: ; CODE XREF: IOAccelSysMemory::lockForCPUAccess(task *,uint)+181j 
 

    text:0000000000047419 lea rdi, dword_0 
 

    text:0000000000047420 mov rsi, cs: os_log_default_0 



 

 

    text:0000000000047427 lea rcx, ZZN16IOAccelSysMemory16lockForCPUAccessEP4taskjE11_os_log_fmt_1 ; 

"%s: failed to create map.\n" 
 

    text:000000000004742E lea r8, aMach_vm_addr_0 ; "mach_vm_address_t IOAccelSysMemory::loc"... 
 

    text:0000000000047435 xor ebx, ebx 
 

    text:0000000000047437 mov edx, 11h 
 

    text:000000000004743C xor eax, eax ---eax =0 --1) 
 

    text:000000000004743E call os_log_internal 
 

    text:0000000000047443 jmp short loc_4740B ---return eax 
 

    text:0000000000047445 ; --------------------------------------------------------------------------- 
 

    text:0000000000047445 
 

    text:0000000000047445 loc_47445: ; CODE XREF: IOAccelSysMemory::lockForCPUAccess(task *,uint)+13Aj 
 

    text:0000000000047445 lea rdi, dword_0 
 

    text:000000000004744C mov rsi, cs: os_log_default_0 
 

    text:0000000000047453 lea rcx, ZZN16IOAccelSysMemory16lockForCPUAccessEP4taskjE11_os_log_fmt ; "%s: 

createMappingInTask failed to creat"... 
 

    text:000000000004745A lea r8, aMach_vm_addr_0 ; "mach_vm_address_t IOAccelSysMemory::loc"... 
 

    text:0000000000047461 xor ebx, ebx 
 

    text:0000000000047463 mov edx, 11h 
 

    text:0000000000047468 xor eax, eax ---eax =0 --2) 
 

    text:000000000004746A call os_log_internal 
 

    text:000000000004746F jmp short loc_4740B ---return eax 
 

    text:000000000004746F ZN16IOAccelSysMemory16lockForCPUAccessEP4taskj endp 
 

Table 10. The asm code snippet of IOAccelSysMemory::lockForCPUAccess 



 

4. The benefits of LLDBFuzzer 
 

 
These are only six of the many vulnerabilities we found through LLDBFuzzer; other crashes are still being 

analyzed and reported to Apple. As mentioned above, LLDB has a distinct advantage over other bug 

hunting methods because it can debug almost all the kernel extensions and XNU codes after the 

required hardware is operational, and it has roots in the built-in debug mechanism of operation systems 

themselves. Also, it uncovers and probes into the deeper attack surface as well as the normal attack 

surface. 

 

5. Appendix 
 

 
Refer to chart. 

https://documents.trendmicro.com/images/TEx/infographics/Appendix.jpg
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