

Debug for Bug: Crack and Hack Apple
Core by Itself

Technical Brief

by Lilang Wu and Moony Li

Almost every operating system (OS) now features different built-in tools and techniques for managing

security vulnerabilities. Notable examples of these include control flow integrity (CFI) on Android 9 or

pointer authentication codes (PAC) on iOS 12 hardware. Industry standard fuzzers like American fuzzy

lop (AFL) and syzkaller are also being widely used.

Because of these developments, the bug hunting space left for security researchers seems to be much

smaller. Code reviewing based on expert threat knowledge seems to be a path that researchers can

take, but it is time consuming and takes much effort.

How do we break the deadlock? We developed a tool called LLDBFuzzer, a debug fuzzer for bug hunting,

to help security researchers. This method is based on a next-generation debugger called

Low Level Debugger (more popularly known as LLDB), from the LLVM Project. Based on our tests, it has

proven to be an effective way to find and expand new attack interfaces, but it is also flexible, scalable,

and scriptable for vulnerability research utilities. Moreover, we can demonstrate how to implement an

LLDB debugger client within network extensions, which can help us fuzz within virtual machines to

significantly improve efficiency.

We tested the LLDBFuzzer on a Mac Pro running the latest OS at the time of experimentation, and our

target was Apple Graphic Drivers. Our fuzzing methodology found dozens of vulnerabilities, including

double free and out-of-bounds (OOB) read/write bugs that we will cover in the vulnerability analysis

portion below. We discuss six vulnerabilities, but these are only a part of what we found. The others will

be analyzed later and submitted to Apple.

1. A look into LLDBFuzzer

1.1. Comparing different bug hunting methods to LLDBFuzzer

There are different methods used in bug hunting, and each has specific pros and cons. Some are only

suitable for large-scale deployments, some hit the code coverage ceiling, and others cannot find new

attack interfaces. We review the different methods, and compare them with LLDBFuzzer.

https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/google/syzkaller
https://lldb.llvm.org/

Bug hunt method comparison

 Key method Wait Time Find new attack

interface
Deep
coverage

Syzkaller/AFL Code coverage
feedback

Long No No or
unknown

Code Review Personal
knowledge

Unknown Yes Yes

LLDBFuzzer Debug and
taint

Short Yes Yes

Table 1. Typical Bug Hunt method comparison

Code review - Code reviewing is usually a good way to find new attack interfaces and vulnerabilities

hidden in deep locations, especially for logical vulnerabilities. However, this method is time

consuming and its results are unpredictable.

AFL & Syzkaller - AFL is an open source fuzz-testing tool developed by Michał Zalewski, while

syzkaller is a kernel fuzzer. They are based on code coverage feedback that mutate strategy and

target modules accordingly. Typically, an AFL-like fuzzer would mutate the input file on the bit level

or reassemble the grammar elements according to some syntax for user mod targets. Syzkaller

would mutate the system calls according to function prototype towards kernel mode code.

AFL and Syzkaller are suitable for large-scale deployment. However, bug hunters will usually touch

the code coverage ceiling — deep code location is difficult to reach for data dependency or code

execution sequence dependency. They also can't help find new attack interfaces because fuzzing

interfaces are typically configured by experts.

LLDBFuzzer - LLDBFuzzer is based on the built-in debug mechanism of operating systems that

intercept and break the execution of key API or the instruction at key points (selected according

your system and security knowledge), and fuzzes corresponding data or code in an execution

context. Since most data or code dependencies are kept during fuzzing, the fuzz activity can touch a

deeper code branch compared to the sykaller/AFL-like methods. And since we do not designate the

execution channel of the fuzzing, hidden attack interfaces would be exposed because of deep

interception.

Interception method comparison

 System

mode
support

Scriptable Control
Grain

Execution
control

Cross
platform

DTrace Kernel Yes API No/View only Easy

Frida User Yes Instruction Yes Easy

Inline hook Both No Instruction Yes Middle
LLDBFuzzer Both Yes Instruction Yes Easy

Table 2. Typical interception method compare

Here is a brief comparison of the interception method (for Apple systems, in this example), which

explains why we choose the debug path:

DTrace and Frida are script based program execution tracing tools with well-documented interface APIs

and good tracing capabilities at the API or instruction level. They are also good for cross platform

development. However, we can disregard DTrace for its inability to modify the execution code and data

at runtime. Frida is likely the best at user mode interception but not at kernel mode.

While inline hook is good for instruction level control, the obvious drawback is that it is too “raw” and

will take too much development effort for utility infrastructure and cross platform reconstruction.

1.2. Kernel debugging and the LLDBFuzzer

Kernel debugger overview

MacOS supports two-machine kernel debugging using LLDB over an Ethernet or FireWire connection.

The remote debugger protocol is called the Kernel Debugging Protocol (KDP).

KDP protocol initialization process in XNU

The KDP protocol is initialized during system bootstrap, as shown in Figure 1 below. During startup,

the system creates a kdp init thread and implements a debugger trap. The kdp init thread is used to

wait for Ethernet drivers registering send and receive handlers, while the debugger loop within the

trap is responsible for polling, processing, and replying to the incoming debug command with those

two handlers. What's more, XNU implements all the debugger command functions in the kdp.c file

and registers them in a dispatch table; for example, `breakpoint set` command refers to the

kdp_breakpoint_set function. These functions make up the debugger world.

Kernel debugger mechanism within the Ethernet driver

The debugger functions implemented within XNU are not enough. If the target machine supports a

remote debugger, its Ethernet driver should implement the IOKernelDebugger service and its object

http://dtrace.org/blogs/about/
https://www.frida.re/
https://blog.quarkslab.com/an-overview-of-macos-kernel-debugging.html

interfaces with the kernel debugger protocol (KDP) module and dispatches KDP requests to its

target (provider).

Figure 2 shows the support for remote debugging. The target, designated as the debugger device,

must implement a pair of handler functions that are called to handle KDP transmit and receive

requests during a debugging session. Only a single IOKernelDebugger in the system can be active at

a given time. The active IOKernelDebugger is the one that has an IOKDP object attached as a client.

The debugger device is usually a subclass of IOEthernetController. However, any IOService can

service an IOKernelDebugger client, implement the two polled mode handlers, and transport the

KDP packets through a data channel. However, KDP assumes that the debugger device is an

Ethernet interface and therefore it will always send, and expect to receive, an Ethernet frame.

Figure 3 shows the architecture of KDP debugger implementation in Drivers. From the figure, we

can see that the subclass of IOEthernetController implements the receive and send handlers, and

IOKernelDebugger registers these two handlers into XNU. Therefore, remote devices can operate

the debugger command on the target machine.

For FireWire debugging, KDP is used over a FireWire cable courtesy of a kernel extension

(AppleFireWireKDP.kext) on the target machine and a translator program (FireWireKDPProxy) on

the debugger machine. The translator routes data between the FireWire connection and UDP port

41139 on the debugger system, and it acts as a local proxy for the target machine. LLDB still

performs network-based debugging, except that it communicates with localhost instead of directly

communicating with the shim on the target machine.

 Register different
interruptions with

NMIInterruptHandler

Kdp-remote xx.xx.xx.xx Kdp communication setup

case T_DEBUG:
case T_INT3:

exception = EXC_BREAKPOINT;

code = EXC_I386_BPTFLT;
kdp_serial_send: kdp_serialize_packet

seria lize a nd deserialize kdp pa ckets
kdp_serial_receiv: kdp_unserialize_packet

Regis ter send and receive ha ndler

kdp_poll() kdp_reply() kdp_send()

kdp_en_send_pkt = send;
kdp_en_recv_pkt = receive;

kdp_receive_data(pkt.data, &pkt.len, 3/*

ms */);
xnu-4903.221.2\osfmk\kdp\kdp_udp.c

kdp_en_recv_pkt -- receive handler
kdp_en_send_pkt -- send handler

kdp_send_data(void *packet, unsigned int

len)
xnu-4903.221.2\osfmk\kdp\kdp_udp.c

All the dispatch functions

kdp_breakpoint_set:
{

bytes[0] = 0xcc; // int 3
*size = 1;
}

dispatch_table[KDP_INVALID_REQ

UEST-KDP_CONNECT] =
{

/* 0 */ kdp_connect,
/* 1 */ kdp_disconnect,
/* 2 */ kdp_hostinfo,
/* 3 */ kdp_version,

/* F */ kdp_breakpoint_set,
/*10 */ kdp_breakpoint_remove,

};

static kdp_dispatch_t

ret = ((*dispatch_table[req - KDP_CONNECT])(rd, len, reply_port));
xnu-4903.221.2\osfmk\kdp\kdp.c

kdp_packet((unsigned char *)&manual_pkt.data, &packet_length, &manual_port_unused);

kdp_packet((unsigned char*)&pkt.data[pkt.off], (int *)&pkt.len, (unsigned short *)&reply_port)
xnu-4903.221.2\osfmk\kdp\kdp.c

kdp_send_exception(e

xception, code, subcode);
xnu-4903.221.2\osfmk\kdp\kdp_udp.c

kdp_raise_exception
xnu-4903.221.2\osfmk\kdp\kdp_udp.c

handle_debugger_trap(exception, code, subcode,

saved_state);
xnu-4903.221.2\osfmk\kern\debug.c

kdp_init()
xnu-4903.221.2\osfmk\kdp\kdp_udp.c

kernel_thread_create
xnu-4903.221.2\osfmk\kern\thread.c

smp_init();
xnu-4903.221.2\osfmk\i386\mp.c

i38 6 _ sm p _ ini t(LAP IC _ N M I_ IN T E R R U P T, N M IIn t er r u pt H a n dle r ,

LAP IC _ VE C T O R(IN T E R P R O C ES S O R) , cp u _ sig n al_ h a n dle r)

machine_init();
xnu-4903.221.2\osfmk\i386\AT386\

model_dep.c

kernel_bootstrap
xnu-4903.221.2\osfmk\kern\startup.c

LLDB Debug World

kdp_handler(saved_state)
xnu-4903.221.2\osfmk\kdp\kdp_udp.c

kdp_debugger_loop(exception, code,

subcode, saved_state);
xnu-4903.221.2\osfmk\kdp\kdp_udp.c

kdp_register_send_receive
xnu-4903.221.2\osfmk\kdp\kdp_udp.c

kdp_i386_trap(T_DEBUG,

saved_state64(regs), 0, 0);
xnu-4903.221.2\osfmk\kdp\ml\x86_64\kdp_machdep.c

Process req and reply

Figure 1. KDP protocol init process during kernel bootstrap

typedef union {

kdp_hdr_t hdr;

kdp_connect_req_t connect_req;

kdp_connect_reply_t connect_reply;

kdp_disconnect_req_t disconnect_req;

kdp_disconnect_reply_t disconnect_reply;

kdp_hostinfo_req_t host info_req;

kdp_hostinfo_reply_t host info_reply;

} kdp_pkt_t;

Figure 2. Drivers that support remote debugging

kdpTransmitDispatcher kdpReceiveDispatcher

_txHandler _rxHandler

IONetworkController

IONetworkingFamily.kext

 virtual void receivePacket virtual void sendPacket

BCM5701Enet

AppleBCM5701Ethernet.kext

sendPacket

BCM5701Enet

receivePacket

IOEthernetController

IOEthernetAVBController

IONetworkController::attachDebuggerClient(I

OKernelDebugger ** debugger)
IONetworkingFamily-129.200.1\IONetworkController.cpp

_activationChangeThreadCall = thread_call_allocate(

(thread_call_func_t) handleActivationChange,

(thread_call_param_t) this);

IONetworkingFamily-129.200.1\IOKernelDebugger.cpp

debugger->message(kMessageDebuggerActivationChange, 0,

change);
IONetworkingFamily-129.200.1\IOKernelDebugger.cpp

registerHandler(_target, _txHandler, _rxHandler, _linkStatusHandler,

_setModeHandler);
IONetworkingFamily-129.200.1\IOKernelDebugger.cpp

::start(IOService *provider)

void IONetworkController::debugTxHandler(IOService *

handler,
void * buffer,
UInt32 length)

{
((IONetworkController *) handler)->sendPacket(buffer, length);

}

_target = target;
_txHandler = txHandler;
_rxHandler = rxHandler;

_linkStatusHandler = linkStatusHandler;
_setModeHandler = setModeHandler;

_state = 0;

kdp_register_send_receive((kdp_send_t) kdpTransmitDispatcher, (kdp_receive_t) kdpReceiveDispatcher);

xnu-4903.221.2\osfmk\kdp\kdp_udp.c

Send/Receive

handler

Figure 3. The architecture of KDP debugger implementation in Drivers

Driver like/BCM

debugger->init(target, txHandler, rxHandler, linkStatusHandler,

setModeHandler)

IONetworkingFamily-129.200.1\IOKernelDebugger.cpp

IOKernelDebugger::debugger(this,

&debugTxHandler,
&debugRxHandler,

&debugLinkStatusHandler,
&debugSetModeHandler);

IONetworkingFamily-129.200.1\IONetworkController.cpp

Debugger Toolset available for MacOS

Apple also provides some debug scripts that support kernel debugging, as shown in Figure 4.

Figure 4. XNU debug scripts provided by Apple

Figure 5. The XNU debug script file layout

The Core directory provides many basic components used in the debugger process, such as API

wrappers that encapsulate the basic LLDB Scripting Bridge APIs. The plugins directory contains a

plugin that can create performance reports for zprint output. The xun.py file includes the LLDB

initialization code, which is used to load plugins and additional debug commands. The process.py

script mainly contains the debug commands implementation code.

Kernel Debug Process

Figure 6. Back trace after using NMI interruption

https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/build/build.html

Figure 6 shows the back trace after using NMI interruption. For remote kernel debug, a NMI

(Command-Option-Control-Shift-Escape) signal can be manually generated to interrupt the target

machine during execution, which gives an opportunity for the remote debugger to connect.

However, the configuration to enable the debugger and how to debug a remote device will not be

introduced here.

LLDBFuzzer overview

Although LLDB is not suitable for debugging low-level kernel components, it can debug almost all the

kernel extensions and XNU codes after the required hardware is operational. Based on these features,

we introduce a novel fuzzing architecture we call LLDBFuzzer.

The LLDBFuzzer architecture

Figure 7 shows the architecture of our LLDB fuzz solution. As mentioned previously, this solution is

based on the remote kernel debugger system, so our fuzz solution contains two machines. One is

the remote machine, which runs our main fuzzing logic; and the other is the target machine, which

is loaded with a custom kernel and deploys our fuzz point. The target machine can be a MacOS VM

or a real device.

Figure 7. The LLDBFuzzer architecture

The following details each module:

• Probe Setup - It will query the fuzz strategy, which contains all the attack surfaces we revised
from XNU and KEXTs, and parse them for an executor to deploy probes on the target machine.

• Mutation - Executor will break at probe point, then bit flip their input buffer. However, not all
the inputs need mutation because the inputs are not always buffers; the executor will use the
debug function (such as "showobject") to check them.

• Crash Monitor - This module will monitor the status of target machines via the fuzzing log and
return the signal. It can also use the manager toolset to restart or send core dump and panic logs
to fuzzing servers for further reproduction.

• Executor - This is a fuzz controller for all fuzzing steps.
• Sanitizers - The target machine loads our custom XNU, which is compiled with a kernel address

sanitizer (KSAN) and a kernel memory sanitizer (KMSAN). These two sanitizers were introduced
in our BlackHat Europe 2018 presentation.

• Remote Debugger Components: This module is an essential part of our whole fuzzing solution.
It is implemented in the Ethernet driver; however, not all drivers implement the kernel debugger
functions (an example would be the Intel Mausi Network Driver). Section 2.3 will introduce how
to implement a remote kernel debugger in the open source driver.

• XNU and KEXTs: Unusually, due to the features of an LLDB debugger, LLDBFuzzer will not only
pay attention to the normal attack surface, such as "is_io_connect_method" and
"unix_syscall64", but also to the deeper attack surface, such as the
"IOAccelCommandStreamInfo" process functions in the AMDRadeonX4000_AMDSIGLContext
service.

1.3. The fuzz attack surface on Macintosh

Hacking into AMD graphic drivers

AMD Graphic Drivers are used to accelerate and optimize 2D, 3D, and video rendering. They contain

many interfaces that the user space can access, so we chose them as our research target.

Below, we will show how to uncover deeper and hidden potential attack surfaces that can allow

malicious actors to hack into AMD accelerator family in Radeon Drivers.

https://www.blackhat.com/eu-18/briefings/schedule/index.html#drill-apple-core-up-and-down---fuzz-apple-core-component-in-kernel-and-user-mode-for-fun-and-profit-12923

Determine the active accelerator in the target machine

Figure 8. Class diagram of IOAccelerator and its derived class in AMD Graphic Driver

Figure 8 shows the whole accelerator family in an AMDRadeonX4000 driver, each of them

adaptable for different GPU models. Our Mac Pro test machine features two AMD FirePro GPUs

(shown in Figure 9); AMDRadeonX4000_AMDPitcairnGraphicsAccelerator is active.

Figure 9. The two AMD graphics accelerators in Mac Pro, featuring two AMD FirePro GPUs

Get the usual attack surface for AMDPitcairnGraphicsAccelerator

Figure 10. The pseudo code of the IOGraphicsAccelerator2::newUserClient function

The newUserClient function is used to create a connection for an IOServce with a type that the

caller specifies. Based on the pseudo code shown in Figure 10, IOAcceleratorFamily2.kext has many

available associated services that can be accessed from user space using the IOServiceOpen

function. Table 3 lists the actual derived services and access types. These derived services are also

available if the device uses the Intel series GPU AppleIntelHD5000Graphics.kext or other kernel

extensions.

Open Type Parent Service Derived Service in AMDRadeonX4000.kext

0 IOAccelSurface2 AMDRadeonX4000_AMDAccelSurface

1 IOAccelContext2→
IOAccelGLContext2

AMDRadeonX4000_AMDSIGLContext

2 IOAccelContext2→
IOAccel2DContext2

AMDRadeonX4000_AMDAccel2DContext

3 IOAccelContext2→

IOAccelVideoContext2

AMDRadeonX4000_AMDAccelVideoContext→

AMDRadeonX4000_AMDSIVideoContext
4 IOAccelDisplayPipe2 AMDRadeonX4000_AMDAccelDisplayPipe

5 IOAccelDevice2 AMDRadeonX4000_AMDAccelDevice
6 IOAccelSharedUserClient2 AMDRadeonX4000_AMDAccelSharedUserClient

7 IOAccelMemoryInfoUserClient

8 IOAccelContext2→

IOAccelCLContext2

AMDRadeonX4000_AMDAccelCLContext→

AMDRadeonX4000_AMDSICLContext
9 IOAccelCommandQueue AMDRadeonX4000_AMDAccelCommandQueue

Table 3. Graphic Services and its Open Type from User Space (A→B means B extends A)

Besides getting these AMD services, getting the external methods dispatch is also essential so that

we can find the first level of attack surfaces. IOUserClient::externalMethod and

IOUserClient::getTargetAndMethodForIndex are the common override functions to reverse to get

the dispatch table. Some of the services may fully rewrite these two functions, which makes reverse

engineering a little difficult and not friendly for automation, but it can still be effective after some

effort. Table 3 shows the main IOServices and their extended relationships. Table 6 shows the

external method and its index of AMDRadeonX4000_AMDSIGLContext. Since IOAccelGLContext2

extends IOAccelContext2, the other GL context operation functions are implemented in

IOAccelContext2 class as shown in Table 4.

index flags count
1

count2 Methods Name

0 0 0 0 IOAccelContext2::finish(void)

1 4 0 0xfffffff
f

IOAccelContext2::set_client_info(IOAccelClientInfo
*,ulong long)

2 3 0x88 0xfffffff
f

IOAccelContext2::submit_data_buffers(IOAccelConte
xtSubmitDataBuffersIn
*,IOAccelContextSubmitDataBuffersOut *,ulong
long,ulong long *)

3 3 8 0xfffffff
f

IOAccelContext2::get_data_buffer(IOAccelContextGet
DataBufferIn *,IOAccelContextGetDataBufferOut
*,ulong long,ulong long *)

4 0 0 0 IOAccelContext2::reclaim_resources(void)

5 0 1 0 IOAccelContext2::finish_fence_event(uint)

6 0 0 0

7 0 1 0 IOAccelContext2::set_background_rendering(uint)

Table 4. The external method of IOAccelContext2

Sele-
ctor

Scalar
InputCount

Structure
InputSize

Scalar
Output
Count

Structure
OutputSize

Methods Name

256 0 0x30 0 0 IOAccelGLContext2::s_set_surface(
IOAccelGLContext2*,void
*,IOExternalMethodArguments *)

257 0 0x30 0 0x28 IOAccelGLContext2::s_set_surface
_get_config_status(IOAccelGLCont
ext2*,void
*,IOExternalMethodArguments *)

258 4 0 0 0 IOAccelGLContext2::s_set_swap_r
ect(IOAccelGLContext2*,void
*,IOExternalMethodArguments *)

259 2 0 0 0 IOAccelGLContext2::s_set_swap_i
nterval(IOAccelGLContext2*,void
*,IOExternalMethodArguments *)

260 1 0 0 0 IOAccelGLContext2::s_set_surface
_volatile_state(IOAccelGLContext2
*,void
*,IOExternalMethodArguments *)

261 0 0x20 0 0 IOAccelGLContext2::s_read_buffer
(IOAccelGLContext2*,void
*,IOExternalMethodArguments *)

Table 5. The external method dispatch of IOAccelGLContext2

index flags count1 count2 Methods Name

512 4 0 0xfffffff
f

AMDRadeonX4000_AMDSIGLContext::readPixelsFBO(
sATIGLContextReadPixelsFBOData *,ulong long)

513 4 0 0x18 AMDRadeonX4000_AMDSIGLContext::SurfaceCopy(ui
nt *,ulong long)

Table 6. the external method of AMDRadeonX4000_AMDSIGLContext

More Hidden Attack Surfaces

Though the usual attack surfaces can be tested and fuzzed directly from user space, there are still

multiple functions within the drivers that cannot be touched. Mainly, these functions contains three

kinds of interfaces:

1) Interfaces that are protected by filter driver, which researcher Yu Wang introduced in DEFCON 26
2) Interfaces that are controlled by the shared memory
3) Interfaces that cannot be indirectly touched by user space processes, but can be accessed by

Safari and special processes

We will illustrate the second and the third type of hidden and deep attack surfaces.

A. Interfaces which are controlled by the shared memory

AMDRadeonX4000_AMDSIGLContext provides a set of side band buffer process functions called by

the "processSidebandToken" method and controlled through the IOAccelCommandStreamInfo

object.

https://www.youtube.com/watch?v=TEKOm0J2sHQ

Figure 11. The accelerator command stream info is controlled by shared memory

Figure 11 shows that v5 points to the shared memory start address and offset 16 bit, and

commandStreamInfo_offset32 points to the commandStreamInfo structure and offset 32 bit. Then,

the following code assigns two words and one DWORD data of v5 to commandStreamInfo_offset32,

and passes them to the AMDRadeonX4000_AMDSIGLContext::processSidebandToken function. This

function gets the first word of commandStreamInfo_offset32 and subtracts 120 as the index of the

ati_token_process_methods dispatch array, as shown in Figure 12. After that, the methods hide

behind the IOAccelContext2::submit_data_buffers external method, which has a selector of “2” as

shown in Table 4, and can be accessed.

Figure 12. The side band buffer process functions hide behind the external method, which has a
selector of 2

The shared memory can be operated from user space using the code shown in Figure 13. Figure 14

lists the main service class and their relationship to help analyze the IOAcceleratorFamily2.kext. The

figure in the appendix shows the important field variables and their offsets in each service class. We

will also clarify each service class’s main function and what role they play in the

IOAcceleratorFamily extension below.

GPU Task: IOGraphicsAccelerator2 object
IOAccelCommandQueueList

IOAccelCommandQueue P0
IOAccelChannel2->

IOAccelFIFOChannel2: 128
CPU

C

IOAccelSharedNamespace2

Memory-map
buffers :

push

commands

Map
IOAccelContextList

IOAccelFIFOChannel2::
submitCommands

IOAccelSharedList

IOAccelResourceList

IOAccelFIFOChannel2::

submitterDestroyed

IOAccelDeviceList: for multi GPU cards like macPro

register

IOAccelEvent

DMA buffers :
status

init/channel

sync

Sync

stampArray

IOAccelEventMachineFast2

IOAccelEvent

IOAccelEvent
IOAccelDevice2

IOAccelResource2 IOAccelResource2

EventMachine

data
header

IOAccelContext2

IOAccelShared2 IOAccelShared2 IOAccelShared2

Share-Memory :

side buffer

Memory-map:

submit data

processors

IOAccelCommandQueue P1
ommand

 cmd cmd cmd

ID

 IOAccelDevice2

 IOAccelContext2

3D Channel

GraphicAccele
rator

3D Channel

CL Channel ID ID

CL Channel

Figure 13. The demo showing how to operate the accelerator context share memory

cmd cmd cmd

stampArray

Figure 14. The details of the AMD Accelerator driver

B. Interfaces which cannot be indirectly touched by user space processes, but can be accessed by
the Safari (and others) special processes

The IOFramebuffer service defines APIs used to publish a linear framebuffer device. AMD device

writers extend this class and provide an AMDFramebuffer driver. It creates three types of

connections: kIOFBServerConnectType, kIOFBSharedConnnectType, and

kIOFBDiagnoseConnectType. However, the kIOFBServerConnectType connection cannot be

accessed through the normal user-mode process.

But, that does not mean that there is no vulnerability there: one example of a bug would be CVE-

2018-4462, which we reported to Apple (details will be introduced in vulnerability section below).

The details of the external method dispatch can be referred to in

IOFramebufferUserClient::externalMethod in the IOFramebufferUserClient.cpp file. However, the

execution methods are those implemented in AMDFramebuffer.kext, as shown in Figure 15.

Figure 15. The execution functions implement in AMDFramebuffer.kext

Hacking into special syscalls

Unix_syscall64 is the dispatch function for syscall in XNU and the corresponding function in user space is

syscall. This is one of most important attack interfaces towards kernel privilege escalation crossing

platforms (including OSX and iOS).

Figure 16. unix_syscall64 in call stack (sysctl for example)

Above is the typical system call backtrace, where we used sysctl as an example. From the brief

implementation of unix_syscall64 listed below, we can get import system call info from the input

argument “state” that includes registers of execution context, system call number, arguments zone in

kernel mode, and so forth.

 attribute ((noreturn)) void unix_syscall64(x86_saved_state_t *state)

{

p = current_proc();

regs = saved_state64(state);

//Get system call number from saved registers

uSyscallNumber = regs->rax & SYSCALL_NUMBER_MASK;

//uSyscallNumber = regs->rdi;//indirect system call

callp = &sysent[uSyscallNumber];

//copy in user data to kernel address(vt or uthread->uu_arg)

vt = (void *)uthread->uu_arg;

copyin_count = (callp->sy_narg - args_in_regs) * sizeof(syscall_arg_t);

//int copyin(const user_addr_t uaddr, void *kaddr, size_t len);

error = copyin(

(user_addr_t)(regs->isf.rsp + sizeof(user_addr_t)),

(char *)&uthread->uu_arg[args_in_regs]/*kernel address*/,

copyin_count);

//Call system call

error = (*(callp->sy_call))((void *) p/*current process*/,

vt/*kernel address for arguments*/,

&(uthread->uu_rval[0]));

}

We analyzed system call trigger statistics, taken for about 10 minutes in a typical runtime environment

(which would happen for example playing 3D online games, website visits via Safari, running VLC media

etc.) on the latest Mac OSX 10.14.4. The first column is the total hit number, the second column is the

system call number, and the last column is the system call prototype.

We have neglected less important system calls for passive fuzzing based on several principles. The basic

idea is that the more data structure or buffers are accepted as user input, the more attack interfaces the

system call will open. For example, for effective fuzzing, we ignore system calls with no input argument

or all input arguments that are only integer compatible and so forth.

Figure 17. Typical system call hit statistics

To provide better references for fuzzing, we have classified the system call hit statistics into different

categories according the system call hit number, as seen below.

Figure 18. System call hit more than 100k

Figure 19. System call hit between 100k and 10k

Figure 20. System call hit between 10k and 1k

1.4. The prototype of LLDBFuzzer

This section details how to implement LLDBFuzzer, including how to setup a fuzz probe and how to

mutate the buffer data and the main fuzz logic.

Probe setup

Our fuzzing interfaces contain the depth functions, so we should first get the MacOS kernel slide in order

to parse the offset of functions or variables. The probe can be one of two different kinds, function

address and function names.

Figure 21. The code snippet for setting up the fuzz probe

Fuzz executor

After setting up the fuzz probe, the main fuzz logic is:

1) Intercept the fuzz probe and capture the input data buffer
2) Read the input data buffer, mutate it and write them to kernel memory, as shown in Figure 22
3) Continue the interface, check the return value and monitor the fuzzing status
4) In a crash, send the core dump and panic log to the fuzz server and restart the target machine, as

shown in Figure 23

Figure 22. Reading data memory, mutating it and writing it back

Figure 23. Monitoring the fuzz status and managing the target machine after crash

Mutation strategy

We use the bit flip method to mutate the input data buffer. Then, some parameters are introduced in

order to control the fuzz frequency for the fuzzing probe and fuzz ratio for data mutation, as shown in

Figure 24. The parameters u_rand_limit, u_rand_min, and u_rand_max are used to control mutation

ratio, while u_min_bytes and u_max_bytes control the minimum and the maximum mutation bytes.

Figure 24. Code snippet of the bit flip mutation strategy

Crash monitor

The crash monitor module is separated independently from the target machine and is used to monitor

target machine kernel panic caused by fuzzing, collect necessary crash core dump for reproduction, and

reboot target machine for roll repeatedly. Below are the crash issues that the crash monitor generates

automatically.

Figure 25. Snapshot of crash issues

Figure 26. LLDB monitor logic in brief

As shown in the figure above, we have introduced the new LLDB command remote fuzz controller (RFC)

in Python to monitor and remotely control the target machine. This command will query the target

machine to crash in “kdp-remote” in a whole loop. Whenever an attachment to a target kernel is done,

the backtrack stack, user client info, registers, and disassembly around IP (indicated in red boxes in

figure above) will be collected using an internal LLDB command. Finally, it will reboot the target machine

to roll repeatedly.

1.5. Fuzzing best practices

Trigger more fuzzing sources

On the first day of our test, we got an OOB vulnerability (which allows for data exfiltration) in the

AMDRadeonX4000.kext, as show in the Figure 27. This was not a surprise since this is the usual attacker

surface. A deeper probe revealed many other crashes. All the vulnerabilities' details will be introduced in

the section below.

Figure 27. The OOB vulnerability we got using LLDBFuzzer

LLDBFuzzer also belongs to passive fuzz. In order to touch deeper attack interfaces, the following

methods can be very effective:

• Run 3D games in the user space;

• Run bench marking programs in the user space, like Xbench and GFXbench;

• Run an active fuzzing tool in the user space.

These methods can make the rendering function call more frequently than usual, which helps us

improve the fuzzing efficiency.

Timely reboot in kernel for anti-hang

Figure 28. Kernel thread for timely reboots

The biggest problem for kernel fuzzing would be to have the kernel actively hang but not crash. This

condition would consume time and create a false busy run for kernel fuzzing, and it could be caused by

multiple conditions such as a kernel waiting for a mistake event or a watchdog mechanism.

We decided to introduce a kernel thread (kernel_thread_start API) to a timely reboot machine

(“PEHaltReboot” and “halt_all_cpus” API, reversed from panic_hanlder) because the kernel thread

would almost always be scheduled to execute in most “hang” conditions.

2. Implementing a debugger for Hackintosh

2.1. Why must it support kernel debugging?

As we all know, many kernel extensions can only be active beyond the real hardware, so to discover the

vulnerabilities within them, the real machines are essential. Because the hardware of VMs are emulated,

the kexts do not work. However, it's different for syscall fuzz because of the monolithic XNU. We can

simply deploy many fuzz instances using MacOS virtual machines to improve the efficiency. For

hackintosh, it’s also necessary to install an open source network driver if the existing driver is not

suitable for your network card.

However, many open source network drivers do not support remote kernel debugger, such as

AppleIntelE1000e, RealtekRTL8111, and IntelMausiEthernet. Therefore, making them support a remote

kernel debugger is a necessary precondition.

2.2. Kernel debugging implementation internals

Above, Figure 3 has shown the architecture of the KDP debugger implementation with an Ethernet

extension. Three steps can be taken to support kernel debugging, and we can illustrate the

implementation of kernel debugging by reversing the AppleBCM5701Ethernet extension:

1) Initialize a kernel debugger object and attach it
2) Implement the sendPacket() and receivePacket() virtual methods in IONetworkController
3) Implement the enable() and disable() virtual methods in IONetworkController

Initialize the kernel debugger client

The attachDebuggerClient() function in IONetworkController can allocate an IOKernelDebugger object

and attach it as a client. This client is the bridge between the remote debugger and debugging world in

XNU. Figure 29 shows how to attach a debugger client — it just declares a IOKernelDebugger object and

calls attachDebuggerClient to attach it.

Figure 29. Attach debugger client method in AppleBCM5701Ethernet

Override the packet send and receive handler functions

The sendPacket and receivePacket are the virtual methods used to declare an IONetworkController.h

file. They are responsible for sending an outbound packet or polling for an incoming packet when the

kernel debugger is active. An Ethernet driver that supports kernel debugging, as shown in Figure 30,

must implement these two functions.

Figure 30. The architecture for implementing kernel debugging

The packet send handler implementation

Figure 31 shows the one send packet cycle in AppleBCM5701Ethernet, and the following steps can be

followed:

1) Allocate a packet with a data buffer
2) Move the send pkt info to the newly allocated buffer and set its length
3) Call the transmitPacket to send the packet
4) Call the transmitKick function to update the related status registers
5) Check if there is a timeout

Figure 31. The one send packet cycle in AppleBCM5701Ethernet

XXXXEthernet.kext IONetworkFamily.kext

IOEthernetController

XXXXEnet

kdpReceiveDispatcher _rxHandler virtual void sendPacket

kdpTransmitDispatcher _txHandler virtual void receivePacket

Send/Receive handler IONetworkController

receivePacket

sendPacket

If we only reference the reverse code of the transmitPacket function in AppleBCM5701Ethernet, it will

be difficult to get how it transmits the packet. Luckily, there are many open source Ethernet drivers in

GitHub as mentioned before, so we can research those codes such as "RTL8111::outputStart" in the

RealtekRTL8111.cpp file or the "IntelMausi::outputStart" function in the IntelMausiEthernet.cpp file.

To transmit the packet, follow these steps:

1) Prepare the packet header and command bits according to the network protocol such as IPV4 or
IPV6, as shown in Figure 32

2) Get the physical segments of packet and compute the VLAN tag, as shown in Figure 33
3) Set the VLAN tag for the descriptors in physical segments, as shown in Figure 34
4) Update the polling bits in the register

Figure 32. Prepare the packet header according to the network protocol

https://github.com/chris1111/AppleIntelE1000e
https://github.com/RehabMan/OS-X-Realtek-Network
https://bitbucket.org/RehabMan/os-x-intel-network/src

Figure 33. Get the physical segments and VLAN tag

Figure 34. Set the VLAN tag for the descriptor in each segment

Implement the packet receive handler

Figure 35 shows the implementation of the “receive handler” in AppleBCM5701Ethernet. This handler

only calls the receivePackets function to complete its task. To analyze the receivePackets functions, we

found that it's not just called by receivePacket; many other functions simply call this function to return.

Another fact is that RxInterrupt is used for Ethernet to receive frames. Therefore, if other open source

extensions implement it, we can simply refer to it. Luckily, it is implemented in RealtekRTL8111 and

IntelMausi etc. drivers.

Figure 35. The implementation of receive handlers in AppleBCM5701Ethernet

Figure 36. The call diagram of BCM5701Enet::receivePackets function

The packet receiving can be seen as the reverse process of packet sending by following these steps:

1) Check the receive register (E1000_RXD_STAT_DD), receive the packet and move it to a new packet
with a data buffer, as shown in Figure 37

2) Get the packet's physical segment, its location, and VLAN tag, as shown in Figure 38
3) For the RealtekRTL8111 we are working with, complete the extra length information of newPkt and

enqueue the inputPacket queue, as shown in Figure 39. However, the debugger receive handler only
receives one packet after calling the receivePacket function and returning it to XNU to parse the
debugging command. So, copy the received packet to the reference parameter in the receivePacket
function instead of enqueuing it. The copy code can be simply called the memcpy, such as
"memcpy(pkt, newPkt, pktSize)"

4) Update the descriptors for the segment if necessary
5) Add the timeout check for receivePacket function to avoid hanging

BCM5701Enet::receivePackets

BCM5701Enet::receivePacket BCM5701Enet::pollInputPackets BCM5701Enet::serviceRxInterrupt BCM5701Enet::serviceInterrupts

Figure 37. Receive the packet and copy it to the new packet buffer

Figure 38. Get the physical segment and its location

Figure 39. Set the newPkt buffer length and enqueue input packet

After overriding the send and receive handler, the Ethernet extensions can support remote kernel

debugging. However, to control the active debugger, the enable and disable virtual methods should also

be overriden. You can refer to the IONetworkInterface enable and disable functions in RealtekRTL8111

for more details.

https://github.com/RehabMan/OS-X-Realtek-Network/blob/master/RealtekRTL8111/RealtekRTL8111.cpp

3. Zero Day vulnerabilities found by LLDBFuzzer

This section analyzes vulnerabilities with root causes that we know of.

3.1. OOB read vulnerability found in AMDRadeonX4000_AMDAccelResource

Initialize Process (CVE-2019-8519)

* thread #1, stop reason = signal SIGSTOP

* frame #0: 0xffffff7fa00965d3

AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs*, unsigned long long) + 1525

frame #1: 0xffffff7f9fea346b IOAcceleratorFamily2`IOAccelSharedUserClient2::new_resource(IOAccelNewResourceArgs*,

IOAccelNewResourceReturnData*, unsigned long long, unsigned int*) + 1893

frame #2: 0xffffff7f9fea4a41 IOAcceleratorFamily2`IOAccelSharedUserClient2::s_new_resource(IOAccelSharedUserClient2*,

void*, IOExternalMethodArguments*) + 151

frame #3: 0xffffff801d625ab8 kernel.development`IOUserClient::externalMethod(this=<unavailable>, selector=<unavailable>,

args=0xffffff83dd4b3b58, dispatch=0xffffff7f9fee8260, target=0xffffff80854fd780, reference=0x0000000000000000) at

IOUserClient.cpp:5358 [opt]

frame #4: 0xffffff7f9fea4d98 IOAcceleratorFamily2`IOAccelSharedUserClient2::externalMethod(unsigned int,

IOExternalMethodArguments*, IOExternalMethodDispatch*, OSObject*, void*) + 120

frame #5: 0xffffff801d62eb7f kernel.development`::is_io_connect_method(connection=0xffffff80854fd780, selector=0,

scalar_input=<unavailable>, scalar_inputCnt=<unavailable>, inband_input=<unavailable>, inband_inputCnt=2424, ool_input=0,

ool_input_size=0, inband_output="", inband_outputCnt=0xffffff806ba03e0c, scalar_output=0xffffff83dd4b3ce0,

scalar_outputCnt=0xffffff83dd4b3cdc, ool_output=0, ool_output_size=0xffffff8085919d5c) at IOUserClient.cpp:3994 [opt]

frame #6: 0xffffff801cfbbce4 kernel.development`_Xio_connect_method(InHeadP=<unavailable>,

OutHeadP=0xffffff806ba03de0) at device_server.c:8379 [opt]

frame #7: 0xffffff801ce8d27d kernel.development`ipc_kobject_server(request=0xffffff8085919000, option=<unavailable>) at

ipc_kobject.c:359 [opt]

frame #8: 0xffffff801ce59465 kernel.development`ipc_kmsg_send(kmsg=0xffffff8085919000, option=3, send_timeout=0) at

ipc_kmsg.c:1832 [opt]

frame #9: 0xffffff801ce78a75 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:549 [opt]

frame #10: 0xffffff801cff6323 kernel.development`mach_call_munger64(state=0xffffff806ca9c480) at bsd_i386.c:573 [opt]

frame #11: 0xffffff801ce23486 kernel.development`hndl_mach_scall64 + 22

Figure 40. Crash backtrace ZDI-19-569

Root cause analysis

This vulnerability could allow an attacker access to restricted memory.

As shown in the table below, the register of rax is the address of the buffer that is created from the

IOMalloc function. The r15 register is pointing to the structureInput buffer, which is controlled by

usermode. The ecx register stores the length of IOMalloc buffer, and the rdx register is used as an index

to copy the structureInput buffer content to IOMalloc buffer. However, here, ecx is taken directly from

the usermode, which is structureInput offset 62 dword. If we set ecx at a big value, it will read overflow

from the structureInput buffer.

 text:000000000000E58E loc_E58E: ; CODE XREF:

AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs *,ulong long)+58Dj

 text:000000000000E58E mov ecx, [r15+0F8h]

 text:000000000000E595 test rcx, rcx

 text:000000000000E598 jz short loc_E603

 text:000000000000E59A shl rcx, 3

 text:000000000000E59E lea rdi, [rcx+rcx*2]

 text:000000000000E5A2 call _IOMalloc

 text:000000000000E5A7 mov [r12+178h], rax --- rax== buffer address which is created by IOMalloc

 text:000000000000E5AF test rax, rax

 text:000000000000E5B2 jz short loc_E62A

 text:000000000000E5B4 or byte ptr [r12+186h], 8

 text:000000000000E5BD mov ecx, [r15+0F8h] -------- r15==structureInput, ecx=((uint32_t*) structureInput+62)

 text:000000000000E5C4 mov [r12+180h], ecx

 text:000000000000E5CC test rcx, rcx

 text:000000000000E5CF jz short loc_E639

 text:000000000000E5D1 xor edx, edx

 text:000000000000E5D3

 text:000000000000E5D3 loc_E5D3: ; CODE XREF:

AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs *,ulong long)+621j

 text:000000000000E5D3 mov rsi, [r15+rdx+98h] ----- mov structureInput+rdx+0x98 to rsi

 text:000000000000E5DB mov [rax+rdx], rsi ---- mov rsi to rax+rdx, rax== buffer address which is created by

IOMalloc

 text:000000000000E5DF mov rsi, [r15+rdx+0A0h]

 text:000000000000E5E7 mov [rax+rdx+8], rsi

 text:000000000000E5EC mov esi, [r15+rdx+0A8h]

 text:000000000000E5F4 mov [rax+rdx+10h], esi

 text:000000000000E5F8 add rdx, 18h

 text:000000000000E5FC dec rcx

 text:000000000000E5FF jnz short loc_E5D3

Table 7. The asm code snippet of AMDRadeonX4000_AMDAccelResource::initialize

3.2. OOB read vulnerability found in AMDRadeonX4000_AMDAccelResource

Initialize Process (CVE-2019-8692)

(lldb) bt

* thread #1, stop reason = signal SIGSTOP

frame #0: 0xffffff7f9dcd9459

AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs*, unsigned long long) + 947

frame #1: 0xffffff7f9dc345ee IOAcceleratorFamily2`IOAccelSharedUserClient2::new_resource(IOAccelNewResourceArgs*,

IOAccelNewResourceReturnData*, unsigned long long, unsigned int*) + 1886

frame #2: 0xffffff7f9dc35bb5 IOAcceleratorFamily2`IOAccelSharedUserClient2::s_new_resource(IOAccelSharedUserClient2*,

void*, IOExternalMethodArguments*) + 151

frame #3: 0xffffff801b424978 kernel.development`IOUserClient::externalMethod(this=<unavailable>, selector=<unavailable>,

args=0xffffffa76a5bb9b8, dispatch=0xffffff7f9dc79260, target=<unavailable>, reference=<unavailable>) at

IOUserClient.cpp:5689 [opt]

frame #4: 0xffffff7f9dc35f0b IOAcceleratorFamily2`IOAccelSharedUserClient2::externalMethod(unsigned int,

IOExternalMethodArguments*, IOExternalMethodDispatch*, OSObject*, void*) + 119

* frame #5: 0xffffff801b42da02 kernel.development`::is_io_connect_method(connection=<unavailable>, selector=0,

scalar_input=<unavailable>, scalar_inputCnt=<unavailable>, inband_input=<unavailable>, inband_inputCnt=2424, ool_input=0,

ool_input_size=0, inband_output="", inband_outputCnt=0xffffff80bf24e60c, scalar_output=0xffffffa76a5bbce0,

scalar_outputCnt=0xffffffa76a5bbcdc, ool_output=0, ool_output_size=0xffffff80beec9d5c) at IOUserClient.cpp:4304 [opt]

frame #6: 0xffffff801adbc386 kernel.development`_Xio_connect_method(InHeadP=<unavailable>,

OutHeadP=0xffffff80bf24e5e0) at device_server.c:8379 [opt]

frame #7: 0xffffff801ac948fd kernel.development`ipc_kobject_server(request=0xffffff80beec9000, option=3) at

ipc_kobject.c:361 [opt]

frame #8: 0xffffff801ac6088e kernel.development`ipc_kmsg_send(kmsg=0xffffff80beec9000, option=3, send_timeout=0) at

ipc_kmsg.c:1868 [opt]

frame #9: 0xffffff801ac800e3 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:553 [opt]

frame #10: 0xffffff801adf702b kernel.development`mach_call_munger64(state=0xffffff80bd7429a0) at bsd_i386.c:580 [opt]

frame #11: 0xffffff801ac2a476 kernel.development`hndl_mach_scall64 + 22

(lldb) register read

General Purpose Registers:

rax = 0x0000000000003740

rbx = 0x00000000000003c8

rcx = 0x0000000000000000

rdx = 0x00000000000003c8

rdi = 0xffffff80cdadd400

rsi = 0xffffff80beec9974

rbp = 0xffffffa76a5bb850

rsp = 0xffffffa76a5bb820

r8 = 0xffffff80cdadd400

r9 = 0xffffff801b6c7210 kernel.development`zone_array + 8336

r10 = 0xffffff801b6c5180 kernel.development`zone_array

r11 = 0x0000000000000000

r12 = 0xffffff80c37dd700

r13 = 0xffffff80beec95ac

r14 = 0x0000000000000001

r15 = 0xffffff80beec93c4

rip = 0xffffff7f9dcd9459 AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::initialize(IOAccelNewResourceArgs*,

unsigned long long) + 947

rflags = 0x0000000000010202

cs = 0x0000000000000008

fs = 0x0000000000000000

gs = 0x0000000000000000

Figure 41. Crash backtrace CVE-2019-8692

Root cause analysis
As shown in the backtrace above, the system will call the AMDRadeonX4000_AMDAccelResource::initialize

function to initialize an AMD resource object and take structureInput and structureInputSize as parameters

(structureInput is the inband input which can be controlled by the userspace directly). As shown in Figure 42, this

function will first use the IOAccelResource2::initialize function to initialize some resource properties, like

BYTE4(this->member21), BYTE5(this->member21), and BYTE6(this->member21), using the same parameters as

AMDRadeonX4000_AMDAccelResource::initialize.

However, in the following code, AMDRadeonX4000_AMDAccelResource::initialize directly uses BYTE6(this-

>member21) << 6 as the offset to read the buffer of v36. Thus, we can control it and use it to read out of boundary

memory.

Figure 42. Root cause analysis for this OOB vulnerability

3.3. Double free vulnerability found when AMDRadeonX4000_AMDSIGLContext

processes a sideband token (CVE-2019-8635)

* thread #1, stop reason = signal SIGSTOP

frame #0: 0xffffff7f8d7adc37 IOAcceleratorFamily2`IOAccelResource2::clientRelease(IOAccelShared2*) + 13

frame #1: 0xffffff7f8d880dad

AMDRadeonX4000`AMDRadeonX4000_AMDSIGLContext::process_StretchTex2Tex(IOAccelCommandStreamInfo&) + 2893

frame #2: 0xffffff7f8d79b5d5 IOAcceleratorFamily2`IOAccelContext2::processSidebandBuffer(IOAccelCommandDescriptor*,

bool) + 273

frame #3: 0xffffff7f8d8885e4

AMDRadeonX4000`AMDRadeonX4000_AMDSIGLContext::processSidebandBuffer(IOAccelCommandDescriptor*, bool) + 182

frame #4: 0xffffff7f8d79bae7 IOAcceleratorFamily2`IOAccelContext2::processDataBuffers(unsigned int) + 85

frame #5: 0xffffff7f8d7a2380 IOAcceleratorFamily2`IOAccelGLContext2::processDataBuffers(unsigned int) + 804

frame #6: 0xffffff7f8d798c30

IOAcceleratorFamily2`IOAccelContext2::submit_data_buffers(IOAccelContextSubmitDataBuffersIn*,

IOAccelContextSubmitDataBuffersOut*, unsigned long long, unsigned long long*) + 1208

frame #7: 0xffffff800b027a3c

kernel.development`::shim_io_connect_method_structureI_structureO(method=<unavailable>, object=<unavailable>,

input=<unavailable>, inputCount=<unavailable>, output=<unavailable>, outputCount=0xffffff8742023968) at

IOUserClient.cpp:0 [opt]

frame #8: 0xffffff800b025ca0 kernel.development`IOUserClient::externalMethod(this=<unavailable>, selector=<unavailable>,

args=0xffffff87420239b8, dispatch=0x0000000000000000, target=0x0000000000000000, reference=<unavailable>) at

IOUserClient.cpp:5459 [opt]

* frame #9: 0xffffff800b02ebff kernel.development`::is_io_connect_method(connection=0xffffff80b094e000, selector=2,

scalar_input=<unavailable>, scalar_inputCnt=<unavailable>, inband_input=<unavailable>, inband_inputCnt=136, ool_input=0,

ool_input_size=0, inband_output="", inband_outputCnt=0xffffff80b0d81e0c, scalar_output=0xffffff8742023ce0,

scalar_outputCnt=0xffffff8742023cdc, ool_output=0, ool_output_size=0xffffff80ab5c7574) at IOUserClient.cpp:3994 [opt]

frame #10: 0xffffff800a9bbd64 kernel.development`_Xio_connect_method(InHeadP=<unavailable>,

OutHeadP=0xffffff8742023ce0) at device_server.c:8379 [opt]

frame #11: 0xffffff800a88d27d kernel.development`ipc_kobject_server(request=0xffffff80ab5c7400, option=<unavailable>)

at ipc_kobject.c:359 [opt]

frame #12: 0xffffff800a859465 kernel.development`ipc_kmsg_send(kmsg=0xffffff80ab5c7400, option=3, send_timeout=0) at

ipc_kmsg.c:1832 [opt]

frame #13: 0xffffff800a878a75 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:549 [opt]

frame #14: 0xffffff800a9f63a3 kernel.development`mach_call_munger64(state=0xffffff80af471bc0) at bsd_i386.c:573 [opt]

frame #15: 0xffffff800a823486 kernel.development`hndl_mach_scall64 + 22

Figure 43. Crash backtrace CVE-2019-8635

Root cause analysis

This is a double free vulnerability that an attacker can use to gain escalated privileges. We published an in-
 depth discussion of it in June.

In Figure 44 below, we can see that if v15 equals 0x8c00, the accelResource_offset8 and
accelResource_offset12 are both taken from IOAccelShared2 with a shared memory offset 24 and 28 value
as the index.

This function will release accelResource_offset12 from IOAccelShared2 first, and if
accelResource_offset8->member2 is not equal to 10, this function will also release the
accelResource_offset8 from IOAccelShared2. However, if we set the shared memory offsets 24 and 28 to
the same value, it will release the same accelResource twice.

https://stackoverflow.com/questions/21057393/what-does-double-free-mean
https://blog.trendmicro.com/trendlabs-security-intelligence/cve-2019-8635-double-free-vulnerability-in-apple-macos-lets-attackers-escalate-system-privileges-and-execute-arbitrary-code/
https://blog.trendmicro.com/trendlabs-security-intelligence/cve-2019-8635-double-free-vulnerability-in-apple-macos-lets-attackers-escalate-system-privileges-and-execute-arbitrary-code/

Figure 44. The pseudo code snippet of AMDRadeonX4000_AMDSIGLContext process_StretchTex2Tex
function

From Figure 405 below, we can also see that the shared memory address is pointing to command

stream info offset 24, but the command stream info buffer is set in the

IOAccelContext2::processSidebandBuffer function, as shown in the same figure. We can also see that v5

points to the shareMem offset 16, and this->member196 points to the commandStreamInfo offset 24.

Figure 405 the pseudo code snippet of IOAccelContext2::processSidebandBuffer

Figure 46 shows the pseudo code snippet of IOAccelContext2::clientMemoryForType function, which is

the well-known API "IOConnectMapMemory64" that can map a userspace buffer to kernel space. When

using the IOConnectMapMemory64 function, we set the connect object, memory type etc., and other

args. Here, the connect object is the instance of IOAccelContext2, and memory type is 0. When we set

memory type to 0, the clientMemoryForType function will create a buffer memory descriptor and return

the start address to userspace, what's more, it will also set the buffer memory address to the

"shareMem_start_vm_address_187" var which is named by the user. This var is exactly the value which

is used in the IOAccelContext2::processSidebandBuffer function. Therefore, we can control the share

buffer and set the two resource indexes to the same value, which can trigger the double free bug.

Figure 46 the pseudo code snippet of IOAccelContext2::clientMemoryForType function

3.4. Double free vulnerability found when AMDRadeonX4000_AMDSIGLContext

class processes a sideband token (CVE-2019-8635)

From Figure 7, we can see that if (cmdinfo+32) equals to 0x8c00, the IOAccelResource v10 and v11 both

“get” from IOAccelShared2 with *(shareMem_start_address_187_offset16+8) and

*(shareMem_start_address_187_offset16+12) value as index. This function will then release two

accelerator resources using the IOAccelResource2::clientRelease() function. However, these two indexes

can be directly controlled from user space by map memory with IOAccelContext2 userclient. If userspace

maps the same index for lookupResource function, clientRelease will release the same resource client

twice, so the double free vulnerability will occur.

https://stackoverflow.com/questions/21057393/what-does-double-free-mean

The method for controlling the shared memory has been detailed in the above section covering CVE-

2019-8635.

Figure 47. The pseudo code snippet of AMDRadeonX4000_AMDSIGLContext: discard_StretchTex2Tex

function

3.5. OOB vulnerability found in the

AMDRadeonX4000_AMDAccelSharedUserClient RsrcAndXorByteFlag

function (CVE-2019-8691)

(lldb) bt

* thread #1, stop reason = signal SIGSTOP

* frame #0: 0xffffff7f849d49a0 AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::AndXorByteFlag(unsigned short,

unsigned char, unsigned char) + 164

frame #1: 0xffffff7f849dad9d

AMDRadeonX4000`AMDRadeonX4000_AMDAccelSharedUserClient::RsrcAndXorByteFlag(AMDRsrcAndXorByteFlagPacket

const*, unsigned long long*) + 275

frame #2: 0xffffff8001c27a3c kernel.development`::shim_io_connect_method_structureI_structureO(method=<unavailable>,

object=<unavailable>, input=<unavailable>, inputCount=<unavailable>, output=<unavailable>,

outputCount=0xffffffa77393bab8) at IOUserClient.cpp:0:9 [opt]

frame #3: 0xffffff8001c25ca0 kernel.development`IOUserClient::externalMethod(this=<unavailable>, selector=<unavailable>,

args=0xffffffa77393bb58, dispatch=0x0000000000000000, target=0x0000000000000000, reference=<unavailable>) at

IOUserClient.cpp:5459:9 [opt]

frame #4: 0xffffff7f8493af0b IOAcceleratorFamily2`IOAccelSharedUserClient2::externalMethod(unsigned int,

IOExternalMethodArguments*, IOExternalMethodDispatch*, OSObject*, void*) + 119

frame #5: 0xffffff8001c2ebff kernel.development`::is_io_connect_method(connection=0xffffff80bff43fd0, selector=262,

scalar_input=<unavailable>, scalar_inputCnt=<unavailable>, inband_input=<unavailable>, inband_inputCnt=12, ool_input=0,

ool_input_size=0, inband_output="", inband_outputCnt=0xffffff80bfc3260c, scalar_output=0xffffffa77393bce0,

scalar_outputCnt=0xffffffa77393bcdc, ool_output=0, ool_output_size=0xffffff809d1e0b0c) at IOUserClient.cpp:3994:19 [opt]

frame #6: 0xffffff80015bbd64 kernel.development`_Xio_connect_method(InHeadP=<unavailable>,

OutHeadP=0xffffff80bfc325e0) at device_server.c:8379:18 [opt]

frame #7: 0xffffff800148d27d kernel.development`ipc_kobject_server(request=0xffffff809d1e0a40, option=<unavailable>) at

ipc_kobject.c:359:3 [opt]

frame #8: 0xffffff8001459465 kernel.development`ipc_kmsg_send(kmsg=0xffffff809d1e0a40, option=3, send_timeout=0) at

ipc_kmsg.c:1832:10 [opt]

frame #9: 0xffffff8001478a75 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:549:8

[opt]

frame #10: 0xffffff80015f63a3 kernel.development`mach_call_munger64(state=0xffffff80be434b20) at bsd_i386.c:573:24

[opt]

frame #11: 0xffffff8001423486 kernel.development`hndl_mach_scall64 + 22

(lldb) register read
General Purpose Registers:

rax = 0x00b600d000b50128
rbx = 0x0000000000d20119
rcx = 0x0000000000000000
rdx = 0x0000000000000000
rdi = 0xffffff80b333a710
rsi = 0x0000000000000000
rbp = 0xffffffa77393b9f0
rsp = 0xffffffa77393b9c0
r8 = 0xffffffa77393bab8
r9 = 0x0000000000000000
r10 = 0xffffff80bfc32610
r11 = 0xffffff7f849dac8a

AMDRadeonX4000`AMDRadeonX4000_AMDAccelSharedUserClient::RsrcAndXorByteFlag(AMDRsrcAndXorByteFlagPacket
const*, unsigned long long*)

r12 = 0x0000000000000000
r13 = 0xffffff80b333a710
r14 = 0xffffff809d1e0ae0

r15 = 0x0000000000000000
rip = 0xffffff7f849d49a0 AMDRadeonX4000`AMDRadeonX4000_AMDAccelResource::AndXorByteFlag(unsigned

short, unsigned char, unsigned char) + 164
rflags = 0x0000000000010202

cs = 0x0000000000000008
fs = 0x0000000000000000
gs = 0x0000000000000000

(lldb) dis
0xffffff7f849d4990 <+148>: cmpl %r12d, %ebx
0xffffff7f849d4993 <+151>: jbe 0xffffff7f849d49ad ; <+177>
0xffffff7f849d4995 <+153>: movq 0x1c8(%r13), %rax
0xffffff7f849d499c <+160>: movzwl %r12w, %edx

-> 0xffffff7f849d49a0 <+164>: andb (%rax,%rdx), %r15b
0xffffff7f849d49a4 <+168>: xorb %cl, %r15b
0xffffff7f849d49a7 <+171>: movb %r15b, (%rax,%rdx)
0xffffff7f849d49ab <+175>: xorl %eax, %eax
0xffffff7f849d49ad <+177>: addq $0x8, %rsp
0xffffff7f849d49b1 <+181>: popq %rbx
0xffffff7f849d49b2 <+182>: popq %r12
0xffffff7f849d49b4 <+184>: popq %r13
0xffffff7f849d49b6 <+186>: popq %r14
0xffffff7f849d49b8 <+188>: popq %r15
0xffffff7f849d49ba <+190>: popq %rbp

0xffffff7f849d49bb <+191>: retq

Figure 48. Crash backtrace CVE-2019-8691

Root cause analysis
In Figure 49, we can see that RsrcAndXorByteFlag function will first look up an

AMDRadeonX4000_AMDAccelResource object from the IOAccelShared2 with "structureInput + 1" as the index.

However, the structureInput is the buffer input from user space, and the system does not check for it. So, we can

index any accelerator resource as our operation object, and use it as the parameter for the

AMDRadeonX4000_AMDAccelResource::AndXorByteFlag function. The other three parameters can also be directly

controlled from user space.

Figure 49. Code snippet of AMDRadeonX4000_AMDAccelSharedUserClient::RsrcAndXorByteFlag function

As seen in Table 8, the AndXorByteFlag function uses two values, one is the value which "rdi+0x1d0" points to —

our research found that it is a buffer size. The other one is the value of "r13+1C8h", which is actually equal to

"rdi+0x1c8", which is a buffer start address.

From the table below, we can see that this function includes the following vulnerabilities:

• If we input an invalid index to lookup the Resource, the IOAccelShared2::lookupResource(IOAccelShared2

*this, unsigned int a2, void **a3) function will return '1' for a3. It is strange, but it actually happened, so
crash point 1 will occur due to the access to protected memory.

• If we input a valid index and lookup a resource but the resource is not a good one, then its buffer start
address becomes an invalid address. It is like the value of RAX register as seen in the above Figure 48 (the
register read instruction, highlighted in red).

• If we input a valid index and also lookup a good resource, however, a bad rdx value in crash point 2 can be
controlled from user space. It also an OOB vulnerability.

 text:00000000000148FC push rbp

 text:00000000000148FD mov rbp, rsp

 text:0000000000014900 push r15

 text:0000000000014902 push r14

 text:0000000000014904 push r13

 text:0000000000014906 push r12

 text:0000000000014908 push rbx

 text:0000000000014909 push rax

 text:000000000001490A mov r15d, edx

 text:000000000001490D mov r12d, esi

 text:0000000000014910 mov r13, rdi

 text:0000000000014919 cmp ebx, esi //compare [rdi+0x1d0] with the second parameter

 text:000000000001491B ja short loc_1498B //if great than second para, then jump to loc_1498B

--- omitted code ---

 text:000000000001498B loc_1498B: ; CODE XREF: AMDRadeonX4000_AMDAccelResource::AndXorByteFlag(ushort,uchar,uchar)+1Fj

 text:000000000001498B mov eax, 0E00002BDh

 text:0000000000014990 cmp ebx, r12d

 text:0000000000014993 jbe short loc_149AD

 text:000000000001499C movzx edx, r12w

 text:00000000000149A0 and r15b, [rax+rdx] // rax can be controlled by index different resource object. And rdx can be controlled by

userspace structure input crash point2

 text:00000000000149A4 xor r15b, cl

 text:00000000000149A7 mov [rax+rdx], r15b

 text:00000000000149AB xor eax, eax

 text:00000000000149AD

 text:00000000000149AD loc_149AD: ; CODE XREF: AMDRadeonX4000_AMDAccelResource::AndXorByteFlag(ushort,uchar,uchar)+97j

 text:00000000000149AD add rsp, 8

 text:00000000000149B1 pop rbx

--- omitted code ---

 text:00000000000149BB ZN31AMDRadeonX4000_AMDAccelResource14AndXorByteFlagEthh endp

Table 8. The assembly code snippet of AMDRadeonX4000_AMDAccelResource::AndXorByteFlag function

 text:0000000000014913 mov ebx, [rdi+1D0h] // ebx is value of the resource object offset 0x1D0 crash point 1

 text:0000000000014995 mov rax, [r13+1C8h] //here, rax is the value which rdi+0x1c8 point to. It actually is a buffer start address

3.6. EoP (elevation of privilege) bug found in IOAccelSharedUserClient2 start

process (CVE-2019-8616)

(lldb) bt

* thread #1, stop reason = signal SIGSTOP

* frame #0: 0xffffff8012ba4050 kernel.development`memcpy + 11

frame #1: 0xffffff7f98f0358b AppleIntelHD5000Graphics`IntelAccelerator::newGTT(unsigned int**, bool, IGAccelTask&) + 173

frame #2: 0xffffff7f98eebce8 AppleIntelHD5000Graphics`IntelPPGTT::init(IntelAccelerator&, bool, IGAccelTask&) + 24

frame #3: 0xffffff7f98ef47dc AppleIntelHD5000Graphics`IGAccelTask::prepare(IntelAccelerator&) + 38

frame #4: 0xffffff7f98f0348b AppleIntelHD5000Graphics`IntelAccelerator::createUserGPUTask() + 219

frame #5: 0xffffff7f98980382 IOAcceleratorFamily2`IOAccelShared2::init(IOGraphicsAccelerator2*, task*) + 48

frame #6: 0xffffff7f9899513b IOAcceleratorFamily2`IOGraphicsAccelerator2::createShared(task*) + 51

frame #7: 0xffffff7f98983921 IOAcceleratorFamily2`IOAccelSharedUserClient2::sharedStart() + 43

frame #8: 0xffffff7f98ee4e22 AppleIntelHD5000Graphics`IGAccelSharedUserClient::sharedStart() + 22

frame #9: 0xffffff7f9898191a IOAcceleratorFamily2`IOAccelSharedUserClient2::start(IOService*) + 156

frame #10: 0xffffff7f98994a1a IOAcceleratorFamily2`IOGraphicsAccelerator2::newUserClient(task*, void*, unsigned int,

IOUserClient**) + 1088

frame #11: 0xffffff80133c9bc1 kernel.development`IOService::newUserClient(this=0xffffff8037dc4800,

owningTask=0xffffff803be31760, securityID=0xffffff803be31760, type=6, properties=0x0000000000000000,

handler=0xffffff9214a2bd10) at IOService.cpp:5856 [opt]

frame #12: 0xffffff801342ce60 kernel.development`::is_io_service_open_extended(_service=0xffffff8037dc4800,

owningTask=0xffffff803be31760, connect_type=6, ndr=<unavailable>, properties=<unavailable>, propertiesCnt=<unavailable>,

result=0xffffff804e2b9bb8, connection=0xffffff9214a2bd60) at IOUserClient.cpp:3491 [opt]

frame #13: 0xffffff8012dba714 kernel.development`_Xio_service_open_extended(InHeadP=0xffffff8046905504,

OutHeadP=0xffffff804e2b9b7c) at device_server.c:8003 [opt]

frame #14: 0xffffff8012c8c27d kernel.development`ipc_kobject_server(request=0xffffff80469054a0, option=<unavailable>)

at ipc_kobject.c:359 [opt]

frame #15: 0xffffff8012c58465 kernel.development`ipc_kmsg_send(kmsg=0xffffff80469054a0, option=3, send_timeout=0) at

ipc_kmsg.c:1832 [opt]

frame #16: 0xffffff8012c77a75 kernel.development`mach_msg_overwrite_trap(args=<unavailable>) at mach_msg.c:549 [opt]

frame #17: 0xffffff8012df52c3 kernel.development`mach_call_munger64(state=0xffffff803c0fea00) at bsd_i386.c:573 [opt]

frame #18: 0xffffff8012c22486 kernel.development`hndl_mach_scall64 + 22

(lldb)

Figure 50. Crash backtrace CVE-2019-8616

Root cause analysis

This vulnerability can also be used to gain escalated privileges.

From Table 9 below, we can see that the memcpy destination address is the return value of the

IOAccelSysMemory::lockForCPUAccess function. However, Table 10 shows that there are many places

where the IOAccelSysMemory::lockForCPUAccess function will return an invalid address. Therefore, the

memcpy is not secure here.

 text:0000000000027537 call ZN16IOAccelSysMemory16lockForCPUAccessEP4taskj ;

IOAccelSysMemory::lockForCPUAccess(task *,uint)

 text:000000000002753C mov [r13+0], rax

 text:0000000000027540 test r12b, r12b ------------------here, it will test r12b, and jmp to loc_2756C

 text:0000000000027543 jz short loc_2756C

 text:0000000000027545 mov rcx, [rbx+1118h]

 text:000000000002754C test rcx, rcx

 text:000000000002754F jz short loc_275B9

 text:0000000000027551 mov rdx, [rbx+1110h]

 text:0000000000027558 xor esi, esi

 text:000000000002755A

 text:000000000002755A loc_2755A: ; CODE XREF: IntelAccelerator::newGTT(uint **,bool,IGAccelTask &)+8Aj

 text:000000000002755A mov edi, [rdx+rsi]

 text:000000000002755D mov ebx, esi

 text:000000000002755F mov [rax+rbx], edi

 text:0000000000027562 lea esi, [rsi+4]

 text:0000000000027565 cmp rcx, rsi

 text:0000000000027568 ja short loc_2755A

 text:000000000002756A jmp short loc_275B9

 text:000000000002756C ; ---

 text:000000000002756C

 text:000000000002756C loc_2756C: ; CODE XREF: IntelAccelerator::newGTT(uint **,bool,IGAccelTask &)+65j

 text:000000000002756C mov rcx, [rbx+160h] --------------------- memcpy len

 text:0000000000027573 mov rsi, [rcx+268h] ; void * ----------------- memcpy source address

 text:000000000002757A mov edx, [rbx+1138h]

 text:0000000000027580 shr edx, 0Ah ; size_t

 text:0000000000027583 mov rdi, rax ; void * -------- memcpy destination address here, just move rax to rdi,

however, rax is the return value of ZN16IOAccelSysMemory16lockForCPUAccessEP4taskj function

 text:0000000000027586 call _memcpy

 text:000000000002758B mov esi, [rbx+1140h] ; unsigned int64

 text:0000000000027591 mov edx, [rbx+1148h] ; unsigned int64

 text:0000000000027597 mov rdi, rbx ; this

Table 9. The asm code snippet of IntelAccelerator::newGTT

 text:000000000004740B loc_4740B: ; CODE XREF: IOAccelSysMemory::lockForCPUAccess(task *,uint)+102j

 text:000000000004740B ; IOAccelSysMemory::lockForCPUAccess(task *,uint)+1D1j ...

 text:000000000004740B mov rax, rbx

 text:000000000004740E add rsp, 8

 text:0000000000047412 pop rbx

 text:0000000000047413 pop r14

 text:0000000000047415 pop r15

 text:0000000000047417 pop rbp

 text:0000000000047418 retn

 text:0000000000047419 ; ---

 text:0000000000047419

 text:0000000000047419 loc_47419: ; CODE XREF: IOAccelSysMemory::lockForCPUAccess(task *,uint)+181j

 text:0000000000047419 lea rdi, dword_0

 text:0000000000047420 mov rsi, cs: os_log_default_0

 text:0000000000047427 lea rcx, ZZN16IOAccelSysMemory16lockForCPUAccessEP4taskjE11_os_log_fmt_1 ;

"%s: failed to create map.\n"

 text:000000000004742E lea r8, aMach_vm_addr_0 ; "mach_vm_address_t IOAccelSysMemory::loc"...

 text:0000000000047435 xor ebx, ebx

 text:0000000000047437 mov edx, 11h

 text:000000000004743C xor eax, eax ---eax =0 --1)

 text:000000000004743E call os_log_internal

 text:0000000000047443 jmp short loc_4740B ---return eax

 text:0000000000047445 ; ---

 text:0000000000047445

 text:0000000000047445 loc_47445: ; CODE XREF: IOAccelSysMemory::lockForCPUAccess(task *,uint)+13Aj

 text:0000000000047445 lea rdi, dword_0

 text:000000000004744C mov rsi, cs: os_log_default_0

 text:0000000000047453 lea rcx, ZZN16IOAccelSysMemory16lockForCPUAccessEP4taskjE11_os_log_fmt ; "%s:

createMappingInTask failed to creat"...

 text:000000000004745A lea r8, aMach_vm_addr_0 ; "mach_vm_address_t IOAccelSysMemory::loc"...

 text:0000000000047461 xor ebx, ebx

 text:0000000000047463 mov edx, 11h

 text:0000000000047468 xor eax, eax ---eax =0 --2)

 text:000000000004746A call os_log_internal

 text:000000000004746F jmp short loc_4740B ---return eax

 text:000000000004746F ZN16IOAccelSysMemory16lockForCPUAccessEP4taskj endp

Table 10. The asm code snippet of IOAccelSysMemory::lockForCPUAccess

4. The benefits of LLDBFuzzer

These are only six of the many vulnerabilities we found through LLDBFuzzer; other crashes are still being

analyzed and reported to Apple. As mentioned above, LLDB has a distinct advantage over other bug

hunting methods because it can debug almost all the kernel extensions and XNU codes after the

required hardware is operational, and it has roots in the built-in debug mechanism of operation systems

themselves. Also, it uncovers and probes into the deeper attack surface as well as the normal attack

surface.

5. Appendix

Refer to chart.

https://documents.trendmicro.com/images/TEx/infographics/Appendix.jpg

TREND MICROTM RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and

supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in

vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

http://www.trendmicro.com/

	1. A look into LLDBFuzzer
	1.1. Comparing different bug hunting methods to LLDBFuzzer
	Bug hunt method comparison
	Interception method comparison

	1.2. Kernel debugging and the LLDBFuzzer
	Kernel debugger overview
	KDP protocol initialization process in XNU
	Kernel debugger mechanism within the Ethernet driver
	Debugger Toolset available for MacOS
	Kernel Debug Process
	LLDBFuzzer overview
	The LLDBFuzzer architecture

	1.3. The fuzz attack surface on Macintosh
	Hacking into AMD graphic drivers
	Determine the active accelerator in the target machine
	Get the usual attack surface for AMDPitcairnGraphicsAccelerator
	More Hidden Attack Surfaces
	Hacking into special syscalls

	1.4. The prototype of LLDBFuzzer
	Probe setup
	Fuzz executor
	Mutation strategy
	Crash monitor

	1.5. Fuzzing best practices
	Trigger more fuzzing sources
	Timely reboot in kernel for anti-hang

	2. Implementing a debugger for Hackintosh
	2.1. Why must it support kernel debugging?
	2.2. Kernel debugging implementation internals
	Initialize the kernel debugger client
	Override the packet send and receive handler functions
	The packet send handler implementation
	Implement the packet receive handler

	3. Zero Day vulnerabilities found by LLDBFuzzer
	3.1. OOB read vulnerability found in AMDRadeonX4000_AMDAccelResource Initialize Process (CVE-2019-8519)
	Root cause analysis

	3.2. OOB read vulnerability found in AMDRadeonX4000_AMDAccelResource Initialize Process (CVE-2019-8692)
	3.3. Double free vulnerability found when AMDRadeonX4000_AMDSIGLContext processes a sideband token (CVE-2019-8635)
	Root cause analysis

	3.4. Double free vulnerability found when AMDRadeonX4000_AMDSIGLContext class processes a sideband token (CVE-2019-8635)
	3.5. OOB vulnerability found in the AMDRadeonX4000_AMDAccelSharedUserClient RsrcAndXorByteFlag function (CVE-2019-8691)
	3.6. EoP (elevation of privilege) bug found in IOAccelSharedUserClient2 start process (CVE-2019-8616)
	Root cause analysis

	4. The benefits of LLDBFuzzer
	5. Appendix

