
TrendLabs

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information and educational purposes only. It is not intended and should not be construed to constitute legal
advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. Nothing contained herein should
be relied on or acted upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing herein should be construed
otherwise. Trend Micro reserves the right to modify the contents of this document at any time without prior notice.

Translations of any material into other languages are intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise
related to the accuracy of a translation, please refer to the original language official version of the document. Any discrepancies or differences created in the
translation are not binding and have no legal effect for compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate and up-to-date information herein, Trend Micro makes no warranties or representations of any
kind as to its accuracy, currency, or completeness. You agree that access to and use of and reliance on this document and the content thereof is at your own
risk. Trend Micro disclaims all warranties of any kind, express or implied. Neither Trend Micro nor any party involved in creating, producing, or delivering this
document shall be liable for any consequence, loss, or damage, including direct, indirect, special, consequential, loss of business profits, or special damages,
whatsoever arising out of access to, use of, or inability to use, or in connection with the use of this document, or any errors or omissions in the content thereof.
Use of this information constitutes acceptance for use in an “as is” condition.

Table of Contents
Campaign Analysis ... 2

Correlation ... 6

AnubisSpy’s Capabilities .. 8

AnubisSpy’s Modules ... 9

Init Module ... 9

Patch Module .. 12

Comm Module ... 13

DBDump Module ... 15

Position Module ... 18

Screenshot Module ... 19

CMD Module ... 20

Audio Record, Calls, and VoIP Modules .. 22

Destruction Module ... 25

Dec Module ... 25

Enc Module.. 26

Format Module .. 27

Uploader Module ... 28

Indicators of Compromise (IoCs) .. 30

Android malware like ransomware exemplify how the platform can be lucrative for cybercriminals. But
there are also other threats stirring up as of late: attacks that spy on and steal data from specific targets.
More than the malware involved, these also demonstrate how attackers are crossing over between
desktops and their mobile counterparts.

Take for instance several malicious apps we came across with cyberespionage capabilities, targeting
Arabic-speaking users or Middle Eastern countries. These were published on Google Play — but have
since been taken down — and third-party app marketplaces.

We named these malicious apps AnubisSpy (ANDROIDOS_ANUBISSPY) as all the malware’s payload is
a package called watchdog. We construe AnubisSpy to be linked to the cyberespionage campaign
Sphinx (APT-C-15) based on shared file structures and command-and-control (C&C) server as well as
targets. It’s also possible that while AnubisSpy’s operators may also be Sphinx’s, they could be running
separate but similar campaigns.

We disclosed our findings to Google and worked with them to take down the apps on Google Play.
Updates were also made to Google Play Protect to take appropriate action against those apps that have
been verified as in violation of Google Play policy. This technical brief provides an in-depth analysis of
AnubisSpy, along with indicators of compromise (IoCs).

There were at least seven apps signed with the same fake Google certificate. We found two more apps
made by the same developer, but they had no espionage-related codes. Based on hardcoded strings in
the Agent Version, the malicious apps were created as early as April 2015. Timestamps indicate that the
earliest sample was signed on June 2015 while the latest variant was signed on May 2017.

Figure 1: Agent Version of one of the AnubisSpy variants (top) and timestamps of when they were signed (bottom)

AnubisSpy wasn’t only published on Google Play; variants of it were also in third-party app
marketplaces. An AnubisSpy variant, named نون ضام ت سي مع م ي س which translates to “In Solidarity with ,ال
Sisi,” poses as a promotional app (SisiFans) targeting the supporters of a political figure. It had 150
installs before it was taken off Google Play after our disclosure.

The developer’s handle, ss4mDEV, also appears in other app marketplaces. The Google Play-hosted
AnubisSpy was developed by TVDEV, whom we encountered in other marketplaces. We reported our
findings to Google, and Google Play Protect accordingly detected and pulled the Google Play-hosted
apps developed by TVDEV.

http://blog.trendmicro.com/trendlabs-security-intelligence/android-mobile-ransomware-evolution/
http://b.360.cn/assets/doc/apt_report/en/Sphinx-Targeted%20cyber-attack%20in%20the%20Middle%20East.pdf
https://www.android.com/play-protect/
https://www.android.com/play-protect/

SisiFans is also on another third-party app story we saw uploaded last February 27. ss4mDEV also
uploaded another AnubisSpy version in the form of a healthcare-related app called SwiftClinic. Both
apps share the same certificate. SwiftClinic, touting multilingual support, masqueraded as a patient
registration application for dental clinics. It was also shortly published on Google Play, but was promptly
taken down.

Figure 2: AnubisSpy disguising as a healthcare-related app

Figure 3: Properties of AnubisSpy as SwiftClinic

AnubisSpy was also in another third-party app marketplace in the form of apps with the package name
nms.sabayaElkher.

We also found apps developed by TVDEV. One posed as an aggregator of news covering Egypt’s
government and politics. While it had no espionage functionalities (it had a different certificate, too), we
think this was an experimental project considering it was released back in 2016, before the latest
versions of AnubisSpy made their way to Google Play and third-party app marketplaces. TVDEV also
developed and uploaded a similar app named officialsabayaelkheer on March 14, 2017. It poses as an
app for “Sabaya El Kheir,” a TV program in Egypt. officialsabayaelkheer may just be a Potentially
Unwanted Application (PUA) with no espionage functions, but it has the same nms.sabayaElkher label,
which it shares with AnubisSpy-laden apps. We think these seemingly innocuous apps and versions of
AnubisSpy were created during the same period so the latter can better camouflage and hide from
antivirus (AV) detection.

Figure 4: Screenshot of an app posing as an aggregator for news in Egypt

Figure 5: AnubisSpy on a Spanish third-party app marketplace

Figure 6: Screenshots of the app TVDEV developed, which posed as the official app of an Egypt-based TV program

Sphinx reportedly uses the watering hole technique via social media sites to deliver its payloads —
mainly a customized version of njRAT. The Sphinx campaign operators cloaked their malware with Word,
PDF, image, and application (i.e., Flash) icons to dupe recipients into clicking them. Sphinx was active
between June 2014 and November 2015, but timestamps of the malware indicate the attacks started as
early as 2011.

A WHOIS query of the C&C server showed that it abused a legitimate managed hosting service provider
based in Belize. We correlated these AnubisSpy variants to Sphinx’s desktop/PC-targeting malware
given these commonalities:

 They share the same C&C server IP address, 86[.]105[.]18[.]107

 They share the technique of decrypting JSON files; the file structures of AnubisSpy and Sphinx’s
malware are similar

 Their targets are highly concentrated in the Middle East

Figure 7: Comparison of file structure in Sphinx’s desktop/PC-targeting malware (left) and AnubisSpy (right)

The apps mainly used Middle East-based news and sociopolitical themes as social engineering hooks,
and abused social media to further proliferate. For instance, an app developed by TVDEV
(nms.sabayaElkher) went to great lengths to feign as a legitimate app. It had three additional
tabs/screens, each of which pointed to its Facebook, Twitter, and Google Play pages.

The apps were all written in Arabic and, in one way or another, related to something in Egypt (i.e.,
spoofing an Egypt-based TV program and using news/stories in the Middle East) regardless of the labels
and objects within the apps. Our coordination with Google also revealed that these apps were installed
across a handful of countries in the Middle East.

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/137/watering-hole-101
http://blog.trendmicro.com/trendlabs-security-intelligence/new-rats-emerge-from-leaked-njw0rm-source-code/

Figure 8: An app developed by TVDEV (nms.sabayaElkher) posing as a legitimate app; note the screens and icons
for its Facebook and Twitter pages

The malicious modules of all the AnubisSpy samples are almost the same. Our analyses are from a
sample with the package name cc.solidaritycc (SHA256:
d627f9d0e2711d59cc2571a11d16c950adadba55d95fd4c55638af6a97d32b23).

AnubisSpy can steal messages (SMS), photos, videos, contacts, email accounts, calendar events, and
browser histories (i.e., Chrome and Samsung Internet Browser). It can also take screenshots and record
audio, including calls. It can monitor the victim through apps installed on the device, such as Skype,
WhatsApp, Facebook, and Twitter, among others.

After the data are collected, they are encrypted and sent to the (C&C) server. AnubisSpy can also self-
destruct to cover its tracks. It can run commands and delete files on the device, as well as install and
uninstall Android Application Packages (APKs).

AnubisSpy’s code is well constructed, indicating at least the attackers’ know-how. Below is a
visualization of the modules:

Figure 9: Structure of AnubisSpy’s modules

The Init Module initiates all the other spyware modules and prepares the running environment. It sleeps
for 60 seconds, then calls the Dec Module to decrypt two JavaScript Object Notation (JSON) files and a
ZIP file from the assets folder.

Figure 10: Init Module’s routine

The first JSON file has "Agent configuration." All modules are initiated based on this configuration file. It
has two main parts: “core” and “plugins.” The former contains detailed spyware and global
configurations, while the latter mainly has configurations about communication, such as the C&C
address used for initiating the Comm Module. The second JSON file is a so-called dbrule file. Each item
within it has extensive rules for stealing sensitive information. “uri” indicates the Universal Resource
Identifier (URI) of Android SMS; “sort_order” and “selection” are for querying the database.

In short, the first configuration file specifies what to do, while the dbrule file specifies how to do it. The
decrypted ZIP file is used as Patch Module.

Sleep 60s

Decrypt rule file

Decrypt configure file

Decrypt supers-related files

Figure 11: dbrule file’s rule for stealing SMS messages (left) and the list of apps AnubisSpy monitors (right)

Figure 12: Code snippets showing how the Init Module initiates the spying-related modules after getting the
configuration file

Init CMD Module

Init DBdump Module

Init Screenshots Module
Init Position Module

Init Uploader Module

Init Comm Module

Init APK Manipulate Module

Figure 13: Code snippet showing how Init Module uses ContentObserver

The Init Module initiates serials of ContentObserver (used for tracking changes in the device’s data),
based on the configuration file. This includes SMS, calendar events, emails, browsing histories in
Chrome and Samsung Internet Browser, photos, and videos. If any of the device content changes, a
specific module will be invoked to process the new/updated data.

Figure 14: Code snapshot showing how new/changed data is processed

Based on the configuration and device-rooted status, it will call the Android Application Package (APK)
Manipulate Module to install itself as a system application then install an embedded APK decrypted from
assets. In one of the samples we analyzed though, there was no embedded APK in the assets folder.

Figure 15: Code snapshot showing the Manipulate Module

Decrypt embedded APK

Install embedded APK

Install itself into /system/app

https://developer.android.com/reference/android/database/ContentObserver.html
https://developer.android.com/reference/android/database/ContentObserver.html

Some of the spying-related modules need root permission. The Patch Module is for rooted devices,
deploying root-related functionalities and granting the malware root permission without user knowledge.

The Init Module first checks the device’s root status. Based on the "no_supersu_patch" configuration
(True or False), a file (ZIP) is decrypted.

Figure 16: Init Module checking the root status (top); configuration code checking if a ZIP file should be decrypted
(center); and the ZIP file’s structure (bottom)

A series of commands is performed to deploy files on the device, and is carried out by a bash script
named “update-binary.” It will patch/change the superSU configuration file, if existing, to grant itself root
permission and ensure no notifications, logs, and re-authentication are made.

Figure 17: update-binary deploying files on the device (top) and how Patch Module grants root permission (bottom)

The Comm Module plays the middleman between the agent and the C&C server. It is initiated based on
the configuration file, with the C&C server address and service path as the key parameters.

All communications are performed through HTTP/HTTPS POST method using multipart/form-data
requests. It has these main types of communications: sending and retrieving a file to and from the server,
as well as getting commands from the server.

Figure 18: Snapshot of the Comm Module

Figure 19: Code snippets showing how the Comm Module works

Keywords replacement

To evade traffic inspection, all keywords in the request body are replaced based on protocol_strings
specified in the configuration file:

Original Keyword Replaced Keyword

request choux

type lobotomize

put whispered

get hillo

ip idolizers

list deliberate

del luff

event damageable

command telescopes

timestamp carillon

file chevins

filename triggered

filelist hurras

status snuffler

chunknum debriefs

Table 1: Keywords based on protocol_strings

The DBDump Module consists of two parts: DUMP_DATABASES_EXACT_TIME and
DUMP_DATABASES_INTERVAL, which are initiated by separate configurations.
DUMP_DATABASES_EXACT_TIME dumps specific databases at an exact time. Its configuration
contains a time and dump list. In this case, it’s supposed to dump the device’s contact information at a
certain time. This function though is disabled as there’s no value for the “time.” However, it still can be
enabled through a configuration update from the C&C server. Some of the routines specified in the code
need root permission.

Figure 20: Code snapshots showing the DBDump Module’s DUMP_DATABASES_EXACT_TIME

DUMP_DATABASES_INTERVAL dumps specific databases at intervals. Its configuration contains the
interval time and specified databases. In this case, the following are configured:

Time Interval dbItem

10 minutes

device/sms

device/calls

device/calendar_events

facebook/messages

facebook/notifications

linkedin/messages

twitter/tweets

gplus/activities

viber/messages

viber/calls

whatsapp/messages

hangout-gtalk/messages

skype/messages

skype/calls

gmail/emails

system_email/emails

device/browser_history_chrome

device/browser_history_samsung

device/browser_history

device/photo

device/video

72 hours

google_play_service_security/*

system_email/accounts

system_users_security/*

device/contacts

gplus/contacts

viber/contacts

skype/contacts

whatsapp/contacts

facebook/contacts

linkedin/profiles

linkedin/connections

twitter/following

Table 2: Database items dumped by the DBDump Module

The DBDump Module dumps databases only when the screen is off to evade users’ awareness. For
every item above, it will look into the dbrule file to get the corresponding rule.

Below is an example rule for facebook/messages. It tells the DBDump Module Facebook’s root directory
and asks for database location and file name, SQL query statement, and other field titles for further
result formatting.

Figure 21: Rule used by the DBDump Module for facebook/messages

It then gets and parses rules then queries db and sends the information to the Format Module:

Figure 22: DBDump Module parsing the rules (top), and querying the db (bottom)

The Position Module retrieves the device’s location data and uploads it to the C&C server. A parameter
of position_interval in the configuration file is sent to the Position Module when initiating. It indicates the
intervals for when location data (position) is stolen each time. In a sample we analyzed (shown below),
the value is 600 — that is, the Position Module collects and uploads this information every 10 minutes.

Figure 23: Position Module indicating the interval time for stealing location data

Each time that it collects the data, if there’s a position/location, it selects a specific Position Provider via
GPS, network or passive (last known location), whether the device’s screen is on or off. If
force_location_services_enabled is configured, it will try to enable the GPS and network provider. The
device’s location/position data is sent to the Format Module, then processed as a JSON file with value
of key “type” as “gis.”

 Figure 24: How the Position Module selects the Position Provider (top), enables GPS and network provider (center),
and passes the information to the Format Module (bottom)

The Screenshot Module takes screenshots and uploads them to the C&C server. It reads related
configurations from the configuration file first before initiating. Apart from time intervals, there’s also a
package list in the configuration set that the Screenshot Module uses when taking screenshots. The
Screenshot Module works only on rooted devices.

Figure 25: Screenshot Module’s intervals for taking screenshots (top) and how it checks whether the device is
rooted or not (bottom)

It first gets the device’s current, overlaying activity. It takes a screenshot of it if its package name is in
the list from its configuration file. If it fails to get the activity or if the package list is empty, it will just take
a screenshot of current screen regardless of the activities running on top. A screenshot is taken by
running screencap. After it is compressed, it is sent to the Format Module and processed as a JSON file
whose value key “type” is “image,” and accompanied with other image attributes.

The package names listed in the configuration file include:

 com.skype.raider

 com.facebook.katana

 com.facebook.orca

 com.whatsapp

 com.viber.voip

 com.google.android.talk

 com.sec.android.app.sbrowser

 com.android.chrome

 mobi.mgeek.TunnyBrowser

Figure 26: Code snippet showing how screenshots are taken (top, center) and how they are processed (bottom)

The CMD Module retrieves commands from the C&C server and processes them. The parameter
checkcmd_interval in the configuration file is sent to the CMD Module when initiating. It indicates the
interval for checking/awaiting commands (CMD checking) from the C&C server. As shown below, the
value is 600 — that is, the CMD Module checks for commands from the C&C server every 10 minutes.

Figure 27: CMD Module’s interval for checking commands

Figure 28: CMD Module calling the Destruction Module (top) and encryption of commands (bottom)

Before sending a CMD request to the C&C server, it checks if the current date reached the
"expiry_date," which is read from the configuration file. If it has, it will call the Destruction Module to
remove itself from the device; otherwise, it proceeds to do CMD checking. Getting the command from
the C&C server is performed through the Comm Module. The commands are sent in JSON format then
encrypted. After getting the raw data, the CMD Module calls the Dec Module to decrypt it then parse it
as a JSON file.

The JSON file’s contents have these commands:

Command Comments

uninstall_agent Destruct itself

install_package Install an APK, which is sent from the C&C server and encoded in command
JSON file

uninstall_package Uninstall a specific package

update_config Update the configuration file

update_dbrules Update the dbrule file

get_databases Dump a specific db

get_file Get and upload specific files on the device

recv_file Retrieve a file from the C&C server and put it in a certain location on the device

exec_cmdline Run command line on the device

delete_file Delete a specific file from the device

get_dirtree Get and upload a specific directory tree structure

get_sysinfo Call the Device Info Module to get system information

start_av_bug Start audio recording through Audio Record Module

stop_av_bug Stop audio recording through Audio Record Module

Table 3: Commands from the C&C server

The Audio Record Module records audio, mainly used by the CMD Module, and calls-related modules. It
is referred to in the configuration file via the strings media_chunk_size and audio_hq. After it records the
audio, it is sent as a pass result file (along with other information such as Location and DialNumber) to
the Format Module.

The Calls Module monitors and records the device’s incoming and outgoing call actions. The
configuration file refers to it via the strings call_info, call_audio, audio_hq, and media_chunk_size.

Figure 29: Code snippets showing the Audio Record (top) and Calls modules (center, bottom)

When a call action occurs, the Calls Module determines the phoneNumber and action type (outgoing or
incoming), and invokes the Audio Record Module. The captured audio record file is sent to the Format
Module along with information such as call type, phoneNumber, phoneNumber displayName, Location,
and currentTime.

Figure 30: How the captured audio is processed (top) and code snippets showing how the VoIP Module works
(center, bottom)

The VoIP Module monitors calls done on Voice over Internet Protocol (VoIP) by registering
android.service.notification.NotificationListenerService. When receiving a Notification Action, it checks if
the notification is specified in a list of packages in the configurations file. If it finds a match, it is further
processed (i.e., invoking the Audio Record Module).

The Device Info Module collects the following information on the device’s operating system (OS), build,
and phone information, and the device’s root status and apps:

 root status

OS INFO

arch

osname

osversion

BUILD INFO

board

bootloader

branch

cpu abi

device

display

fingerprint

hardware

host

id

manufacturer

model

product

radio

serial

tags

time

Type

user

PHONE INFO

device_memory

media_storage_totalspace

media_storage_freespace

local_time

current_position

imei

imsi

sw_version

line_number

voicemail_number

network_country_iso

network_operator

device_type

network_type

sim_country_iso

sim_operator

sim_serial_number

sim_state

 installed_app_list

Table 4: Information that Device Info Module collects

This module is for when expire_time is reached, or if executing a self-destruct command. First, it tries to
remove its device-admin permission, stops the spying-related modules’ schedule, and unregisters
ContentObservers. It then removes itself from the device.

Figure 31: How the Destruction Module works (top) and how it removes itself from the device (bottom)

The Dec Module is for decrypting encrypted assets and data from the C&C server using the Advanced
Encryption Standard (AES) algorithm. The following keys, which are hardcoded, are used for decryption:

 SecretKey —
001234ABDE9217910000DEC4FEDB120003243BC00221296470103FE000AAB201

 IvParameter — 001234abde9217910000dec4fedb1200

When decrypting data from the C&C server, it reads SecretKey, which is "cipher_key" in the
configuration file. To get IvParameter, it reads the first 32 bytes of data and decrypts them using the
table keys. Both SecretKey and IvParameter are used to decrypt the rest of the data.

Figure 32: Dec Module using AES to decrypt assets

All data are processed by the Enc Module before they are uploaded to the C&C server. Like Dec Module,
it uses AES. SecretKey is read from the configuration file (cipher_key), but the IvParameter here is
generated randomly. Data are encrypted into two parts (bodyPart, headPart) via different parameters.
bodyPart is encrypted through cipher_key and a randomly generated IvParameter, which is headPart’s
data. IvParameter is encrypted via the default SecretKey and IvParameter. It is combined as one file and
sent to the Uploader Module.

Figure 33: How the Enc Module works

The outputs of AnubisSpy’s modules vary, which makes the Format Module very complex and diverse.
But amid the complexity, there are common denominators. All data are processed into JSON files by the
Format Module. AnubisSpy’s modules have two data types:

 String — Device information, SMS messages, etc.

 Binary — Images, audio files, etc.

For String data, the Format Module will process it to a JSON file based on the module. It will retrieve
rules and items from the configuration file’s dbruleFile to construct the JSON file.

Figure 34: Code snippets showing the rules being retrieved (top), as well as column value and field title
replacements for the DBDump Module

For Binary data, the same process is carried out, but more file attribution such as file path, size,
timestamp, etc., are added. The binary data is base64-encoded with the key binary_data.

Figure 35: Binary data base64-encoded (top); sample information written in the resulting JSON file for captured
audio (center) and image (bottom)

AnubisSpy’s modules send their outputs into one specific folder after they are encrypted. The Uploader
Module is responsible for checking, uploading, and deleting them. There are two configurations that tell
the Uploader Module when to work: when there’s a Wi-Fi connection, and when the device’s battery is
being charged. File traverse in the cache folder, sent, then removed. It sleeps from 3-5 seconds when it
processes a file.

Figure 36: Uploader Module works only as specified in the configuration file

Persistent and furtive spyware is an underrated problem for the mobile platform. While cyberespionage
campaigns on mobile devices may be few and far between compared to ones for desktops or PCs,
AnubisSpy proves that they do indeed occur, and may have been more active than initially thought. Will
mobile become cyberespionage’s main frontier? It won’t be a surprise given the mobile platform’s
increasing ubiquity, especially in workplaces.

Beyond its impact, AnubisSpy also highlights the significance of proactively securing mobile devices,
particularly if they’re on BYOD programs and used to access sensitive data. Enforcing the principle of
least privilege and implementing an app reputation system are just some of the best practices that can
help mitigate threats.

We disclosed our findings to Google and worked with them to take down the apps on Google Play.
Updates were also made to Google Play Protect to take appropriate action against those apps that have
been verified as in violation of Google Play policy.

https://www.gartner.com/newsroom/id/3725117
https://www.trendmicro.com/vinfo/us/security/news/mobile-safety/best-practices-securing-your-mobile-device
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/-infosec-guide-bring-your-own-device-byod
https://www.android.com/play-protect/

Hash App Label

627f9d0e2711d59cc2571a11d16c950adadba55d95fd4c55638af6a97d32b23 صبايا الخير

e00655d06a07f6eb8e1a4b1bd82eefe310cde10ca11af4688e32c11d7b193d95 SwiftClinic

06cb3f69ba0dd3a2a7fa21cdc1d8b36b36c2a32187013598d3d51cfddc829f49 ALTOR

0cab88bb37fee06cf354d257ec5f27b0714e914b8199c03ae87987f6fa807efc متضامنون مع السيسي

7eeadfe1aa5f6bb827f9cb921c63571e263e5c6b20b2e27ccc64a04eba51ca7a C.Sinai

0714b516ac824a324726550b45684ca1f4396aa7f372db6cc51b06c97ea24dfd C.Sinai

ad5babecf3a21dd51eee455031ab96f326a9dd43a456ce6e8b351d7c4347330f Tsina

C&C Server

hxxp://86[.]105[.]18[.]107/2dodo/loriots[.]php

hxxp:// 86[.]105[.]18[.]107/111fash7/synectics[.]php

hxxp:// 86[.]105[.]18[.]107/3hood/spelled[.]php

hxxp:// 86[.]105[.]18[.]107/1swiftclinic/entires[.]php

hxxp:// 86[.]105[.]18[.]107/7ram/olefiant[.]php

hxxp:// 86[.]105[.]18[.]107/sinai/freakiest[.]php

Trend Micro Incorporated, a global leader in security software, strives to make the

world safe for exchanging digital information. Our innovative solutions for consumers,

businesses and governments provide layered content security to protect information

on mobile devices, endpoints, gateways, servers and the cloud. All of our solutions

are powered by cloud-based global threat intelligence, the Trend Micro™ Smart

Protection Network™, and are supported by over 1,200 threat experts around the

globe. For more information, visit www.trendmicro.com.

©2017 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend

Micro t-ball logo are trademarks or registered trademarks of Trend Micro,

Incorporated. All other product or company names may be trademarks or registered

trademarks of their owners.

