
TrendLabs

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information and educational purposes only. It is not intended and should not be construed to constitute legal
advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. Nothing contained herein should
be relied on or acted upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing herein should be construed
otherwise. Trend Micro reserves the right to modify the contents of this document at any time without prior notice.

Translations of any material into other languages are intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise
related to the accuracy of a translation, please refer to the original language official version of the document. Any discrepancies or differences created in the
translation are not binding and have no legal effect for compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate and up[-]to[-]date information herein, Trend Micro makes no warranties or representations of
any kind as to its accuracy, currency, or completeness. You agree that access to and use of and reliance on this document and the content thereof is at your
own risk. Trend Micro disclaims all warranties of any kind, express or implied. Neither Trend Micro nor any party involved in creating, producing, or delivering this
document shall be liable for any consequence, loss, or damage, including direct, indirect, special, consequential, loss of business profits, or special damages,
whatsoever arising out of access to, use of, or inability to use, or in connection with the use of this document, or any errors or omissions in the content thereof.
Use of this information constitutes acceptance for use in an “as is” condition.

The array of decimal numbers stored in the vector inside the SWF file is converted into a binary

shellcode. The initial instructions of the shellcode determine the system's architecture (32-bit or 64-bit).

Figure 1: Vector containing a binary shellcode

The code below behaves differently. If run on a system with 32-bit architecture, a machine code (seen

below) is disassembled into an assembly listing as shown in Figure 1. The EAX register value is clearly

set to 1 and the conditional jump is not taken.

When run on 64-bit machine, the machine code is disassembled to the code below (Figure 2, bottom).
This causes the EAX register to remain zero and the conditional jump is taken to a 64-bit code branch. In
both cases, the shellcode downloads an additional stage of the payload, starts a new rundll32.exe
process, then injects and executes the newly downloaded payload in the context of the newly created
process.

Figure 2. The machine code (top), and the assembly listing (center),
and the assembly listing in a 64-bit machine (bottom)

This stage is downloaded from a url similar to http://<IP>:<PORT>/rt/<NAME>.wasm. Although wasm
pertains to WebAssembly, it’s not the case here. The wasm here is an executable file with a stripped MZ
header, so simply running or debugging it is not possible unless the security analyst adds headers,
resolves imports, and fixes relocations.

Figure 3. Beginning of stage 1; the wasm downloader is a Windows executable file
but its headers are stripped

The offset of the entry point as well as imports listed in the header of the wasm file must be resolved at
runtime, as shown in Figure 4.

Figure 4: Custom format of the wasm binary file

The stage 1 downloader has a base64 encoded string embedded in its binary. When decoded, it reveals
URLs with the following stages:

Figure 5. URLs embedded in stage 1 after decoding

During our analysis, the wiki.asp webpage did not return any content. It is possibly used for
reporting/statistics. The second URL highlighted in Figure 5 returned the stage 2 of the infection.
Downloading the stage 2 payload shows that it is a cabinet file. Stage 1 unpacks the cabinet in memory,
creates a dllhost.exe process, injects the payloads into the newly created process, then executes it. The

https://msdn.microsoft.com/en-us/library/bb417343.aspx

cabinet archive has just one file called core.sdb and has the same binary format as stage 1 (Windows
executable with missing headers).

Figure 6. Contents of the CAB archive

The second-stage execution starts with the first environment checklist of blacklisted processes. The
malware exits if it finds any of the following processes running (Figure 7).

Figure 7. Blacklisted processes tested in stage 2 (top) and download URL format (bottom)

Stage 2 involves collecting the system's basic information: unique identifier, OS version number, and
architecture. This information is then passed to the command-and-control (C&C) server to download the
next-stage payload. An example of a download URL is in Figure 7 (bottom). The initial protocol identifier
“sltp” is there most likely to confuse security researchers (similar to the use of wasm and the .sdb
extension in stage 1). Communication is done via Windows Socket application programming interface
(API), such as WSASocketA, BindIoCompletionCallback, and WSAIoctl among others.

The URL above is checked for sltp prefix. The domain and port are then extracted and used in socket
communication. The communication is encrypted with RC4 cipher. The BindIoCompletionCallback API
function defines the callback function, which takes care of the entire communication including
encryption and decryption. The downloaded payload is loaded into memory and executed.

Figure 8. BindIoCompletionCallbak with the IOCompletionRoutine

Stage 3 is basically a position-independent shellcode that searches inside its body for the marker “!rbx”,
which is the beginning of RC4-encrypted data. The first 0x20 bytes of the binary block are used as a
password, while the remaining bytes are the encrypted data. The decrypted blob also needs to be
unpacked.

Figure 9. !rbx marker within the stage 3 code

After unpacking, we obtained a file with an interesting structure: a custom ROM file system (romfs). In
stage 3, “bin/i386/preload” and “bin/i386/coredll.bin” are extracted, merged, then executed in the next
stage. Preload is basically a loader of coredll.bin. It maps the sections of loaded binary into memory,
resolves APIs, rebases image, and jumps to the entry point.

The previous stage is done to decrypt and unpack the binary blob, which leads to a file with the

structure similar to a ROM file system disc. Searching for the „-rom1fs-„ signature led us to the

description of romfs, which is a simple ROM file system format. The online documentation of romfs

describes the layout of the file system in Figure 11 and 12.

Figure 10. The custom romfs

Figure 11. romfs documentation describing the file system header

https://www.kernel.org/doc/Documentation/filesystems/romfs.txt
https://www.kernel.org/doc/Documentation/filesystems/romfs.txt

Figure 12. romfs documentation describing the file header

However, the malware creators did not follow the exact implementation of romfs. For instance, they
included a few changes that made it impossible to mount the romfs in Linux and extract files easily. The
file system header has a fixed size of 0x20 bytes. The first 0x10 bytes are the same as the one in the
custom romfs, while the last 0x10 bytes are reserved for volume name, which is named RKI most likely
as a shortcut for rootkit. The file header, however, is much more modified. Spec info and checksum
fields are omitted; the file name is padded with just two 0x00 bytes, and the 16-byte padding boundary
is not followed. These changes led us to write our own, custom romfs parser and extractor in Python.
Running our parser, we extracted 38 files in the romfs.

Figure 13. Custom romfs parser we used to extract files

Figure 14. The romfs’ contents

coredll’s main function is parsing a few configuration files from romfs and migrating itself into a different
process based on the configuration (e.g., create a new process, inject itself into new process, execute
itself in new process, terminate old process). The configuration files in romfs have the extension JS (not
JavaScript in this case); the internal format of the configuration files is JavaScript Object Notation
(JSON).

The first parsed configuration file is a simplified.js file. It has a section called “options” with value
vmx_ignore, which is probably for debugging purposes. As shown in Figure 15, vmx_value=true means
that the malware will ignore the presence of virtual machines and run even in a virtual environment. The
malware.js file contains definitions (process names, company names, signatures) of several anti-malware
products including KingSoft, Qihoo, Tencent, Baidu, Rising, HuoRong, MalwareDefender, and SSM.

Figure 15. Options section in simplified.js file

Figure 16. Snapshot of antivirus (AV) products listed in malware.js’s configurations

Based on the configuration specified in malware.js and processes found running on the target machine,
coredll looks into another configuration file (policy.js) to determine what it does next. There are several

sections, one for each AV product listed in malware.js and a {default} section for machines with no AV
installed.

Each section contains a list of commands that it can perform, e.g., what directory name should be
created, which files from romfs should be extracted, and what parameters should be passed to the
newly created processes during execution.

Note that the executables shown in Figure 17 are legitimate signed EXE files, usually signed by the
respective AV vendor. These executables then load a DLL via the side-loading method. These DLLs will
read the coredll contents via shared section object. With this step, the coredll execution flow is
transferred to another process, which is usually signed by the manufacturer or currently running AV
program. In the configuration file, the {%userdata} marker is replaced by the name of the shared section
object, usually named STMxxxx. This section object can be shown with help of WinObj utility from
SysInternals.

Figure 17. Code snippet showing the parsed policy.js

https://docs.microsoft.com/en-us/sysinternals/downloads/winobj

Figure 18. Shared section object named STMxxx as shown by the WinObj utility

The way the legitimate EXE file is signed also matters. Based on user privileges and other system
settings, the execution may take one of several possible paths, and in some cases even uses embedded
exploit files:

 Use OLE Automation (i.e., IShellWindows, IShellDispatch)

 Use ShellExecute API

 Create process using WMI

 Win7Elevate using fileop.bin and cryptbase.dll from ROMFS

 Payload.bin, prekernel.bin, msexploit.bin, atmfont.bin from ROMFS

After transferring coredll to another process, it executes the same binary but takes a different code path.
When we parsed the config.js or config2.js configuration files, we found a few URLs:

Figure 19. Parsed config.js configuration file showing URLs

In a similar vein, Windows sockets and RC4 are used during the C&C communication. The downloaded
payload (setup2.pkg) is another romfs image; the setup.bin file in the binary gets executed first.

The setup2.pkg file, once decrypted and unpacked, contains 11 files. The execution starts with the
setup.bin file, which parses the config.js configuration file for update URLs (Figure 20, center). The
setup2.pkg file is responsible for installing the bootkit into the infected machine. It is basically a
continuation of the coredll setup after successfully passing some environment checks. The arksig.js file
contains anti-rootkit program signatures that are used to hinder anti-rootkit tools.

Figure 20. Contents of setup2.pkg romfs (top), the URLs found in the config.js configuration file (center),
and the anti-rootkit file signatures in arksig.js (bottom)

After downloading a stream of data from a location specified in the run-url parameter, RC4 decryption
and unpacking follows. We were able to obtain another romfs file system containing four files.

Code execution continues with loading and executing the subsystem binary, whose main task is to load
and decrypt pgfs.pkg, which is another file that has a structure of a volume. This structure, however, is
different from the romfs we encountered during our analysis. In this case, it downloads a mixed romfs
file system.

This file system contains the following files: config.bsc, ccmain.cfg, ccmain.bin, and cloudcompute.api.
As reported by other researchers, the binaries from this filesystem download and execute the Hidden
Mellifera cryptocurrency-mining malware.

Figure 21. List of files in the runtime romfs (top), and a hexadecimal view of the mixed romfs file (bottom)

Figure 22. Code snippet showing Hidden Mellifera communicating with the mining pool server

http://www.freebuf.com/column/175106.html

 pop[.]tz365[.]vip (malicious advertising server)

 hxxp://144.202.87[.]106/index.php (malvertising URL)

 hxxp://103.35.72[.]231/ip.php (exploit kit redirect URL)

 103[.]35[.]72[.]223 (Underminer exploit kit server)

 setup[.]20170101[.]info

 setup[.]gohub[.]online

 gatedailymirror[.]info

 redteamshop[.]info

 ask[.]thesupporthelp[.]com

 stratum+tcp://data[.]supportithelp[.]com:8080

File Hash Trend Micro Detection

Stage 1 wasm
ae2f07d390eda32458e07f1e8310d8539f88bd6
b2476a9c3f170667005dcc563

TROJ_DLOADR.AUSUMP
Stage 2 wasm

ccd77ac6fe0c49b4f71552274764ccddcba9994
df33cc1240174bcab11b52313

core.sdb
c1a6df241239359731c671203925a8265cf82a0
c8c20c94d57a6a1ed09dec289

TROJ_DLOADR.AUSUMQ

/bin/amd64/coredll.bin
11e23045ea347bb3b6d2e7f2da826e399a56a1
8804d97fb30d137b9b21ff1478

TROJ_MALOAD.QFKG

/bin/amd64/cryptbase.dll
a2db6542b957a7d03e28fb09193c2e1f2bb8a8
305ca435ba0fa972aa6240ede2

/bin/amd64/fileop.bin
d31abe88e1e6b8b84ffd99c8962cc194c9f53eb
633647ac6d23c35699d4d6b98

/bin/amd64/msexploit.bin

a8dcb26601e2a51520a83105304edc42d5c666
47b09622a8acfb285c2f690ab6

/bin/amd64/payload.bin
33f0691d79fa69c3d836c2ce68db4fbdf73bdb9
42b6cc61fb18b898f7458bf1b

/bin/amd64/prekernel.bin
07b26d00bdac8fc07ef5662d536645532c30e29
6c8e8f056602089595a00e24b

/bin/amd64/preload
da16c6e5f2425aa47cac79b15a33e55ee05d93
d5dddb3dcde42bb57fd9de9ce7

TROJ_MALOAD.QFKG
/bin/amd64/rdpci21.sys

72134f4da6941b87e9c06d045653d2a012da7a
2bab299dcc641518e8e8b56f96

File Hash Trend Micro Detection

/bin/i386/coredll.bin
a004b85f939e61447e40973581ca7b2ed9aea5
b154f81c4beb97f84661ba73eb

/bin/i386/cryptbase.dll
53dd5d76190cf32037ca51105cb220276b24d6
d695b61d00926372ca16a5de2b

/bin/i386/fileop.bin
a1671fe30862e056148b1d0d1302fe7c9925eae
f805fd665dc498ce052a448f9

/bin/i386/kEvP.sys
a795deaa2d1c1f2d9426a8c28791111e0192ffa
d14d086b51bc61c8e16008b63

TROJ_MALOAD.QFKG

/bin/i386/msexploit.bin
e19f8d3b2accc981c20ace2ed1a305828b4842
920286b6e376a71f65b3e8ada0

/bin/i386/payload.bin
62d31ce9aad0d1ad22f3836f3098843674c1ced
075554cbde06cda74fbb71e09

/bin/i386/prekernel.bin
a5da0061dbde4bbfb31c3de3036c3028f50d21
dffd9e3aa0e2af201e56b3d239

/bin/i386/preload
f8ff6f15fe09ad16b234db9e3a746e468abe8b5a
13a047b797cffeb404b872c7

/etc/atmfont.bin
3d9c17ebf675edbe63642387010b2dfc39eb22
b6526da86b59a5b4a5d78f1b4d

TROJ_EXPLOYT.TIDAICR

/etc/config2.js
c1259a123dabf20bb4ea580fee986850c0ad03a
2fb917829142cdb2404cf645a

TROJ_MALOAD.CFG /etc/config.js
864244757126d79f50ee1a3e20164d441bf1462
b1b92bf564d3486cdf0f2194d

/etc/policy.js
a62af9e220c47f37fdc7c4c5527c5fc744b82d9f
04e3e5ee523efa98be89fdee

/sbin/360Verify.dll
f18e8107fdcc7173f5e0956099e6d617da9582b
2991fec3b9e94adf77638df58

TROJ_MALOAD.QFKF

/sbin/BdLogicUtils.dll
fb6ffad15ea2f0a38614b6140c0a66f9d32f1f42f4
beb96a574f44a4b5d91f51

/sbin/HWSignature.dll
68c08445a79632309b52ba2d51f1a2cdf7c4094
b27ebe220506038056983c961

/sbin/kdump.dll
3af1bbc3517155160aa1c9ed25035e0f589293f
eb363d431caa615d400c6708d

/sbin/TenioDL/core.dll
0cf328c9c21453fbb588496e74387901501e90c
44a1ff98c0ca6f328da03991f

/bin/amd64/dump.bin
a9bacb33b6e29e3a69f67d2c8cf3b8f5ab84c8a
395668b553795fb6bd0b4b75b

TROJ_MALOAD.QFKG
/bin/amd64/kernel.bin

7f12359d4d7aa937208e9812c977b4b396a096
bd7675c57dbb8dd1b2a468bd56

/bin/amd64/kernel.sig
717c9c82fd5c4b7fb09310a57710d333843d82
b81f2baf03c38076a555f2fe34

TROJ_MALOAD.CFG

/bin/amd64/setup.bin
1766ae5d57d60924c71832a1f3ce3fdc15e0410
ed6bdd3e1a198cb090d001ce2

TROJ_MALOAD.QFKG /bin/i386/dump.bin
0f2d76b68be299aabaf7041d482d0a2a0bc5d7f
b9b90282582334eb67f439875

/bin/i386/kernel.bin
395c9c64426721527effa384afcde57f10e199e6
b29c3b3bb93574609a4a8b01

/bin/i386/kernel/sig
64e7cf971e298988495d88a8014ce8d2728b05
ec0b1bf77cb2b731f51e726ae7

TROJ_MALOAD.CFG

/bin/i386/setup.bin
83df8971de715d318b6667ec0a94d66b5bc87f
6d6864047647ae87c55fcaed6d

TROJ_MALOAD.QFKG

File Hash Trend Micro Detection

/config.js
4c0c64e3ab19945d10da51338c01db10b22b6f
899037192da4e4059cc5c1b2ac

TROJ_MALOAD.CFG
/setup.img

79548d4a17cf0a38ac66ca216961cf92f4a3648
821d37700cd8d09d39a91b729

/bin/amd64/subsystem
6b8d868b373748fca5c3a7c76b50b686126d43
0ce6ff35c0ef9907800b81b805

TROJ_MALOAD.QFKG
/bin/i386/subsystem

56e1fafe7b81aab17765c5bd080f93cf2366553a
c9dcef6dc75f895ec5a859ea

/pgfs/pgfs.pkg
03662ac576ec50d388f87055d2f4295f56f7e682
e13703d452d14c2a7f9cb196

COINMINER_MMXMR.C-ENC

Trend Micro Incorporated, a global leader in security software, strives to make the

world safe for exchanging digital information. Our innovative solutions for consumers,

businesses and governments provide layered content security to protect information

on mobile devices, endpoints, gateways, servers and the cloud. All of our solutions

are powered by cloud[-]based global threat intelligence, the Trend Micro™ Smart

Protection Network™, and are supported by over 1,200 threat experts around the

globe. For more information, visit www.trendmicro.com.

©2018 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend

Micro t[-]ball logo are trademarks or registered trademarks of Trend Micro,

Incorporated. All other product or company names may be trademarks or registered

trademarks of their owners.

