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File and Code Characteristics  
The implant has the following file characteristics: 

 File name: clocksvc.exe 

 Compiled as 32-Bit – Console Windows executable 

 Accepts command-line arguments 

 Compilation timestamp: October 3, 2000 – 21:01:55 

 MD5-hash: 9812a5c5a89b6287c8893d3651b981a0 

 SHA-256: c1bcd04b41c6b574a5c9367b777efc8b95fe6cc4e526978b7e8e09214337fac1 

 File size: 57344 bytes 

It has been 18 years since the implant was compiled, but it’s possible that it may have been created 

earlier considering the time it took to develop and the number of iterations it might have gone through. 

Although we cannot say that the compilation timestamp is accurate, it is unlikely to be a forged value 

considering the environment it targets and the compiler version used. Moreover, the implant is developed 

using the C language, with the C++ part restricted to the Windows Foundation Class (MFC) library, that is, 

mfc42.dll. The MFC library is primarily used for network communications and compiled using Microsoft 

Visual C++ v6.0. 

Tildeb’s code is not obfuscated in any way and thus has no anti-disassembly and anti-debugging features, 

encrypted strings, or similar obfuscation techniques. 

 

Infection Vector and Relation to Other Files
Since Tildeb is positioned as a stand-alone implant, we couldn’t link it to any other files from the leak even 

while searching for various artifacts from the implant. However, a search by filename in the rest of the 

leak’s dump shows the table “ProcessInformation” in the database file, 

\windows\Resources\Ops\Databases\SimpleProcesses.db, with the following: 

Name Comment Type 

clocksvc.exe *** PATROLWAGON *** SAFE 

 

It is likely that “PATROLWAGON” is a moniker for an unknown exploitation framework or some other tool 

that works in conjunction with Tildeb that is yet to be discovered. The DB Table “ProcessInformation” 

contains a variety of legitimate and known process names and different types. “Type” takes either of the 

following values: NONE, MALICIOUS_SOFTWARE, SECURITY_PRODUCT, CORE_OS, ADMIN_TOOL, 

and SAFE. Of interest is the SAFE type, which shows process names that map to known exploitation 

frameworks and tools such as UNITEDRAKE, MOSSFERN, EXPANDINGPULLY, GROK, 

FOGGYBOTTOM, MORBIDANGEL, and others. 

It is unknown how Tildeb gets delivered onto a targeted system, but it would not be surprising if it’s 

delivered via lateral movement or through some of the other exploitation frameworks that have RCE 

modules targeting Windows NT. 
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Command Line Options
Tildeb is a console-based executable that can take command-line arguments. Since it doesn’t use MFC’s 

WinMain function, it instead calls AfxWinInit directly to initialize MFC upon execution. It successfully 

terminates itself if it fails. 

The implant can take argument 0, 1, 2, 3, or 4 (excluding argv[0]) at once. Each serves a specific 

purpose: 

 Case – 0: If executed without any arguments, it uses the hardcoded IP address 

137[.]140[.]55[.]211 and port 25 to communicate with its C&C server. 

 Case – 1: It expects an IP/domain address to connect to as the C&C server.  

 Case – 2: The first argument is the same as in case – 1. The second argument is the port number 

to connect over. 

 Case – 3:  The first two arguments are the same as in case – 2. The third argument is the port it 

uses for creating a Transmission Control Protocol (TCP) socket in listening mode for accepting an 

ingress connection in case the egress connection fails (cases: 0, 1, 2). The default listening port 

is hardcoded to 1608. 

 Case – 4:  The first three arguments are the same as in case – 3. The fourth argument takes the 

value -ju that sets a global variable to 1. This instructs the implant to attempt elevating privileges 

in order to inject code into a Microsoft Exchange Server process.  

 

Cleanup Thread and Main Process Cleanup Code 
After checking for any command line arguments, Tildeb will sleep for 4.096 seconds. This is followed by 

setting a global variable, which we’ve referred to as up_time, with the current time since the Epoch (in 

seconds). 

It then initializes and sets two Security Descriptors discretionary access control lists (DACL) to NULL, 

which allows access to two objects. One is a mailslot it creates under the name \\.\mailslot\c54321.  The 

handle of this object is set as such so it is not inheritable by a new process. Another is a temporary file it 

creates on the system under the name tmp<uuuu>.tmp. The handle of this object is set as such so it is 

inheritable by a new process.  

It subsequently attempts to initialize Windows Sockets and terminates itself if it fails to do so. Otherwise, it 

continues to create a global mutex object under the name nowMutex. The mutex is not created for 

ensuring only one instance of itself is running. In fact, there may be more than one instance running at the 

same time. The mutex is created solely for thread synchronization, that is, for signaling to the cleanup 

thread to acquire it. A mutex is a mutually exclusive object, and only one thread can own it at a time. 

Tildeb has a fail-aware thread responsible for housecleaning upon failure in specific operations in the 

code throughout the program lifetime. We’ve referred to this thread as the cleanup_thread. 

The synchronization between the main process thread and the cleanup_thread happens as follows. 

Initially, the main process thread is the owner of the mutex object nowMutex, which is in a non-signaled 

state at this point. At the same time, the cleanup_thread waits to acquire it indefinitely. For 

cleanup_thread to acquire the mutex, the owning thread releases it via the ReleaseMutex() application 

programming interface (API). When this happens, the mutex object becomes signaled and the 

cleanup_thread may acquire it. 
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The release of the mutex object and the trigger of the cleanup process carried out by the cleanup_thread 

happen when Tildeb: 

 Fails to receive data from the C&C server (if the number of bytes received is 0). 

 Fails to create a process/execute a file (control command 0x20). 

 Successfully acquires the mutex object (if it is signaled by other thread); this is control command-

dependent. 

When the cleanup_thread is created, it first attempts to set the thread’s priority to run only when the 

system is idle using the API SetPriorityClass(hThread, IDLE_PRIORITY_CLASS). However, the usage of 

this API in the context of the thread is not correct, as this pertains to process priority and not threads. The 

proper API would have been SetThreadPriority (hThread, THREAD_PRIORITY_IDLE). Therefore, the 

thread priority level will be that of the process thread priority, which is THREAD_PRIORITY_NORMAL. 

This mistake is present in every thread created by the implant. 

After setting the thread's priority, it goes into a while loop where the conditional exit is controlled via a 

global flag setting, which we’ve referred to as wayout_flag (initially this flag is set to 0). Inside the loop, it 

sleeps for 15 seconds on every iteration. To exit the while loop:  

 The state of the mutex object must be anything other than signaled. 

 More than 15 minutes had passed since the implant has started (this is also dependent on the 

up_time value). 

Once outside the while loop, it checks again if less than 15 minutes have passed. If so, it terminates the 

cleanup thread. Otherwise, it proceeds to close available handles, delete a temp file, shut down and close 

sockets, and terminate the process, as shown in Figure 1. 

Accordingly, the cleanup thread functions as a watchdog. If nothing happens that would influence its 

behavior in less than 15 minutes, the implant cleans after itself and is terminated.  

The main process thread signals the cleanup thread via the pseudocode (shown in Figure 2), which also 

alters the process main thread’s continuous operation. The process thread first attempts to acquire the 

mutex and sets the wayout_flag flag if it is in a non-signaled state. Otherwise, it updates the up_time 

variable value with the current time, releases the mutex (thus becoming signaled for the cleanup thread to 

acquire it if possible), and then checks if the number of bytes received from the server is 0. If so, it sets 

the wayout_flag flag. As shown in Figure 2, the main process thread also goes through a similar cleanup 

procedure when it fails to receive data from the server by setting the wayout_flag flag, causing it to 

terminate itself. 

Note that Tildeb is not equipped with any persistence mechanism. It is unlikely that one will be created 

considering what the cleanup code does.  
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Network Communications 
All of the network sockets created to communicate with the C&C server is carried over the TCP protocol. 

Tildeb may establish either an ingress or egress connection with the server depending on which 

connection is established successfully. It uses the MFC Classes CAsyncSocket and CSocket for all 

network communications.  

First, it  creates a TCP SOCK_STREAM with the list of events “FD_CLOSE | FD_CONNECT | 

FD_ACCEPT | FD_OOB | FD_WRITE | FD_READ”. However, there's nothing in the code that checks for 

these events. Without checking whether the socket is successfully created or not, it attempts to connect 

to it using the hardcoded IP address 137[.]140[.]55[.]211 over the default port number 25. It’s worth noting 

that despite the port number assignment, the implant does not communicate over the Simple Mail 

Transfer Protocol (SMTP).  

If the connection is successful, it proceeds to set the priority class of the process to 

NORMAL_PRIORITY_CLASS (no scheduling requirements). It then attempts to disable the Nagle 

{ 

  do { 

    sleep(15s); 

    if (WaitForSingleObject(h_nowMutex, 10s)) { 

      wayout_flag = 1; 

    } 

 

    ReleaseMutex(h_nowMutex); 

    elapsed_time = (current_time() - up_time); 

 

    if (elapsed_time >= 15m) { 

      wayout_flag = 1; 

    } 

  } while (!wayout_flag); 

 

  if (elapsed_time < 15m) { 

    return 0; 

  } 

  ms_exc.registration.TryLevel = 0; 

  if (h_nowMutex) { 

    CloseHandle(h_nowMutex); 

  } 

 

  CloseHandle(mailslot_c54321_handle); 

  CloseHandle(mailslot_hfile_v); 

  CloseHandle(h_KMSERVER); 

  CloseHandle(h_STORE); 

  CloseHandle(h_DSAMAIN); 

 

  shutdown(notcreated_socket, SD_BOTH); 

  CSocket::Close(&CSocket_success); 

  DeleteFileA(&fname); 

 

  ExitProcess(0xFFFFFFFF); 

  return 0; 

{ 

  do { 

    switch (control_cmd) { 

      //... 

    case 0x403: 

      if (WaitForSingleObject(h_nowMutex,10s)) { 

        wayout_flag = 1; 

      } 

      time(&up_time); 

      ReleaseMutex(h_nowMutex); 

      send_data_to_server(data); 

      bytes_read = recv_from_server(&rec_data); 

      if (!bytes_read) { 

        wayout_flag = 1; 

      } 

      if (x_func()) { 

        send_data_to_server(data); 

        break; 

      } 

      //... 

    } 

    while (!wayout_flag) 

 

    CloseHandle(h_nowMutex); 

    DeleteFileA(&fname); 

    send_data_to_server(&ss, aOk, 3 u, 0); 

    sleep(3s); 

    shutdown(notcreated_socket, 2); 

    CSocket::Close(&ss); 

    time(&up_time); 

     

    CloseHandle(h_KMSERVER); 

    CloseHandle(h_STORE); 

    CloseHandle(h_DSAMAIN); 

    return x; 

Figure 1: cleanup_thread pseudocode Figure 2: Main process cleanup and thread 

synchronization pseudocode 
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algorithm for send coalescing using the option TCP_NODELAY for a non-created socket. Additionally, 

this same, non-existent socket is referenced three more times in the code (all designed to shut it down, 

making it likely that it's leftover code). It then sends the check-in message Success\x00 to the server then 

creates the cleanup_thread thread. 

If it fails to connect to the socket, it closes it and creates the cleanup_thread thread. It then creates 

another socket with similar attributes, but for accepting ingress connection over the default port 1608. The 

socket is created to listen on all network interfaces, expecting to receive the exact check-in message 

OK*3213* from the server. If the message does not match, the implant bails out. 

Figure 3 shows how the abovementioned steps are carried out in the code. Worth noting is the use of 

different classes, CAsyncSocket and CSocket, and the function listen() from the library Ws2_32.dll. It is 

not clear why these APIs were mixed together to create a socket. Additionally, the return value of the API 

GetLastError() is never checked for. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3: Sockets creation - hex-rays decompiler pseudocode 

Once the socket is successfully created and the first plaintext packet is sent or received, Tildeb starts to 

set up a secure communication channel with the server such that all subsequent traffic is encrypted. To 

establish such a connection, it first expects to receive a buffer of 132 bytes, which we’ve referred to as 

R_A. Then, it creates a buffer of 132 bytes with pseudorandom data, which we’ve referred to as S_A. The 

first 128 bytes are the result of SHA-1 (modified version) hashing of different elements from the system 

such as cursor position, thread ID, thread times, process ID, memory status, system time, and 

performance counter among others. The 128 bytes are then compared against a hardcoded blob of 132 

bytes. If the last dword value is greater than the last dword value of the hardcoded blob, the buffer is 

regenerated. This comparison is done backward (from last to first) by comparing a dword value from each 

buffer at a time until the condition fails. We’ll refer to this comparison as cmp_dw_bckwrd. The last 4 

bytes (offsets: [0x88-0x83]) are always zero (this buffer of 132 bytes is first initialized to zero). 

long lEvent = (FD_READ | FD_WRITE | FD_OOB | FD_ACCEPT | FD_CONNECT | FD_CLOSE); 

CAsyncSocket::Create(&CSocket_success, 0, lEvent, 0); 

if (!CAsyncSocket::Connect(&CSocket_success, ip_addr_ar, dst_port_tcp)) { 

   

  GetLastError();               // the return value is never checked! 

  CSocket::Close( & CSocket_success); 

  if (!CreateThread(0, 0, cleanup_thread, 0, 0, &ThreadId)) { 

    return -1; 

  } 

  CAsyncSocket::Create(&CSocket_listening, nSocketPort, SOCK_STREAM, lEvent, 0); 

  listen(s, 5);                 // backlog = max of 5 outstanding connections 

  CSocket::Accept(&CSocket_listening, 0, 0); 

  Dest[0] = 0; 

  CSocket::Receive(&CSocket_listening, Dest, 1024, 0); 

  if (strcmp(Dest, aOk3213))                           // "OK*3213*" 

  { 

    return -1; 

  } 

} 

h_process = GetCurrentProcess(); 

SetPriorityClass(h_process, NORMAL_PRIORITY_CLASS); 

 

setsockopt(notcreated_socket, IPPROTO_TCP, TCP_NODELAY, &nd_disable, 4); 

CSocket::Send(&CSocket_success, aSuccess, 8, 0);      // "Success\x00" 

if (!ThreadId && !CreateThread(0, 0, cleanup_thread, 0, 0, &ThreadId)) { 

  return -1; 

} 



6 
  

Hardcoded blob is: 

13 E3 B7 E3 A0 C9 D9 CE 43 70 A4 54 CE 8D 7E C9 B5 B7 FB 86 E1 12 A9 B4 49 A4 96 97 E4 38 DC 

2E 2D 1E F1 C9 80 C5 8F 2A 36 B3 07 E3 6B 85 DB 2E 5D 7E B8 39 E7 C9 4F DB 04 14 F3 C2 70 D7 

4C 37 C7 54 86 55 F7 8A 31 B8 04 39 7D B5 F0 14 B8 F8 C1 8A 4F 3B A8 89 64 CF 10 82 5C 35 8D 06 

16 81 B5 91 3A 17 E7 BC 1E 5B 44 C9 C6 D5 40 EB 74 D7 D6 2D B1 4F CE 29 00 A7 70 80 45 AB 7E 

8F CF 2D 00 00 00 00 

Note that all of the blobs of bytes are stored as strings in the code and in the reverse order of what’s 

shown. Before use, each of them is converted to hex and then the bytes’ order is reversed to look like the 

aforementioned blob.  

The S_A buffer is further modified, and similar comparisons are done on it (with the fixed blob 02 00 00 

00 00), and then sent to the server. The R_A buffer is then modified using the 128 pseudorandom bytes 

generated earlier for S_A and the blob 02 00 00 00 00.  

Later, the implant generates a seed key of 256 bytes (which we’ve referred to as Se_Ke), considering the 

modified R_A buffer. It then receives a buffer of 132 bytes from the server, which we’ve referred to as 

R_B. This buffer will then be modified with the hardcoded blob 4B A0 00 00 00 00 00 00 using the 

hardcoded “random” blob of 132 bytes: 

81 A6 B8 DB F3 55 4C B7 90 7A D9 FF 5C 4A ED C4 F8 94 5B EE 0A 32 DE A4 8B C3 40 60 BE 95 C7 

67 43 AB 19 E3 23 DE EA 8E 92 24 4D ED 3C 05 FA C3 9E 4F 86 2F B7 AF 0B AD E6 D7 67 82 44 A7 

7B 10 0C EA AB F5 88 9D E8 45 E3 DC 72 19 F6 75 19 07 50 0E 91 E4 05 CC 1D 11 FC CC 75 64 DA 

10 A2 15 31 3D 1D 85 49 EB D2 74 88 7F 20 90 0E 86 58 7F 75 13 38 35 00 80 D2 20 73 0C 47 8F BD 

AD C9 E2 00 00 00 00 

Finally and for verification, it compares both the S_A and R_B buffers. Both have to match to send the 

status message Success\x00 (this is different from the check-in request described earlier). Otherwise, it 

sends the message Error\x00 to the server. In case the comparison fails, the implant bails out. These 

messages are sent XOR-encrypted with every key byte being unique. The generated key is dependent on 

the seed key Se_Ke. Subsequently, all further communications are XOR-encrypted. 

In a nutshell, this exchange of packets demonstrates the sharing of what looks like session keys that are 

client-server dependent. Each established TCP session with the server would generate a different set of 

encryption and decryption keys. Nevertheless, since only the XOR binary operator is used for encryption 

and decryption, having prior knowledge on the nature of the data being exfiltrated or received makes it 

possible to decrypt it. 

Figure 4 shows the code responsible for sending encrypted traffic. Every buffer to be sent is first allocated 

on the heap, encrypted, sent, and then freed from memory. From a forensics standpoint, and memory 

analysis in particular, this makes it hard to collect such evidentiary data. However, this is not the case 

when receiving data from the server. It is rather decrypted and consumed without any attempt to clear it 

from the memory or disk. 

 

 

 

 



7 
  

 

 

 

 

 

 

 

Figure 4: send function - encrypted channel – hex-rays decompiler pseudocode 

After setting up a secure communication channel, Tildeb is ready to receive control commands to perform 

various malicious activities on the infected system. Figure 5 illustrates the process of establishing a 

successful connection with the remote server. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{ 

result = VirtualAlloc(0,dwSize,MEM_COMMIT,PAGE_READWRITE); 

buffer = result; 

if (result) { 

qmemcpy(result, data, dwSize); 

for (i = 0; i < dwSize; ++i) { 

buffer[i] ^= get_key(Se_Ke); 

} 

bytes_sent = CSocket::Send(hSocket,buffer,dwSize,flag); 

VirtualFree(buffer, 0, MEM_RELEASE); 

result = bytes_sent; 

} 

return result; 

} 
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Figure 6: How Tildeb establishes a successful connection 
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The Hardcoded IP Address 137[.]140[.]55[.]211 
There is an interesting blunder in the way the IP address is hardcoded. It ends with 3-space characters 

(shown highlighted in three different colors) as 137.140.55.211   \x00, then null terminated. Connecting to 

the IP address on specific versions of Windows OS works correctly but fails on others. There is a 

technical justification for this behavior. 

As noted earlier, the implant uses the MFC library for all network communications. To connect to the IP 

address, it uses the MFC API CAsyncSocket::Connect() located in the library mfc42.dll. Since MFC 

classes are just C++ wrappers for Windows APIs, the actual implementation of this function is in the 

Windows ntdll.dll library on, for example, Windows XP(SP3) and other operating systems. The figure 

below shows the steps taken to reach the core implementation (for mfc42.dll, File Version: 6.02.8073.0): 

  

      

Figure 6: CAsyncSocket::Connect() API implementation sequence (Windows XP; 32-bit) 

Figure 6 shows the functions that get called in an attempt to convert “a string containing an IPv4 address 

dotted-decimal address into a proper address for the in_addr structure”. And as per Microsoft Developer 

Network’s (MSDN) documentation on the inet_addr() function, passing " " (a space) to the inet_addr 

function will return zero. In actuality, the inet_addr() function first checks if the first character in the passed 

string is a space character. If so, it checks if the next character in the string is the null terminated 

character \x00. If not, it proceeds to call the ntdll function RtlIpv4StringToAddressA(), which is responsible 

for parsing, sanitizing, and converting the passed string into a proper binary IPv4 address in network 

order.  

RtlIpv4StringToAddressA() checks if every character is in American Standard Code for Information 

Interchange (ASCII) or a digit. If it is in ASCII, it checks if it is the character \x2e (.). After a successful 

conversion, the Terminator parameter, which “receives a pointer to the character that terminated the 

converted string,” returns the space character as the terminating character. The code that follows in the 

function inet_addr() then checks whether it is the null \x00 terminating character. If not, it checks whether 

it is an ASCII character; if not, it fails. Otherwise, it continues to check if it is a space character. If so, it 

returns successfully; otherwise, the function fails. 

It is important to note that what contributes to the successful conversion in this case is the fact that the 

Strict parameter of RtlIpv4StringToAddressA() is set to false. It wouldn’t make sense otherwise in the 

context of Tildeb’s operation. MSDN defines the Strict parameter as follows: “A value that indicates 

whether the string must be an IPv4 address represented in strict four-part dotted-decimal notation. If this 

parameter is TRUE, the string must be dotted-decimal with four parts. If this parameter is FALSE, any of 

four possible forms are allowed, with decimal, octal, or hexadecimal notation.”  

This also works with Windows NT 4.0. The function inet_addr() has the actual similar implementation of 

RtlIpv4StringToAddressA(), but is less sophisticated. 

{mfc42.dll} 

•CAsyncSocket::Connect() 

{ws2_32.dll} 

•inet_addr() 

{ntdll.dll} 

•RtlIpv4StringToAddressA() 

CSocket::ConnectHelper()_{mfc42.dll}->CAsyncSocket::ConnectHelper()_{mfc42.dll}->connect()_{WSOCK32.dll} 

https://docs.microsoft.com/en-us/windows/desktop/api/winsock2/nf-winsock2-inet_addr
https://docs.microsoft.com/en-us/windows/desktop/api/ip2string/nf-ip2string-rtlipv4stringtoaddressw
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For Windows XP, the MFC’s Connect() function works properly. However, this is not the case for 

Windows 7. Figure 7 shows the chain of function calls it takes to actually connect to the IP/domain 

address (this is for mfc42.dll, File Version: 6.6.8063.0). Not every visited function/API is shown. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: CAsyncSocket::Connect() API implementation sequence (Windows 7 ; 32-bit) 

As shown in Figure 7, the chain of calls is different from that of Windows XP, as the file version of the 

MFC library file is different as well. The getaddrinfo() function is more sophisticated at accounting for 

different scenarios and more. The code within the function GetIp4Address() that’s responsible for 

checking the Terminator’s parameter value is notable. After successfully calling the function 

RtlIpv4StringToAddressW(), GetIp4Address() checks the Terminator value if it is the null character \x00 

and only this character. If so, the function returns 1 (success). If it is anything other than \x00, the function 

fails, which is the case in this implant, that is, \x20. In this case, the setting of the Strict parameter doesn’t 

matter even if it's set to true. 

 

Control Commands 
The core of Tildeb’s functionality lies in each of the control commands it supports. After establishing a 

secure connection with the C&C server, it goes into an infinite loop waiting to receive control commands. 

The receive function expects a buffer with a maximum length of 4194304 bytes. If no bytes are received 

from the server, it sets the flag wayout_flag. This leads to exiting the infinite loop, starting the cleanup 

process, and then eventually terminating itself. 

Tildeb supports a plethora of control commands, all in binary format. All communications are 

encrypted.There are also status messages that Tildeb sends to the server upon attempting to complete a 

given task/command. For example, when it receives a control command, or when attempting to get a 

handle to a file/mailslot, it sends the message .\x00 (a dot followed by the null terminating character) to 

the server after it successfully completes any of them. In case it fails, it sends the message Error\x00.  

 CAsyncSocket::Connect() 1 

• {mfc42.dll} 

 getaddrinfo() 2 

• {ws2_32.dll} 

 GetAddrInfoW() 3 

• {ws2_32.dll} 

 ConvertIp6StringToAddress() 4 

• {ws2_32.dll} 

 RtlIpv6StringToAddressExW() 5 

• {ntdll.dll} 

 GetIp4Address() -> RtlIpv4StringToAddressW() 6 

• {ws2_32.dll} 

 LookupAddressForName() 7 

• {ws2_32.dll} 
• ... 
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Other analogous messages are sent to the server as well. The implant uses specific error codes 

represented as decimal values that it communicates back to the server upon failing to execute some fine-

grained operations, and in particular while attempting to inject code into any of the Exchange Server 

processes. Furthermore, it sends the message ?\x00 (a question mark) to the server if it receives an 

unrecognizable control command. 

The following is a detailed description of each of the commands (in no particular order): 

 0x403: Deletes a file on the system using the DeleteFileA API. 

 

 0x500: Sends the word value 0x2e00 to the server. It expects to receive a buffer of 4 bytes, and if 

it fails (that is, no bytes were received), it sets the flag wayout_flag to 1. Otherwise, it sends back 

the same 4 bytes it received from the server. This command functions as a ping-pong check, 

ensuring that the connection with the server is healthy.  

 

 0x1000:  Sets the flag wayout_flag to 1 for implant termination, and then sends the message 

Ok\x00 to the server. 

 

 0x401: Uploads a file to the server using C-runtime functions. It works by first getting the filename 

from the server, retrieving the size of the file on the system, and then sending it to the server. It 

then expects to receive data from the server. If the first byte in the payload is 0x2e, it uploads the 

file in question to the server (0x200 elements of size, 1 byte at a time), until the end-of-file is 

reached. If it is unable to get a handle to the file, it sends the dword value 0x00000000 (indicating 

the size) to the server. 

 

 0x400: Gets a list of files and folders in a given directory including current date and time, 

hostname, and files names with their last changed/modified attributes among others. It is saved to 

the disk in a temporary file, uploaded to the server, and then deleted. The upload function logic is 

the same as in control command 0x401. However, the difference is that this one uses Windows 

APIs instead of C-runtime functions. The following is an example of the temporary file’s content: 

 
Collected on <hostname>, Sat Nov 24 21:37:16 2018 

. 

Listing directory C:\interpol\*.* 

 

Sat Nov 24 21:35:09 2018    < DIR >     . 

Sat Nov 24 21:35:09 2018    < DIR >     .. 

Sun Jan 15 22:40:04 2012          1574  john_galt.pem 

Sun Jul 22 23:25:58 2012    < DIR >     cia 

Sat Feb 25 23:43:54 2012          6102  eula.txt 

Sun Jul 22 23:25:54 2012    < DIR >     fbi 

Sun Jul 22 23:52:42 2012          3249  us.cfg 

Tue Jul 17 05:32:14 2012       1002496  ru.exe 

Sun Jun 12 22:09:18 2011       2206720  cn.dll 

 

In terms of how the temporary file is created, it first attempts to get the path to the installed MS 

ExchangeServer Mailbox from the registry. This is done by querying the Value of the Working 

Directory registry value name located under the Registry Key: HKLM, SubKey, 

System\CurrentControlSet\Services\MSExchangeIS\ParametersSystem. The value of the 

parameter Working Directory holds the path to MS ExchangeServer Mailbox. If successful, it 

creates a temporary file in the said directory/path under the name tmp<uuuu>.tmp (<uuuu> is an 

unsigned integer based on the current system time). Otherwise, it creates the file in the current 
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user’s temporary folder under the same name. The created file is meant for writing, with 

temporary storage and sequential scan. 

 

 0x380: Sets MS Exchange “Background Cleanup” Registry Value with a value received from the 

server, then sends out the old value. The said value is located under the Registry Key HKLM, 

SubKey: System\CurrentControlSet\Services\MSExchangeIS\ParametersPrivate. The 

background cleanup process is responsible for recovering empty space used by attachments, 

deleted folders, and messages. The Registry ValueName Background Cleanup value (in 

milliseconds) controls at which rate this process’ task runs.  

 

 0x20: The primary function of this control command follows several steps:  

1. It attempts to create a temporary file just as in control command 0x400.  

2. It checks if a conditional flag is set to true, which it initially is. Then, it concatenates the 

path it retrieved in the first step with the server response value. For example, the path 

might look like %temp%\<server_response>. 

2.1 It copies the final path derived in the second step into a global variable, 

which we’ve referred to as fname_s. This variable will be passed into the 

code injection function.  

2.2 The conditional flag is set to 0. Thus, this flag is meant to be set only 

once during the implant’s runtime life. 

2.3 If the conditional flag is not set, it would only concatenate the path it 

retrieved in the first step with the server response value. 

3. It downloads data from the server and saves it into the file (as binary) created in the first 

step. The downloaded file is expected to be a cabinet-compressed (.cab) file. 

4. It creates a process of the Windows expand utility for decompressing the file downloaded 

in the second step under a file name received from the server in the same directory of the 

created temporary file. 

5. If process creation (step 4) is successful, it deletes the temporary file from the system. 

Otherwise, it sets the wayout_flag flag to 1 and deletes the temporary file. 

The rest of the control commands deals mainly with interprocess communications (IPC) using 

Windows’ mailslots mechanism as well as code injection into specific MS Exchange Server 

processes. As detailed below, the implant establishes two-way communication using two 

mailslots. The mailslot it creates or the one it reads from are not referenced in any of the other 

tools and utilities in the leak. Therefore, it is unknown what the other process is supposed to do, 

or how it is supposed to run as a process or as a standalone or child process. The following are 

the two mailslots referenced in the implant: 

Mailslot name Description 
\\.\mailslot\c12345 Tildeb is the client process.  

Created by another process.  
Tildeb writes to it. 

\\.\mailslot\c54321 Tildeb is the server process. 
Created by Tildeb. 
It reads from it. 

 

Mailslots communications are carried over using specific format messages, unique per control 

command. However, the general layout has the following structure: 

Format Message Populated 
'%ld %x',0Ah 
'%ld %ls ',0 

'6553 0x400000',0Ah 
'<control command> <server_response_x> <# type of info.> <…>' 

https://blogs.technet.microsoft.com/komessaging/2009/10/05/soft-deletion-and-hard-deletion/
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The values 6553 and 0x400000 are hardcoded in the binary. The <control command> value is 

either hardcoded as per referenced control command or populated dynamically. 

<server_response_x> is data received from the C&C server. There could be multiple receive 

requests from the server, which will be concatenated with the previous one. 

The second line of the format message is unique to each command. Judging by the mailslot 

name form, the other processes that use those two mailslots has to reside on the same host of 

Tildeb’s process. 

 0x300: 

1. The format message has the following structure: 

Format 
Message 

Populated 

'%ld %ls ',0 '768 <server_response_a> <server_response_b>' 

Both values under <server_response_a> and <server_response_b> are received in two 

separate responses from the server. Based on the structure of the code, the value of 

<server_response_b> could be any of the following: pub.edb, priv.edb, or dir.edb. 

2. For one-way interprocess communications (IPC), it creates a thread responsible for 

continuously attempting to write the formatted message to an already created mailslot 

(under the name \\.\mailslot\c12345) until successfully done so. The said mailslot is never 

created by Tildeb’s itself. It is unknown what the other process is that might be on the 

system or on the infected network that created this mailslot. 

3. It creates a mailslot under the name \\.\mailslot\c54321 (the numbers 54321 are in 

reverse order of the mailslot referenced in the first step), for a maximum size of 4194304 

bytes and a time-out value of 30 seconds. 

4. Based on the last server response, it decides which process of MS Exchange Server to 

inject code into: 

Server Response Process Name 
priv.edb STORE.EXE 
pub.edb STORE.EXE 
dir.edb DSAMAIN.EXE 
kmsmdb.edb KMSERVER.EXE 
<if no match> STORE.EXE 

 

Based on the server response, it injects code into the respective process. If the server 

responded with the string dir.edb and after successful code injection, it executes the code 

in the fifth step. 

5. It receives data from the server and reads from the mailslot \\.\mailslot\c54321 into a 

buffer of 1024 bytes. If the first byte from the server response is \x2e, it attempts to 

upload the buffer’s content to the server using the same, exact upload function 

referenced in the control command 0x400. However, the upload function will fail since it 

expects a handle to the file to be uploaded. However, Tildeb passes the address of the 

buffer instead. 

6. It closes the handle of the mailslot \\.\mailslot\c54321 and sets its value to zero. 

7. It attempts to delete the buffer using the Windows API DeleteFileA. It commits the same 

mistake, since it is passing the address of the buffer and not a handle to a file. 
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Below is a brief description of some of the referenced file names and processes of MS Exchange Server 

in this control command: 

 The EDB extension is "Exchange Information Store Database." 

 Prior to MS Exchange Server v5.5, there were three key DB files, and each contained: 

1. PRIV.EDB: private information store (this is the actual mailbox content). 

2. PUB.EDB: public information store (public folder). 

3. DIR.EDB: list/directory of users with mailboxes on the server. 

 kmsmdb.edb: Key Management Security DB. This file is associated with MS Exchange 

Server 5.5, and in particular the Key Management Server. 

 DSAMAIN.EXE: This is part of active directory management tools. It allows mounting a 

shadow copy snapshot or backup of the Active Directory DB file ntds.dit. Moreover, it allows 

browsing the data using standard admin tools such as Active Directory Users and Computers 

(ADUC) and snap-in. 

 STORE.EXE: Microsoft Exchange MDB Store, responsible for enabling mail sessions opened 

by different clients. 

 

 0x290 OR 0x291 OR 0x292: 

The format message has the following structure: 

Format Message Populated 
'%ld %2x %2x %2x %2x %2x %2x %2x %2x 
' 

'<control command> <s_r[0]> <s_r[1]> <s_r[2]> 
<s_r[3]> %2x %2x %2x %2x ' 

The bytes s_r[0], s_r[1], s_r[2] and s_r[3] are received from the server. The last 4 bytes 

are never set anywhere in the code. Then, it performs steps 2-7 (code is injected into the 

STORE.EXE process) similar to control command 0x300, but it writes this control 

command’s formatted string to the mailslot instead. 

 >= 0x285: 

The format message has the following structure: 

Format Message Populated 
'%ld %2x %2x %2x %2x %2x %2x %2x %2x %2x' '0x285 <s_r[0]> <s_r[1]> <s_r[2]> 

<s_r[3]> %2x %2x %2x %2x 1' 

The value 0x285 is hardcoded and it represents the actual control command. The bytes 

s_r[0], s_r[1], s_r[2] and s_r[3] are received from the server. The bytes highlighted above 

are never set anywhere in the code. If the control command is > 0x285, formatted string 

is set to: 

Format Message Populated 
'%ld %2x %2x %2x %2x %2x %2x %2x %2x %2x' '<(control command -1)> <s_r[0]> <s_r[1]> 

<s_r[2]> <s_r[3]> %2x %2x %2x %2x 0' 

The highlighted bytes are never set anywhere in the code. It performs steps 2-7 (code is 

injected into STORE.EXE process) similar to control command 0x300, but it writes this 

control command’s formatted string to the mailslot instead. 

 0x206 OR 0x207: 

The format message has the following structure: 

Format Message Populated 
'%ld %2x %2x %2x %2x %2x %2x %2x %2x' '<(control command -2)> <s_r[0]> <s_r[1]> 

<s_r[2]> <s_r[3]> %2x %2x %2x %2x' 

The bytes s_r[0], s_r[1], s_r[2] and s_r[3] are received from the server. The last 4 bytes 

are never set anywhere in the code. The first formatted string is populated independently 

of the second.  
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The second formatted string (rhs) is concatenated with the first one x (condition value) 

number of times in a for-loop that keeps on concatenating the second string to the first 

until the condition evaluates to false. The condition value is received from the server prior 

to the concatenation. Moreover, on every iteration inside the for-loop, the values of the 

second string s_r[]are populated with new data from the server. 

It then performs steps 2-7 (code is injected into STORE.EXE process) as that of control 

command 0x300, but it writes this control command’s formatted string to the mailslot 

instead. 

 0x290 OR 0x291 OR 0x292: 

The format message has the following structure: 

Format 
Message 

Populated 

'%ld %ls ' '<control command> <server_response> ' 
Then, concatenates <server_response_b> 
'<control command> <server_response_a> <server_response_b>' 
Then concatenate: ' %x %x' 
'<control command> <server_response_a> <server_response_b> %x 
<server_response_c>' 

The highlighted byte is never set anywhere in the code, and the second is received from 

the server (maximum length of 8 bytes). It then performs steps 2-7 (code is injected into 

STORE.EXE process) similar to control command 0x300, but it writes this control 

command’s formatted string to the mailslot instead. 

 0x280: It downloads a file from the server onto the infected system. The file is saved on disk 

under a temporary file name. File path and name is retrieved and constructed in the same way as 

that of control command 0x400. We've referred to the full path and name of the downloaded file 

as dwldd_file. 

The format message has the following structure: 

Format Message Populated 
'%ld %2x %2x %2x %2x %2x %2x %2x %2x %s' '<control command> <s_r[0]> <s_r[1]> <s_r[2]> 

<s_r[3]> %2x %2x %2x %2x <dwldd_file>' 

The highlighted bytes are never set anywhere in the code. It then performs steps 2-7 (code is 

injected into STORE.EXE process) similar to control command 0x300, but it writes this control 

command’s formatted string to the mailslot instead. After step 7, it also deletes the download file 

dwldd_file. 

 0x281: The same implementation of the control command 0x280. 

 

 0x204: The same implementation of the control commands 0x290, 0x291, and 0x292. 

 

 0x203: The same implementation of the control command 0x208 except that the <control 

command> is hardcoded in the formatted string as 515 instead of being referenced. Additionally, 

the formatted string is different and has the following structure: 
'0x203 <server_response_a> <server_response_b>' 

 

 0x202: The same implementation of the control command 0x300 except that the <control 

command> is hardcoded in the formatted string as 514. For the fourth step, code is injected into 

STORE.EXE process. 
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 0x201: The same implementation of the control command 0x300, except that the <control 

command> is hardcoded in the formatted string as 513. For the fourth step, code is injected into 

the STORE.EXE process. Moreover, the formatted string is as follows (nothing is concatenated 

with the server response): 

Format 
Message 

Populated 

'%ld ' '513 ' 

 

 

Code Injection Function 
This function first checks if the available physical memory on the system and the maximum amount of 

memory the Tildeb process can commit is less than 33554432 bytes (~33.55 Mb). If so, then no attempt 

at code injection happens, as the following pseudocode snippet shows: 

  GlobalMemoryStatus(&Buffer); 

  if ( Buffer.dwAvailPhys + Buffer.dwAvailPageFile < 33554432 ) 

  { 

    return -4;  // error_code 

  } 

 

To get the process’ (‘injectee’) unique process ID, it uses the API NtQuerySystemInformation(), passing it 

the SystemInformationClass value from SystemProcessInformation. The targeted process is supposed to 

be running on the system already. 

It then attempts to get a handle to the process in question by requesting the following list of desired 

access rights (using the OpenProcess() API): PROCESS_CREATE_THREAD, 

PROCESS_VM_OPERATION, PROCESS_VM_READ, PROCESS_VM_WRITE, and 

PROCESS_QUERY_INFORMATION. If unsuccessful, it attempts to acquire them using either of two 

methods. 

Before attempting code injection, the implant compares the image base address of the module 

Kernel32.dll for the same process. One is retrieved via a pseudohandle to the process and the other via 

the actual process ID. If the base addresses do not match, code injection does not take place. It is 

unknown why the malware enforces such comparison, or under what scenario it is supposed to fail. 

The implant retrieves the image base address of the module Kernel32.dll through either of the following 

two methods: 

1. Using the API NtQuerySystemInformation(), passing it the SystemInformationClass value from 

ProcessBasicInformation, which returns the structure _PROCESS_BASIC_INFORMATION. This 

is done by parsing the structures data members _PEB.Ldr   

_PEB_LDR_DATA.InMemoryOrderModuleList  LDR_DATA_TABLE_ENTRY. DllBase. 

2. Using the API NtQuerySystemInformation(), passing it the SystemInformationClass value from 

SystemModuleInformation, which returns the structure RTL_PROCESS_MODULES. This 

structure is not publicly documented by Microsoft in the MSDN library. However, the malware 

parses it to locate the ImageBase field.  

 

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/rtl/ldrreloc/process_modules.htm?tx=53
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The second method is only reachable if the process pseudohandle or ID value is zero, which is unclear in 

this context. Once all checks are passed, it injects the following code into the targeted process: 

injected_code   proc near  

  

    push    esi 

    push    edi 

    mov     edi, [esp+8+PtrLoadLibraryA] 

    lea     eax, [edi+8] 

    push    eax               // fname_s (path to downloaded module) 

    call    dword ptr [edi]   // LoadLibraryA 

    mov     esi, eax 

    test    esi, esi 

    jz      short ret_zero 

    push    esi 

    call    dword ptr [edi+4] // FreeLibrary 

 

ret_zero: 

    mov     eax, esi 

    pop     edi 

    pop     esi 

    retn    4 

   

injected_code   endp 

 

The code above is responsible for loading and freeing a library module downloaded from the server (as 

shown in control command 0x20) into the address space of the targeted process. Note that the addresses 

of the APIs LoadLibraryA() and FreeLibrary() are resolved dynamically prior to injection, and then their 

addresses are injected accordingly. 

Nothing stands out with respect to the code responsible for injection. It is done by committing a region of 

memory of size (injected code size (32) + 531 = 563 bytes) within the virtual address space of the 

targeted process, with the memory protection for the regions to be allocated set to 

PAGE_EXECUTE_READWRITE. Copying and starting the code into the targeted process is done via the 

standard APIs WriteProcessMemory(), CreateRemoteThread(), and WaitForSingleObject(hThread, 

0xFFFFFFFF). 

The methods it tries in case Tildeb doesn’t have the specified access rights to the process object are as 

follows: 

1. It attempts to add the GENERIC_ALL (the right to read, write, and execute the object) access-

allowed Access Control Entry (ACE) to the security identifier of the account named Everyone on 

the system. Then, it tries to set/update the DACL_SECURITY_INFORMATION (discretionary 

access control list) for object SE_KERNEL_OBJECT of the targeted process with the new ACE, 

that is, GENERIC_ALL. 

If Tildeb is still unable to acquire those access rights after executing this step, it attempts to 

perform the same action on two other accounts that are Domain Users and the name of the user 

associated with the current thread. 

2. If all of the actions in the first step fails, the implant attempts to exploit an unknown escalation-of-

privileges (EoP) vulnerability in the driver win32k.sys. This feature targets very specific versions 

of win32k.sys. It checks for those versions by comparing the CRC-32 checksum of the file on the 

infected system against the following list of hardcoded checksums: 
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Hardcoded CRC-32 Checksum 
Values 

Description 

0x49FBEA88 Unknown 
0xE6C42541 MS Windows NT 4.0 (Service Pack 3) 
0xF86E4DDE Unknown 
0x6ED9164 
0x5CB13093 

Unknown 
Unknown 

0x9CEE7C76 Unknown 
0x4DBBF9E2 
0x9B93E1D1 

Unknown 
Unknown 

0x3C862693 Unknown 
0x6C2CB34C 
0x8E1E220D 

MS Windows NT 4.0 (Service Pack 6a) 
MS Windows NT 4.0 (Service Pack 6) 

 

We were only able to map three of the checksums to their respective OS versions. Moreover, this 

EoP is attempted only on systems with specific locale (default country). The temporary file 

~debl00l.tmp is created in the same directory of the implant, and after exploitation. It includes the 

following information: 

ver= <unique value assigned by the implant based on the default country code> 

ccode=<LOCALE_IDEFAULTCOUNTRY> 

CRC=<crc-32 checksum value of “%windir%\system32\win32k.sys”> 
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