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Abstract

Fingerprinting malware by its behavioral signature has been 

an attractive approach for malware detection due to the 

homogeneity of dynamic execution patterns across different 

variants of similar families. Although previous research works 

show reasonably good performance in dynamic detection 

using machine learning techniques on a large corpus of training 

sets, in many practical defence scenarios, decisions must be 

undertaken based on a scarce number of observable samples. 

This paper demonstrates the effectiveness of generative 

adversarial autoencoder for dynamic malware detection under 

outbreak situations where in most cases a single sample is 

available for training the machine learning algorithm to detect 

similar samples in the wild. 
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I. Introduction
Every piece of malware has its own purpose, whether it is a banking trojan, ransomware variant, an 

information stealer, or advanced persistent threat. Therefore, it is also named by its behavior. All top-level 

malware categories contain multiple families, each of which has many variants. Despite the complex 

hierarchy of malware samples, the invariancy of execution offers a great opportunity to detect not only a 

wide range of malware family variants but also multiple families that share similar behavior patterns. This 

paper proposes a detection method that leverages this common nature of malware.

Since the early 21st century, many individuals and organizations have been breached and have suffered 

financial losses due to ransomware.1 Although ransomware has a large number of different families, its 

execution fundamentally involves a behaviorally similar pattern where it downloads a custom encryption 

key from a remote command and control (C&C) server, enumerates the  file system for the targeted files in 

the victim’s machine, encrypts the target files using the key, displays the ransom note, and finally extorts 

the victim for payment. Likewise, various banking trojans that have impacted the world over the past 

decade, for example, Zeus, Dyre, and Trickbot, have kept their core behavior unchanged although they 

have gone through numerous binary structure changes to bypass static detection. After many years, the 

fact is that banking trojans have not changed their routine. They still hijack web traffic, inject a custom 

Java script within a target online banking page, and initiate or modify a covert transaction to underground 

channels. Even though there are minor variations in the behaviors of the variants of a family or a group 

of families, the substantial body of the execution remains relatively invariant. As a result, there appears a 

phenomenon (see Figure 1) commonly seen among different variants and, quite often, among cross-family 

malware samples that are behaviorally isomorphic in temporal behavior space. The method proposed in 

this paper will capitalize on the presence of this pattern exhibited by behaviorally similar malware samples.

The intrinsic behavior of a sample is best defined by its dynamic execution log. As with many previous 

works, this paper will leverage the API call sequence as a feature in our model while maintaining its spatio-

temporal characteristics. The API call logs are obtained via a custom sandbox2 that captures a selected 

set of user-mode API calls along with their parameters. Dynamic detection has several challenges of its 

own. A multithreaded operating environment can result in the API call events shuffled in threaded code 

blocks. A sample can exhibit several different behaviors depending on how it is executed in a sandbox. 

Anti-analysis and nondeterministic programs can lead the sample to different execution paths. Resilience 
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over mutation of dynamic execution is a long-term challenge as well. All of these perturbations in the 

event log interfere with accurate dynamic detection. In this paper, the global feature that captures local 

characteristics is deemed optimal for dynamic detection models.

From a practical defense point of view, time-to-detection is a critical factor when there is a new malware 

outbreak and several thousand variants of its kind could soon follow. The task involves building a quick 

knowledge base out of a handful of samples that are available from the outbreak, in such a manner that the 

detection is resilient to minor changes in malware behavior. This is very different to the traditional problem 

setting where a large corpus of training samples are available and used to predict the maliciousness of 

test samples. Due to the availability of only a limited number of training samples, the problem in this paper 

is posed as similarity-based detection instead of traditional binary classification.  

The order of the API call sequence within a block is the key to the semantics of the behavior. Unfortunately, 

traditional machine learning models such as Support Vector Machine (SVM), Random Forest, and Gradient 

Boosting generally use n-gram,3 which is computed from the original sample in order to come up with a 

fixed-size feature vector, thus taking away the important context information present in the global scope. 

This paper explores a deep learning model that fully utilizes the order of API call sequence information. 

Given that similarity-based detection is desired, a generative deep learning model is used and evaluated 

against several traditional machine learning approaches.

This paper presents a novel method that detects malware outbreaks using dynamic execution features 

when very limited training samples are available. The proposed model, generative adversarial autoencoder, 

automatically extracts perturbation-resilient and context-aware features from the raw API call sequences 

to detect malware outbreaks proactively in practical threat response environments.
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II. Related Works
Youngjoon Ki et al. handcrafted API call sequences using Longest Common Subsequences (LCS) and 

Multiple Sequence Alignment (MSA) for detection,4 which are vulnerable to obfuscation techniques such 

as bogus API call insertion. Davide Canali et al. studied a systematic way of extracting common signatures 

of a given dataset.5 Manuel Egele et al. explained various controlled environments to extract system 

events required for dynamic malware detection.6 Several approaches take advantage of various machine 

learning techniques experimenting with Random Forest, k-Nearest Neighbor, Naïve Bayes, J48 Decision 

Tree, Support Vector Machine, and Multilayer Perceptron Neural Network.7, 8, 9, 10, 11 They essentially use 

API call sequences as a feature and use a large corpus of training samples for classification. Grégoire 

Jacob et al. explained the efficacy of behavioral signature-based detection over its static counterparts.12 

Adaptability and resilience are two important properties of the assessment. Dong-Jie Wu et al. introduced 

the use of clustering on Android dynamic detection, utilizing k-means and EM (Expectation Maximization) 

algorithm.13 Faraz Ahmed et al. implemented a binary classification model using a spatio-temporal feature 

set selected by information gain.14 Wenyi Huang and Jack Stokes created the first deep-learning-based 

approach using Multilayer Perceptron.15 Bojan Kolosnjaji et al. investigated with deep learning and  tried 

to solve a binary classification problem using convolutional neural network and recurrent neural network.16 

Sean Park et al. discussed malware outbreak detection using static features.17

The majority of the previously mentioned approaches tried to solve a binary classification problem over a 

relatively large training set as opposed to setting the outbreak situation as the problem, which is the focus 

of this paper. The proposed approach described in this paper attempts to identify similar samples after 

training with a single malicious sample of each kind.
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III. One-Shot Dynamic Detection
This section discusses the features, model, and metric of the proposed method. The proposed method 

takes advantage of the generative power of adversarial neural network against spatio-temporal features 

extracted from API call events, which shows remarkable generalization of a single sample of its kind used 

in the training.  

A. Features
Figure 1 illustrates the API call events of the variants of a malware family, which are identified by the model 

proposed in this paper. Although there are several variations in the family name, the visual representation 

of the API call events for this family remains very much isomorphic.

Figure 1. Visualization of the API call events of variants of malware family 

Note: Each row represents a per-sample feature, which is a sequence of API call events made by a malware sample. 

Each normalized API call event is rendered as a pixel with a unique color assigned via a lookup table. The X-axis 

is the feature while the Y-axis is the sample number. This cluster contains 38 samples (HO_WINPLYER.MSMIU18, 

15 samples; OSX_Agent.PFL, 3 samples; OSX_Generic.PFL, 1 sample; OSX_SearchPage.PFM, 18 samples; OSX_

WINPLYER.RSMSMIU18, 1 sample).
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The steps to construct a feature are as follows (an example is shown in Figure 2).

1.	 Map API call name to a unique ID.

2.	 Assign a unique ID for each character found in the API call arguments.

3.	 Pad each API call event with zeros to a predefined fixed size.

Figure 2. An example of dynamic execution log transformation 

Note: Shown in the figure are (a) a dynamic execution log, (b) symbol-to-ID lookup table constructed by creating a 

map of symbols from all training samples, and (c) a two-dimensional (2D) array constructed from (a) with padded 

zeros at the end of each API call event.

Figure 3. Generative adversarial autoencoder with 2D API call event feature and embedding 

Note: (a) Autoencoder with each value in 2D feature mapped to an embedding. Note that the value in blue gets 

mapped to an embedding of size two at its corresponding position marked with a dotted blue line. The embedding 

value is chosen from the embedding lookup table for each symbol at the input feature. The same applies to the 

value in red. (b) Discriminator with positive samples from Gaussian normal distribution and negative samples from 

the latent representation, z, obtained from the input feature.
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A dynamic execution log consists of a sequence of API call events, each of which is broken down into an 

API identifier and its corresponding API arguments. A sample dynamic execution log is shown in Figure 

2(a). The symbol lookup table shown in Figure 2(b) is constructed by creating a map of all possible call 

argument characters. This symbol lookup is performed on a per-character instead of on a per-word basis.

This design decision was made to allow an arbitrary number of arguments and values. Figure 2(c) shows 

the final feature transformed from the dynamic execution log, which will be fed to the deep learning model.

B. Model
Adversarial autoencoder18 forms the core of the model, which consists of an autoencoder and generator-

discriminator pair. In addition, DCGAN19 is used as an autoencoder in order to cope with various 

perturbations that occur in API call events. The proposed model is jointly trained with stochastic gradient 

descent by minimizing the reconstruction loss on spatio-temporal input x over latent representation z in 

Equation (1) and by performing min-max adversarial game in Equation (2). Consensus optimization20 is 

also applied on top of Adam optimization21 to aid stable GAN22 training. Batch normalization23 is used 

within the GAN generator to help generate stable latent representations.

Ex[Eq(z|x)[—logp(x|z)]] 1

2min max
G D

Ex~pdata
[log D(x)] +

Ez~p(z)[log(1—D(G(z))]

Input (?,200)

Feature (?,200,4)

. . .

Embedding (106,4)

Normalized Embedding

L2 normalize

Look up

Feature (?,200,4)

Normalized Feature

Encoder

Decoder

L2 normalize

probability (?,200,106)

probability (?,200,106)

Output

Cosine
similarity

Softmax

Cross entropy

Figure 4. Autoencoder loss calculation diagram
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However, several key adjustments are made on top of the base adversarial autoencoder model to fit the 

two-dimensional symbol inputs into the model and to generate consistent latent representation over 

variable length inputs.

The input feature is a two-dimensional array with a fixed width. As shown in Figure 3(a), each symbol at 

the input is mapped to an embedding vector using an embedding lookup table, which transforms the 2D 

symbol inputs to the three-dimensional (3D) array required by the convolutional encoder. The autoencoder 

cost calculation process is shown in Figure 4 for each API call event where the feature length is limited to 

200, the embedding vector size is 4, and the symbol lookup table size is 106. The variable length API call 

event is denoted as ”?”. The reconstructed symbol probability is calculated via cosine similarity obtained 

as an inner product of L2 normalized reconstructed input and L2 normalized embedding.24 Output of 

Figure 4 contains the cross entropy between the one hot-encoded input symbol and the softmax’ed 

reconstructed symbol probability. The autoencoder cost is calculated by taking the mean of the sum of 

the negative log likelihood value at each symbol position in the input.

Furthermore, variable length inputs pose a challenge in producing consistent latent representations. 

Although the convolution operation can be performed against arbitrary length inputs, the size of the latent 

representation, z, can vary depending on the input length. This is not a desirable property when a fixed 

size z is needed for similarity comparison during detection. It is required to perform pooling on the variable 

size convolutional filters produced by variable length inputs. While global max pooling works well when 

the features are extracted for classification problems, it performs poorly for autoencoders because each z 

bit gets biased to a relatively larger value, saturates to a distinct bit range, generates poor reconstruction, 

and therefore negatively impacting the accurate clustering of similar samples. Our experiments show 

that global average pooling performs better for autoencoders. Notably, Gaussian normal distribution that 

drives adversarial training is nicely imposed on z bits with global average pooling (see Figure 5).

As shown in Figure 6, global average pooling is performed on the last convolutional layer of the encoder 

by producing the z bits from each filter’s mean value (blue part of Figure 6). Then z is unpooled by setting 

bit values to the decoder filters at the argmax index locations saved from the encoder filters (red part of 

Figure 6).

C. Metric
The latent representations obtained through adversarial autoencoder contain real numbers that can be 

directly compared with each other by calculating the mean squared error (MSE).

If binary bits are desired for efficient comparison, z needs to be binarized using the bitwise mean value 

of the training samples, which splits the bit distributions into halves and subsequently helps to better 

distinguish between samples. Adversarial training driven by Gaussian normal distribution significantly 



11 | One-Shot Malware Outbreak Detection Using Spatio-Temporal Isomorphic Dynamic Features

helps in spreading the bits evenly. Hamming distance is then used to compute the distance for the given 

two latent vectors. However, our experiment indicates that MSE metric over real valued z performs slightly 

better than hamming distance over binary z bits.

Figure 5. Distribution of each bit in z 

Note: Each bit has Gaussian normal distribution as instructed by adversarial training, which helps distinguish 

between different samples. Global average pooling allows this adversarial property as well as the sound 

reconstruction required for autoencoder.

Figure 6. Global average pooling, latent representation (z) generation, and global average unpooling 

Note: The argmax of each encoder filter is marked in red. The mean value of 

each encoder filter is marked in blue.
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IV. Evaluation

A. Baselines and Dataset
Gradient Boosting, Support Vector Machine, and Random Forest models were chosen as the baselines 

that the proposed model is evaluated against. The two-dimensional variable length input feature vector 

used for the proposed model is collapsed to a one-dimensional array in order to produce an n-gram 

feature25 for the baseline models. Note that clustering models were not included in the baseline since 

they need a decent number of training samples to work, which is different from the problem setting put 

forward in this research.

Dynamic execution logs of 2,855 in-the-wild OS X malware samples collected from a proprietary commercial 

sandbox and 7,541 benign OS X samples were used for evaluation. A snapshot of family distribution 

for a portion of 2,855 in-the-wild malware samples is shown in Figure 7. Dynamic execution logs were 

analyzed and labeled by human experts, with focus on the similarity of API call event sequences. Of the 

samples, 353 unique API call sequence patterns out of 2,855 malicious samples were identified and were 

used for training. The 7,541 benign samples were split into mutually exclusive training and testing sets 

for all baseline models while benign samples were not included for the training of the proposed model in 

order to test its outbreak detection capability.

Figure 7. A snapshot of the family distribution for a portion of the 2,855 in-the-wild 

malware samples used in the evaluation
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Experiment 1

Malicious Benign

Train 353 3,770

Test 2,855 3,771

Table 1. Sample splits

B. Results
To simulate an outbreak, we assigned a unique label for each of the 353 unique malicious training samples 

and evaluated how accurately the label matches with the prediction. Therefore, the TP (True Positive) 

ratio in Table 2 shows the label-wise matches of all malicious testing samples against malicious training 

samples. 

Baseline models did not produce a good TP ratio against malicious samples, scoring less than 50% 

detection rate, while near zero FP (False Positive) was recorded. In short, it demonstrates that the supervised 

baseline models trained with a very small number of malicious training samples are not suitable for the 

problem setting of outbreak detection. On the other hand, aae-mse, the proposed generative adversarial 

autoencoder using mean squared error (MSE) as autoencoder loss, showed 99.1% true positives along 

with 0.1% false positives, with MSE decision threshold set to 0.000025. This threshold influences how 

much the model generalizes the detection.

Model TP FP

gradient-boosting-1gram 0.194 0.026

gradient-boosting-2gram 0.108 0.027

svm-1gram 0.056 0.000

svm-2gram 0.056 0.000

randomforest-1gram 0.460 0.000

randomforest-2gram 0.385 0.000

aae-mse (proposed model) 0.991 0.001

Table 2. Evaluation results
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Threshold TP FP

0.000500 1.000 0.306

0.000100 1.000 0.057

0.000075 1.000 0.033

0.000050 1.000 0.010

0.000025 0.991 0.001

0.000010 0.860 0.000

Table 3. Effect of threshold

Figure 8. An example of API call snippets for two similar samples detected by the proposed model 

Note: White lines indicate identical events. Yellow lines indicate non-identical events due to a 

difference in the event. Gray lines indicate absent events relative to the other event.

The higher the threshold is set, the more reliable the detection is whereas the model is more likely to miss 

the mutated samples. The effect of various threshold values is shown in Table 3. The threshold in bold 

shows the performance described in Table 2. One can draw the inference with a sufficiently low threshold 

for accurate detection while running a separate inference with a higher threshold to grab potentially 

malicious samples for further analysis.

In summary, the analysis showed that the proposed model is capable of reliably generalizing the sample 

variations while keeping a sufficiently fair distance from previously unseen benign samples. In contrast, 

traditional classifiers are much less likely to work for detection under the malware outbreak situations.
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C. Analysis
In this section, we analyze several key aspects of how the latent representation produced by generative 

adversarial autoencoder is correlated to the semantics of API call events.

Figure 9. An example of API call snippets of two similar samples detected by the proposed model 

Note: Both samples are distinguishable by the access to different remote network nodes.

Figure 10. Visualization of Cluster 2 detected by aae-mse (nsamples=209) 

Note: Cluster 2 consists of OSX_Bnodlero.PFL (2 samples), OSX_Bundlore.PFL (88 samples) 

 OSX_Bundlore.PFM (109 samples), OSX_BundloreCA.PFL (1 samples), OSX_BundloreCA.PFM (4 samples), 

and OSX_SurfBuy.ESS2 (5 samples).

Figure 8 shows an example of two similar samples detected by the proposed model. The majority of the 

API call events remain identical (marked in white background). A sequence of API calls (marked in yellow 

background) appears, initiated by a successful network connection establishment in the sample on the 

right-hand side. Those API calls that are absent (marked in gray background) appear in the sample on 

the left-hand side. This demonstrates the robust detection capability of the model even when samples 

execute different code paths in different operational environments.
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Figure 9 shows API call snippets of  OSX_Bundlore.ESS2 (on the left-hand side) and OSX_Bundlore.PFL 

(on the right-hand side), showing that aae-mse found these samples similar to each other. Although the 

URL and the IP address of the remote command and control server have changed, aae-mse successfully 

identified this variation.

The cluster detected by aae-mse shown in Figure 10 contains 209 different samples of six different 

variants of a family.
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V. Conclusion
The proposed generative adversarial autoencoder using API call event as features can produce good latent 

representations with a small training set that can be used for distance-based similarity between samples. 

The training set restriction seriously tests the generalization capability of the model. The results show that 

the proposed model provides effective detection for gradually diverging mutation of malware species 

in terms of behavior. The model was also found to be effective in discovering multiple heterogeneous 

malware families that share similar dynamic execution events.
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