
Supply Chain Attacks in the Age of Cloud Computing:
Risks, Mitigations, and the Importance of

Securing Back Ends

David Fiser

TREND MICRO LEGAL DISCLAIMER
The information provided herein is for general information
and educational purposes only. It is not intended and
should not be construed to constitute legal advice. The
information contained herein may not be applicable to all
situations and may not reflect the most current situation.
Nothing contained herein should be relied on or acted
upon without the benefit of legal advice based on the
particular facts and circumstances presented and nothing
herein should be construed otherwise. Trend Micro
reserves the right to modify the contents of this document
at any time without prior notice.

Translations of any material into other languages are
intended solely as a convenience. Translation accuracy
is not guaranteed nor implied. If any questions arise
related to the accuracy of a translation, please refer to
the original language official version of the document. Any
discrepancies or differences created in the translation are
not binding and have no legal effect for compliance or
enforcement purposes.

Although Trend Micro uses reasonable efforts to include
accurate and up-to-date information herein, Trend Micro
makes no warranties or representations of any kind as
to its accuracy, currency, or completeness. You agree
that access to and use of and reliance on this document
and the content thereof is at your own risk. Trend Micro
disclaims all warranties of any kind, express or implied.
Neither Trend Micro nor any party involved in creating,
producing, or delivering this document shall be liable
for any consequence, loss, or damage, including direct,
indirect, special, consequential, loss of business profits,
or special damages, whatsoever arising out of access to,
use of, or inability to use, or in connection with the use of
this document, or any errors or omissions in the content
thereof. Use of this information constitutes acceptance for
use in an “as is” condition.

Published by

Trend Micro Research

Written by

David Fiser

Stock image used under license from

Shutterstock.com

Contents

DevOps and Back-end Security

4

Conclusion and Recommendations

16

The security risks posed by numerous malware families and other types of

malicious attacks that target different segments across industries (be it for stealing

confidential data, causing collateral damage, or operating nation-state espionage),

have an overriding impact on the operation of their targeted entities.

Endpoint- or network-based security solutions such as antiviruses, intrusion

prevention systems (IPSs)/intrusion detection systems (IDSs), proxies, or firewalls

are all used as layers in the defense against multiple types of intrusions and

cyberthreats. The area of inquiry that we would like to look into is how small and

large companies protect their back-end servers and internal systems that store and

process a considerable volume of valuable data, from source-code management

systems, continuous integration/continuous delivery (CI/CD) systems, to software

deployments.

Some organizations have chosen to optimize their operational costs by moving

their back-end infrastructure to the cloud, or by running their own on-premises

private cloud using well-known and popular cloud-based solutions. Nevertheless,

this approach, if not executed correctly from both architectural and configuration

standpoints, might expose them or put them at risk of being an easy target for

attackers. As we have seen in past incidents, successful supply chain attacks not

only lead to damage to or loss of data and decline in customer trust and reputation,

but also result in negative media coverage.

In this paper, we will discuss multiple security gaps and risks related to the world

of DevOps, where cloud services have played a major role in digital and business

transformation. In the case of Jenkins, a popular CI/CD software, we will focus on

“known” design issues leading to full remote code execution (RCE) and unintended

data leaks. Moreover, we will address certain types of vulnerabilities found in

Jenkins such as sandbox escapes and plain-text-stored credentials. We will also

highlight the consequences of exploiting them. Furthermore, we will demonstrate

the importance of securing back-end-type services together with describing the

security risks associated with Docker and Kubernetes, which are popular software

both in DevOps and the container world. Additionally, we will discuss real-world

examples and scenarios, tools at large, and malware targeting Docker, which we

found and researched in 2019. Finally, we will discuss the security risks associated

with the use of new and trending cloud-based integrated development environments

(IDEs) like Visual Studio (VS) Online (or Visual Studio Codespaces as of June 2020).

4 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

DevOps and Back-End Security
The key performance indicators in today’s DevOps world are usability and speed. With these indicators

as the foci, some software lack security features and are designed only for secure environments, such as

Redis. In case a piece of software does provide security features, sometimes these are not set by default,

and thus responsibility is transferred to the user. However, it is common to find cases wherein these

security features are not enabled or configured properly. Risks persist even inside environments that are

considered secure, as these open the gate for attackers once they get into the private network. In fact, the

concept of a secure environment is in direct contradiction to the “Assume Breach” paradigm, a strategy

for minimizing damage upon compromise.1

Following this principle, there is no environment that is 100% safe and immune from attack; even with

high-protection standards from external threats, there is always internal risk: for example, a disgruntled

or resigned employee, or as we have seen in the past, compromised VPN access.2 This fact should be

emphasized for the back-end service administrators to configure the services in a secure manner.

Transport Layer Security
To provide an example, we can look at Redis, a popular open-sourced, in-memory data structure store.

When the default configuration is kept without further modifications, there is no authentication and no

Transport Layer Security (TLS) encryption applied. The Redis communication protocol is plain-text-based,

similar to the SMTP protocol; this allows for network-traffic sniffing, which can result in data or secret

leakage.

Figure 1. Example of Redis communication without TLS applied

5 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

In the case of Redis, by performing a search on Shodan, we discovered over 8,000 completely unsecure

instances (i.e., without TLS encryption and authentication) deployed in public clouds.3 These instances are

vulnerable to RCE attacks abusing CONFIG and SLAVEOF commands to deliver a payload (or payloads),

a technique described well by Pavel Toporkov in his 2018 ZeroNights presentation.4 We identified that

the typical payload deployed is the Kinsing malware, a bot used for infecting misconfigured devices and

running the XMRig cryptocurrency miner.5

As the CPU spike generated by cryptocurrency mining is noisy, a stealthier payload will be applied in case

of targeted attacks inside back-end environments.

Authentication and Access Control Lists (ACL)
When authentication is not configured or when role-based security using ACL is not applied, everyone

who can get into the system has administrator access. This is dangerous inside multiuser environments

even on an internal network, not to mention the possible breaches that could occur.

To demonstrate these risks, we look at Jenkins, a popular open-source automation server for software

development teams. Default configuration poses significant security risk even when authentication

is applied.

Executing Jobs on a Primary Machine

Jenkins has a distributed architecture: A primary machine manages a group of agents, which are Java

executables that run on remote machines and execute build jobs. Jenkins is also based on a modular

architecture, and most of its features are implemented inside plug-ins that extend its core functionality, for

example, when it comes to post-build tasks.

The primary contains main executables together with configuration files, including secrets storage. By

default, the primary can also execute build jobs, allowing less-privileged users to completely overtake the

Jenkins instance and leak secrets, job configuration, and source code.

It is worth noting that by default, there is no ACL model applied at all. The available matrix-based security,

if applied, might create a feeling of secure configuration that is false because of the ability to execute jobs

on primary.

We suggest using the Authorize Project plug-in as mitigation, together with setting Shell executable to

/bin/false at Configure System page, which effectively disables shell spawn, and hence disables jobs

execution on Primary node. Thus, proper configuration of agents is highly recommended.6

6 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

Figure 2. An example of matrix-based security in Jenkins

Plug-Ins

The other thing about Jenkins is that the major functionality is provided by community plug-ins, and one

must trust these plug-ins to be securely implemented. By looking at Jenkins security advisories, we can

conclude that most of the vulnerabilities in the Jenkins platform are related to plug-ins.7

Improper Secrets Storage

Improper secrets storage belongs to the most common vulnerability types that are found among plug-

ins. With improper secrets storage, service credentials are stored inside plain-text configuration files. By

auditing their source codes, we discovered several vulnerabilities of the same type inside multiple plug-

ins, namely CVE-2019-10348, CVE-2019-10350, CVE-2019-10351, CVE-2019-10361, CVE-2019-10366,

CVE-2019-10378, CVE-2019-10385, CVE-2019-10440, and CVE-2019-10433.

Sandbox-Based Escapes

Jenkins allows usage of the Groovy scripting language in build job definitions by using the Pipeline plug-

in. The Groovy interpreter runs inside the same Java application context, thus allowing access to critical

Jenkins classes if not limited. When an administrator sets up a secure environment and introduces role-

based security, they have to approve newly created Groovy scripts before execution. Otherwise, a script

can be run inside a sandbox environment; this is done by using a Script Security Plugin.8 In 2019, 12 RCE

vulnerabilities inside the plug-in were disclosed, making it vulnerable to exploitation if the plug-in is not

updated properly.9

Using Docker Containers
Using containers has become popular because they often provide either software that works out of the

box or software that requires minimal configuration. Containerization helps with fast deployments and

provides environment stability. In this paper, we will focus on security challenges when using one of the

popular container engines: Docker.

7 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

Container Images

Docker’s container image uses layered architecture. The first layer is a base image, which can be an

operating system distribution image (Ubuntu, for example, or another image that has already been

constructed). Every command from a container image build file then creates another layer. In the case of

Docker, the file is called Dockerfile.

This architecture also allows image backtracking, which can be used for retrieving secrets that were

removed by another Dockerfile directive: for example, RUN rm secrets. This mistake is often committed

when a whole folder is added to the image.

Container images of popular software can be found on Docker Hub, a default place where images are

pulled from when using Docker. Still, caution should be exercised while pulling uncertified or unverified

images. Previously, 17 backdoored images were found inside the Docker Hub repository. Hence, a

Dockerfile should also be verified when using untrusted images.10

Figure 3. An example of a fake Nginx image that is actually an XMRig

It is worth mentioning that container images that work out of the box found on Docker Hub often have

default configuration without proper security measures applied. Thus, it is the responsibility of a user to

provide additional security configuration.

As with any piece of software, a container image can also contain a vulnerability. Previously, an Alpine

Linux base image was discovered to have a “null root password” vulnerability, which has been assigned

as CVE-2019-5021.11 Fortunately, security solutions are able to scan container images, and this helps to

mitigate these risks.

8 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

Container Runtime Settings

A container is essentially an isolated environment of one or a set of processes. To isolate multiple containers

running inside a single host, the container engine uses various kernel features — namespaces, control

groups (aka cgroups), App Armor, and seccomp profiles, together with various system calls or syscalls

(for example, pivot_root). As majority of containers run inside a Linux environment, resource-isolation

features of the Linux kernel are used for them to run independently. When spawning a container using

Docker, a user can influence the isolated environment. They can set up certain parameters that reduce

security isolation inside the container, such as the absence of a certain namespace, setting parameters

for cgroups, or mounting a host volume.

Namespaces isolate the process environments to a certain level. The following table shows types of

namespaces that are available inside the Linux kernel.

Namespace Use

MNT (Mount) Manages file system mount points

PID (Process) Isolates processes

NET (Network) Manages network interfaces

IPC (Inter-process communication) Manages access to IPC resources

UTS (Host name) Isolates kernel and version identifiers

CGROUPS Limits, isolates, and measures resource usage of several processes

User ID (User) Provides privilege isolation and user identification segregation

Table 1. Types of Linux namespaces

Privileges and Capabilities

By default, a Docker daemon, as well as a container process, runs with root permissions with a limited

set of capabilities. The following table shows capabilities that are available when running as root inside

a container.

Capability Permitted operation

CAP_AUDIT_WRITE Write records to the kernel’s auditing log

CAP_CHOWN (Change
owner)

Make arbitrary changes to file UIDs and GIDs; change the owner and group of
files, directories, and links

CAP_DAC_OVERRIDE
(Discretionary access control)

Bypass a file’s read, write, and execute permission checks

CAP_FOWNER Bypass permission checks on operations that normally require the file system
UID of the process to match the UID of the file, excluding checks that are
covered by CAP_DAC_OVERRIDE and CAP_DAC_READ_SEARCH

CAP_FSETID Will not clear set-user-ID and set-group-ID mode bits even when a file is changed

CAP_KILL Bypass permission checks for sending signals

CAP_MKNOD Create special files

9 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

Capability Permitted operation

CAP_NET_BIND_SERVICE Bind a socket to internet domain privileged ports (port numbers below 1024)

CAP_NET_RAW Use RAW and PACKET sockets and bind to any address for transparent proxying

CAP_SETGID Make arbitrary manipulations of process GIDs and supplementary GID list

CAP_SETPCAP If file capabilities are supported (i.e., since Linux 2.6.24): add any capability from
the calling thread’s bounding set to its inheritable set; drop capabilities from the
bounding set; make changes to the secure bit flags.

If file capabilities are not supported (i.e., kernels before Linux 2.6.24): grant or
remove any capability in the caller’s permitted capability set to or from any other
process

CAP_SETUID

Make arbitrary manipulations of process UIDs, forge UID when passing socket
credentials via UNIX domain sockets, and write a user ID mapping in a user
namespace

CAP_SYS_CHROOT Use chroot and change namespaces using setns

Table 2. The available capabilities when running as root inside a container

To mitigate the risk of these capabilities being exploited, the recommended action is to follow the principle

of least privilege. User permission should be lowered by adding a low-privileged user for running a

containerized application.

Docker provides an option to run a container process under non-root user via a USER directive inside a

Dockerfile. However, this does not run the container process inside different user namespaces, as we can

observe from the following figure. The number in square brackets should be noted.

Figure 4. Comparison of default and Docker container namespaces

We recommend using user namespaces with –userns-remap parameter and allowing the separation of the

host root and the container root. For instance, using user namespaces is possible to map a less-privileged

host user to a container root user. When user namespaces are used, the host kernel effectively prevents

changes that the less-privileged user does not have permission to perform. For example, even when all

capabilities are available inside the user namespace, a privileged action such as installation of kernel

module is denied, as the mapped less-privileged user does not have permission to do so.

10 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

When user namespace is applied, the container parent process still runs under root, providing a space for

abuse when a Docker vulnerability is found and exploited. For mitigation of this risk, we recommend that

the reader follow Rootless Docker mode.12

Privileged Containers

The real danger and violation of isolation mechanisms is hidden when running privileged containers

using—privileged flag. The flag provides a container with all capabilities, effectively having host root. Still,

namespaces and cgroups are used in the following tweet, Felix Wilhelm shows that an easy escape using

cgroup’s notify_on_release feature is possible.

Figure 5. Proof of concept of privileged container escape13

Exposed APIs

This is not an example of default behavior nowadays, although it is still applied by some users. From

a security perspective, exposing the Docker daemon to TCP port 2375 with no authentication or TLS

encryption is equivalent to giving away hardware resources at the free disposal of anyone who gains

access. The daemon accepts JSON requests over HTTP without authentication, thus allowing a malicious

user to spawn a privileged container on the host that can be used for full host escape under root permission.

Our telemetry captured an attempt to overtake a host by spawning a privileged container, mounting a host

root filesystem (“/”), and rewriting the /root/.ssh/authorized_keys file.14

Figure 6. Putting a custom authorized key inside a mounted filesystem

11 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

The exposed API could enable attackers to use the user’s server as free computation power. Majority of

the deployed payloads were related to cryptocurrency miners;15 we also observed payloads deploying the

AESDDoS botnet malware16 and lately, the Kinsing malware family.17

Kubernetes
Kubernetes is an orchestration tool that allows the deployment and management of containers at scale.

The Kubernetes services are offered by many cloud providers such as Google’s Google Kubernetes

Engine (GKE), Amazon’s Elastic Kubernetes Service (EKS), or Microsoft’s Azure Kubernetes Service (AKS).

These managed services help to reduce the risk of major misconfiguration issues; however, in some

environments this is not an option. For this reason, we would like to introduce a major misconfiguration-

related risk when running Kubernetes clusters on premises.

This Kubernetes component diagram shows that all communication is marshaled through kube-api-

server. It is essentially a REST API service controlling all Kubernetes managing functions.

Kubernetes control plane

Kubernetes nodes

Cloud

etcd

KubeletKube-api-server

Kube-controller
manager

Cloud-controller
manager

Kube-scheduler

Kube-proxy

Kubelet

Kube-proxy

Kubelet

Kube-proxy

Figure 7. Kubernetes component diagram

By default, the API listens on two TCP ports:

• 8080 on localhost only

• Requests bypass all authentication and authorization modules

• 6443 on first non-localhost interface

• Requests properly sent for authentication and authorization

As the API plays a major role in Kubernetes security, we suggest ensuring that the API is available only to

devices that need it. We also suggest that users implement role-based access control (RBAC) authorization

and ensure the principle of least privilege.

12 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

For example, if an application deployed inside a cluster is able to successfully interfere with the API server,

then it should be taken as a security risk with its severity depending on the available API calls.

It is also worth noting that in a misconfigured scenario, a single vulnerable application can serve as an

entry point to the whole cluster.18

Etcd

Etcd is a distributed key-value store for storing critical data. It is used for storing all data inside a Kubernetes

cluster. For that reason, it is critically important to ensure that only kube-api-server has access to the

etcd, as any unintended data leakage or unauthorized modification would be a serious security incident;

the ability to read or modify etcd values directly from a deployed application inside a cluster is equal to

administrator access to the whole cluster.19 Data encryption at rest is highly recommended as secrets are

base64 decoded only.

Pods and Security Policies

A basic deployment unit inside a Kubernetes cluster is called a pod. A pod describes the container

settings for application deployment. Running a pod with higher privileges can then, as in the case of

privileged containers, lead to node or whole cluster compromise. To avoid dangerous pod configurations

inside a cluster, we suggest defining and using Pod Security Policies.20

Examples of Pod Security Policy enforcements:

• runAsNonRoot: true

• readOnlyRootFileSystem: true

• allowPrivilegeEscalation: false

By default, every pod inside a cluster can communicate with another pod inside a cluster: This allows

attackers to probe the rest of the cluster from any pod that they gain access to. This is extremely dangerous

especially when a pod is exposed to the internet while others are designed to remain under an internal

network. We suggest using network policies21 to define which is allowed to communicate with what. For

example, a database (such as MySQL) should be accessed from a linked application (like WordPress)

only. We also recommend using tools, such as Calico and Weave, which help with the configuration and

visualization of proper settings.

Online IDEs
Lastly, we would like to discuss online cloud development environments in this paper. These are interesting

alternatives to the desktop environments that we are used to. In this section, we would like to introduce

security risks that are applicable to these platforms.

13 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

Online IDE Back Ends

First of all, we would like to elaborate on how an online IDE works. IDEs are web applications that execute

JavaScript at client-side in the browser context. The client typically initiates a connection to the back end

using WebSocket. The internal back-end implementation varies with the online IDE provider; however,

they all provide a terminal interface to the user’s environment. In most cases, one has full control of the

environment along with the responsibility of ensuring secure configuration. In some cases, it might be

a container, a linked virtual private server (VPS), or a publicly available device with Secure Socket Shell

(SSH) access.

Coding using own device/localhost

Coding in the cloud

Boot up device
where IDE will be set up

Boot up device that
will be used to access online IDE

Open browser to
access IDE in the cloud

Browser JavaScript uses
WebSockets to initiate SSH
in the background so that
one can access online IDE

Interact with IDE via text editor

Interact with cloud IDE
via text editor in browser

Download/install required programs
to set up environment

Figure 8. Local versus cloud-based IDE

Inside the linked environment, a user typically stores a hidden provider configuration together with

workspace-specific configurations, such as source code management (SCM) provider settings (like git

configuration), access tokens, and source code clone.

Figure 9. Access token storage inside a linked environment

In an analysis early this year, we focused on two online IDE services: AWS Cloud9 and Microsoft Visual

Studio (VS) Online (renamed Visual Studio Codespaces in June). In the case of AWS Cloud9, it is possible

to specify one’s own device or use a cloud VPS; for Visual Studio Online, it is possible to use Azure VPS.22

In both cases, one can promote oneself to root through available terminal interface.

14 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

Figure 10. Root promotion inside a linked environment

Visual Studio Online is a clone of Visual Studio Code accessible by web browser. The whole application

is located in a linked environment. On the other hand, in the case of AWS Cloud9, only back-end services

are available on a linked machine, while front-end services are located inside the AWS cloud.

Figure 11. Visual Studio Code remote inside a linked environment

Security Risks

Misconfiguration in the Linked Device

Together with full control of the linked device, a user has the responsibility to prevent misconfiguration

issues.

These issues might occur when exposing some ports for extended application usage by following an

online tutorial since for instance, AWS Cloud9 lacks support for plug-ins. Notably, the lifespan of linked

device is equivalent to the length of time spent during development inside a web browser. The cloud

providers also have timeouts, which suspend the linked device in case of longer inactivity.

Browser

Cases of browser plug-ins with malicious intent are well known, and their functionality can be extended

for online IDE development as well. We did a proof of concept to demonstrate that it is possible for an

attacker to steal code using a malicious browser extension. We also know about banking trojans that

hook browser function in order to steal user credentials. Similarly, we might expect an alternative feature

to steal the code or access tokens for the IDE.

15 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

Figure 12. Example of endpoint data stolen by a malicious browser extension

Plug-Ins

The main advantage of Visual Studio Online and, in general, of the Visual Studio Code platform, is the

number of extensions available. This, however, is yet another possible attack surface.

Imagine a malicious extension, such as a useful-looking extension with an embedded backdoor. The

lack of permission checks (like disk access, network access, and process access) for extensions during

installation or use becomes a security problem. The extent of security checks during extension publishing23

is limited to having a valid publisher ID and a few image-related restrictions. In short, the user has to trust

the extension developer entirely.

For demonstration purposes, we created a customized malicious extension proof of concept containing a

reverse-shell functionality. During our research, we did not find any malicious extension inside the Visual

Studio Code store.

Figure 13. Proof of concept reverse-shell of a malicious Visual Studio Code extension

16 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

Conclusion
As software complexity and the number of configuration options increase, so does the risk of

misconfiguration. Particularly, most cloud security risks are related to misconfigurations. With the help of

containers, we can observe a lot of out-of-the-box-functioning software. However, users should be aware

that the software is shipped with default and, in some cases, unsecure configuration. Users should extend

this default configuration by following the developer’s manual and taking extra care when it comes to the

security section to secure the deployment properly.

Users should also consider that there is no secure environment and expect that there could always be

malicious intentions from internal and external actors. It is advisable to follow the Assume Breach paradigm,

use layered security, try to introduce security policies that limit the damage in case of compromise (rather

than the developing process), and stop supply chain attacks.

17 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

References
1 Netsurion. (n.d.). Netsurion. “The Assume Breach Paradigm.” Accessed on Oct. 8, 2020, at https://www.netsurion.com/

articles/the-assume-breach-paradigm.

2 Jaya Baloo. (Oct. 21, 2019). Avast Blog. “Avast fights off cyber-espionage attempt, Abiss.” Accessed on Oct. 8, 2020, at

https://blog.avast.com/ccleaner-fights-off-cyberespionage-attempt-abiss.

3 David Fiser. (April 2, 2020). Trend Micro Research, News, and Perspectives. “More Than 8,000 Unsecured Redis Instances

Found in the Cloud.” Accessed on Oct. 8, 2020, at https://www.trendmicro.com/en_us/research/20/d/more-than-8-000-

unsecured-redis-instances-found-in-the-cloud.html.

4 Pavel Toporkov. (2018). ZeroNights. “Redis post-exploitation.” Accessed on Oct. 8, 2020, at https://2018.zeronights.ru/wp-

content/uploads/materials/15-redis-post-exploitation.pdf.

5 David Fiser and Jaromir Horejsi. (April 21, 2020). Trend Micro Research, News, and Perspectives. “Exposed Redis Instances

Abused for Remote Code Execution, Cryptocurrency Mining.” Accessed on Oct. 8, 2020, at https://www.trendmicro.com/

en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html.

6 David Fiser. (Aug. 17, 2019). Trend Micro Security Intelligence Blog. “Jenkins Admins: Relying on Default Settings Could Put

Master at Risk of Remote Code Execution Attacks.” Accessed on Oct. 8, 2020, at https://blog.trendmicro.com/trendlabs-

security-intelligence/jenkins-admins-relying-on-default-settings-could-put-master-at-risk-of-remote-code-execution-attacks/.

7 Jenkins. (n.d.). Jenkins. “Jenkins Security Advisories.” Accessed on Oct. 8, 2020, at https://www.jenkins.io/security/

advisories/.

8 Jenkins. (n.d.). Jenkins. “Script Security.” Accessed on Oct. 8, 2020, at https://plugins.jenkins.io/script-security/.

9 CVE Details. (n.d.). CVE Details. “Jenkins Script Security: Vulnerability Statistics.” Accessed on Oct. 8, 2020, at

https://www.cvedetails.com/product/35997/Jenkins-Script-Security.html?vendor_id=15865.

10 Catalin Cimpanu. (June 13, 2018). Bleeping Computer. “17 Backdoored Docker Images Removed From Docker Hub.”

Accessed on Oct. 8, 2020, at https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-

from-docker-hub/.

11 Tom Spring. (May 9, 2019). Threat Post. “Alpine Linux Docker Images Shipped for 3 Years with Root Accounts Unlocked.”

Accessed on Oct. 8, 2020, at https://threatpost.com/alpine-linux-docker-images-unlocked/.

12 Docker. (n.d.). Docker. “Run the Docker daemon as a non-root user (Rootless mode).” Accessed on Oct. 8, 2020, at

https://docs.docker.com/engine/security/rootless/.

13 Felix Wilhelm. (July 17, 2019). Twitter. “d=`dirname $(ls -x /s*/fs/c*/*/r* |head -n1)`mkdir -p $d/w;echo 1 >$d/w/notify_on

releaset=`sed -n ‘s/.*\perdir=\([^,]*\).*/\1/p’ /etc/mtab`touch /o; echo $t/c >$d/release_agent;echo “#!/bin/sh$1 >$t/o”>/

c;chmod +x /c;sh -c “echo 0 >$d/w/cgroup.procs”;sleep 1;cat /o.” Accessed on Oct. 8, 2020, at https://twitter.com/_fel1x/

status/1151487051986087936.

14 David Fiser and Alfredo Oliveira. (Dec. 20, 2019). Trend Micro Security Intelligence Blog. “Why Running a Privileged Container

in Docker Is a Bad Idea.” Accessed on Oct. 8, 2020, at https://blog.trendmicro.com/trendlabs-security-intelligence/why-

running-a-privileged-container-in-docker-is-a-bad-idea/.

15 Alfredo Oliveira. (May 30, 2019). Trend Micro Security Intelligence Blog. “Infected Cryptocurrency-Mining Containers Target

Docker Hosts With Exposed APIs, Use Shodan to Find Additional Victims.” Accessed on Oct. 8, 2020, at https://blog.

trendmicro.com/trendlabs-security-intelligence/infected-cryptocurrency-mining-containers-target-docker-hosts-with-exposed-

apis-use-shodan-to-find-additional-victims/.

16 David Fiser, Jakub Urbanec, and Jaromir Horejsi. (June 14, 2019). Trend Micro Security Intelligence Blog. “AESDDoS Botnet

Malware Infiltrates Containers via Exposed Docker APIs.” Accessed on Oct. 8, 2020, at https://blog.trendmicro.com/trendlabs-

security-intelligence/aesddos-botnet-malware-infiltrates-containers-via-exposed-docker-apis/.

17 Gal Singer. (April 2, 2020). Aqua Security. “Threat Alert: Kinsing Malware Attacks Targeting Container Environments.” Accessed

on Oct. 8, 2020, at https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability.

https://www.trendmicro.com/en_us/research/20/d/more-than-8-000-unsecured-redis-instances-found-in-the-cloud.html
https://www.trendmicro.com/en_us/research/20/d/more-than-8-000-unsecured-redis-instances-found-in-the-cloud.html
https://2018.zeronights.ru/wp-content/uploads/materials/15-redis-post-exploitation.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/15-redis-post-exploitation.pdf
https://www.trendmicro.com/en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
https://www.trendmicro.com/en_us/research/20/d/exposed-redis-instances-abused-for-remote-code-execution-cryptocurrency-mining.html
https://blog.trendmicro.com/trendlabs-security-intelligence/jenkins-admins-relying-on-default-settings-could-put-master-at-risk-of-remote-code-execution-attacks/
https://blog.trendmicro.com/trendlabs-security-intelligence/jenkins-admins-relying-on-default-settings-could-put-master-at-risk-of-remote-code-execution-attacks/
https://www.jenkins.io/security/advisories/
https://www.jenkins.io/security/advisories/
https://plugins.jenkins.io/script-security/
https://www.cvedetails.com/product/35997/Jenkins-Script-Security.html?vendor_id=15865
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://www.bleepingcomputer.com/news/security/17-backdoored-docker-images-removed-from-docker-hub/
https://threatpost.com/alpine-linux-docker-images-unlocked/
https://docs.docker.com/engine/security/rootless/
https://blog.trendmicro.com/trendlabs-security-intelligence/why-running-a-privileged-container-in-docker-is-a-bad-idea/
https://blog.trendmicro.com/trendlabs-security-intelligence/why-running-a-privileged-container-in-docker-is-a-bad-idea/
https://blog.trendmicro.com/trendlabs-security-intelligence/infected-cryptocurrency-mining-containers-target-docker-hosts-with-exposed-apis-use-shodan-to-find-additional-victims/
https://blog.trendmicro.com/trendlabs-security-intelligence/infected-cryptocurrency-mining-containers-target-docker-hosts-with-exposed-apis-use-shodan-to-find-additional-victims/
https://blog.trendmicro.com/trendlabs-security-intelligence/infected-cryptocurrency-mining-containers-target-docker-hosts-with-exposed-apis-use-shodan-to-find-additional-victims/
https://blog.trendmicro.com/trendlabs-security-intelligence/aesddos-botnet-malware-infiltrates-containers-via-exposed-docker-apis/
https://blog.trendmicro.com/trendlabs-security-intelligence/aesddos-botnet-malware-infiltrates-containers-via-exposed-docker-apis/
https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability

18 | Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securing Back Ends

18 Brandon Niemczyk. (April 27, 2020). Trend Micro Security News. “Guidance on Kubernetes Threat Modeling.” Accessed on

Oct. 8, 2020, at https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/guidance-on-kubernetes-threat-

modeling.

19 David Fiser. (March 20, 2020). Trend Micro Research, News, and Perspectives. “Security Risks in Online Coding Platforms.”

Accessed on Oct. 8, 2020, at https://www.trendmicro.com/en_us/research/20/c/security-risks-in-online-coding-platforms.html.

20 Kubernetes. (n.d.). Kubernetes. “Pod Security Policies.” Accessed on Oct. 8, 2020, at https://kubernetes.io/docs/concepts/

policy/pod-security-policy/.

21 Kubernetes. (n.d.). Kubernetes. “Network Policies.” Accessed on Oct. 8, 2020, at https://kubernetes.io/docs/concepts/

services-networking/network-policies/.

22 Microsoft. (n.d.). Microsoft. “Visual Studio CodespacesPREVIEW.” Accessed on Oct. 8, 2020, at https://azure.microsoft.com/

en-us/services/visual-studio-online/.

23 Microsoft. (n.d.). Microsoft. “Publishing Extensions.” Accessed on Oct. 8, 2020, at https://code.visualstudio.com/api/working-

with-extensions/publishing-extension.

https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/guidance-on-kubernetes-threat-modeling
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/guidance-on-kubernetes-threat-modeling
https://www.trendmicro.com/en_us/research/20/c/security-risks-in-online-coding-platforms.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://azure.microsoft.com/en-us/services/visual-studio-online/
https://azure.microsoft.com/en-us/services/visual-studio-online/
https://code.visualstudio.com/api/working-with-extensions/publishing-extension
https://code.visualstudio.com/api/working-with-extensions/publishing-extension

©2020 by Trend Micro, Incorporated. All rights reserved. Trend Micro, the Trend Micro t-ball logo, and Trend Micro Smart Protection Network
are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be trademarks or registered
trademarks of their owners.

TREND MICROTM RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and supporting

efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in vulnerability disclosures, and

publishes innovative research on new threats techniques. We continually work to anticipate new threats and deliver thought-provoking

research.

www.trendmicro.com

	Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations, and the Importance of Securi
	Table of Contents
	Abstract
	DevOps and Back-End Security
	Conclusion and Recommendations
	References

