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In the current state of the threat landscape, cybercriminals have increasingly 

adopted the latest evasion techniques (for example, polymorphism, 

encryption, and obfuscation) to bypass signature-based detection 

methods. Since most of these threats propagate through the network, it 

is important to have proactive techniques to discover an infection before it 

damages a system.

To address these growing network threats, methods that leverage the power 

of machine learning should be considered and explored, as big data and 

machine intelligence continue to gain prominence in information security 

due to its efficacy in aiding cybersecurity solutions to combat various 

threats. In this study, we decided to train a machine learning model using 

header-based information, as well as other characteristics in the HTTP 

network traffic, in capturing malicious behavior.

Our research discovered that features in the raw byte stream that are 

augmented with handcrafted features can be useful to understand 

the characteristics of network threats. In specific clusters formed, it is 

possible to identify certain threats targeting a specific server, or if there 

are characteristics that can be observed in the injected code for exploit 

detection.

This paper will discuss how machine learning can help cybersecurity 

professionals identify connected malware campaigns and discover valuable 

insights on future trends, which are necessary actions that can lead to 

better defenses against network threats.

https://www.trendmicro.com/vinfo/us/security/definition/machine-learning
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I. Introduction
A network intrusion attack refers to any compromise in the stability or security of information stored on 

connected computers.1 There are many intrusion detection techniques and methods used for detecting 

network anomalies. The traditional method is to monitor network protocols using signature/behavior-

based rules and heuristics.2, 3, 4 Since not all malicious network traffic happens in post-infection, all attack 

phases are monitored from pre-infection to post-infection stages. This technique broadens the search 

parameters for current threats and can be used as a reference on how a threat behaves during an attack.5 

Other techniques include the use of custom sandbox analysis and threat intelligence sharing. Custom 

sandbox analysis enables the discovery of advanced threats even if a file was not initially detected 

through the network or in the system. Threat intelligence sharing, on the other hand, enables other security 

products to quickly contain the threat and prevent further attacks.

While the described technologies can address most network threats, there are still some limitations.6 

Signature-based detection lacks flexibility; if the detected network traffic has a minor change [e.g., the 

spoofed header has a dynamic, randomly-generated Uniform Resource Identifier (URI)], the signature 

cannot detect it unless the signature is modified.7, 8 Additionally, the growing automation of attacks and 

the sheer amount of attacks make manual inspection by analysts time-consuming.9 Advanced threats can 

be covered by behavior-based or heuristic rules; however, they can be potentially aggressive, and, in turn, 

can lead to false positives.10, 11

The lack of flexibility for signature-based detection and the aggressiveness of behavior-based detection 

and heuristics call for a solution that will address these concerns. This is where machine learning comes 

in.12 Machine learning can process data beyond what humans can in a short span of time, and evolve 

according to the data instances given as input. In this study, the data fed into the machine learning model 

were from in-the-wild data, which opened the possibility of obtaining insights that can be used to aid in 

the identification of targeted attacks and advanced threats.

The following sections will discuss, in order, the definitions of network flow data, machine learning, and 

the dataset used, followed by the implementation of the clustering model, the evaluation of the model, the 

conclusion formed from this research, as well as insights that can be valuable for future work concerning 

network threats.
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II. Assumptions and Preliminaries
A. Network Flow Data
A flow is defined as a “unidirectional stream of Internet Protocol (IP) packets that share a set of 

common properties: typically, the IP-five-tuple of protocol, source and destination IP addresses, source 

and destination flows.”13 Flow data exported by a packet sniffer to a packet capture (PCAP) contains 

information that is useful for examining the traffic composition of different applications and services in the 

network. Its intent is not to steal information, but to help secure the network.14 It can be used to discover 

and analyze different kinds of network anomalies, such as targeted attacks or presence of botnets.

B. Machine Learning
There are several approaches in the use of machine learning for network data. A standard approach is to 

use the classification process to identify malicious from legitimate traffic.15, 16, 17 Classification, which is a 

type of supervised learning, requires a significant amount of time and resources to sift through the data 

and label it, since most data encountered in the real world are unlabeled.

Using unlabeled data, however, is efficient in recognizing patterns. This method of exploring unlabeled 

data, or unsupervised learning, also helps in discovering new relationships between data through 

clustering, which can be applied in real-time for newly identified threats.

This study used a semi-supervised learning approach to maximize the labeling and processing of large 

amounts of unlabeled data through clustering. These labels are used to find relationships between different 

malware families and to know how they differ from one another.

C. Dataset
As prior researches have discussed, the dataset is a critical component in utilizing machine learning on 

malicious network flow. Previous studies used existing public datasets18, 19 or datasets generated in a 

controlled environment.20, 21

This study utilizes in-the-wild network dataset from PCAPs of recent threats tagged as malicious by Trend 

Micro’s network detection engine and may potentially contain new and never-been-seen threats. The 

network flows that are processed are Hypertext Transfer Protocol (HTTP) traffic, since HTTP is commonly 

used as medium for malicious activity.22 The goal of this study is to get further information from the 

clustering results in order to provide timely and relevant coverage of the network threat landscape.
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III. Implementation
A. Data Preprocessing
In a PCAP, malicious flows are often mixed with normal flows, making it susceptible to noise. The large 

volume of network data present indicates that manual clean-up is a resource-intensive task. To ensure 

that the clusters are representative of the current threat landscape, the collected data should be filtered 

as much as possible.23

In this study, data capture is split into multiple streams to mitigate the noise, with each stream considered 

as an individual data point. Given that this study deals with malicious network flow, it is expected that 

non-standard headers and formatting aberrations may be found in the data and preprocessing should be 

taken into account.

B. Feature Engineering
Stream headers and other relevant information were used to generate the features fed into the clustering 

model. Some of the features used were taken from previous academic papers studying features for anomaly 

detection, such as byte entropy, distribution, and standard deviation of the headers and payload.24, 25 

Concrete attack instances were carefully abstracted, as reliance on these would overfit to the malware 

present in the dataset and would prevent the model from fitting well to novel attack instances.26

The features in this study were crafted to reflect the subject matter expertise of network threat detection 

experts, and to discriminate between certain types of malware. Some were only target-specific server 

types, while others manifest characteristics that hint on the kind of malicious content being delivered to 

a machine.

While there is great potential for machine learning in security research applications, translating network 

traffic to an acceptable input format for a machine learning model remains a challenge.27, 28 Since 

considering an ad-hoc versus an automated approach poses considerable trade-offs, both methods 

of feature engineering were employed in this study. The features selected have undergone scaling and 

normalization before being fed to the clustering model.
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C. Choosing the Clustering Algorithm
To determine the ideal algorithm for use in this type of problem, three clustering implementations 

were considered: k-means, Density-based Spatial Clustering of Applications with Noise (DBSCAN), 

and Hierarchical DBSCAN (HDBSCAN). k-means and DBSCAN from the scikit-learn29 library, as well 

as HDBSCAN from a standalone library by Leland McInnes, John Healy, and Steve Astels,30 were 

implemented using Python language.

In k-means, clustering requires prior knowledge of the number of clusters involved. It may also output 

different results depending on where the initial point was placed, which makes the clustering unstable. 

Since the number of clusters is unknown, there is a need for an algorithm that can estimate the number of 

clusters. In the threat landscape where new types of threats are continuously emerging, this model may 

have to be adjusted periodically.

Thus, only DBSCAN and HDBSCAN were used. In both density-based algorithms, the number of clusters 

is determined by its neighboring points. This solves the problem with setting the number of clusters 

whenever a new threat is discovered.

The final analysis was generated using the HDBSCAN algorithm. It extends DBSCAN by using a hierarchical 

approach before extracting the stable clusters. When compared to DBSCAN, the results produced by 

HDBSCAN are consistent with the understanding of the threats as reviewed by the domain experts. 

In semi-supervised learning, validation of the cluster still involves human intervention. The hierarchical 

approach that HDBSCAN employed is useful in understanding the results and helped augment human 

expertise, which will be illustrated in the next section.
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IV. Results
The preliminary results in the utilization of the clustering model to cluster similar types of malicious network 

flows are favorable. The following cluster visualization is produced using Embedding Projector.31

Figure 1. Clusters formed by malicious HTTP streams. Each color represents one cluster.

One of the clusters inspected predominantly consists of network flows indicating ransomware32 infection. 

The web plays an important part for ransomware because it requires a connection to the Command 

and Control (C&C) server to send an infection report, or receive the encryption key. Upon inspecting the 

ransomware cluster, most of the similarities occur in the Uniform Resource Locator (URL) found in various 

headers (for example, URI and location).
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Another interesting result comes from clusters comprised entirely of exploit kit33 detections as seen in 

Figure 2. When these clusters were examined, one of the features most relevant to the clustering turned 

out to be those which concern file types. This makes sense since exploit kits are known to exploit through 

file formats e.g. Shockwave/Flash, PDF, and JavaScript (JS), among others.

Figure 2. Clusters comprising different exploit kits.

Figure 3 illustrates the different network characteristics of five malware families: Rig, FlashPack, Angler, 

Neutrino, and Blacole. The different colors correspond to structural attributes determined by the features 

passed to the model. For signature-based detection, one rule will be created for each family due to 

varying flow characteristics present in the network. Since signature-based detection lacks flexibility, 

having a slight change in the network traffic can render the rule unusable, unless the signature is modified.

Figure 3. Raw network data of each malware family. Each color represents one characteristic.

RIG FLASHPACK ANGLER NEUTRINO BLACOLE
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Nevertheless, the clustering model was able to find similarities in the network flows, allowing them to be 

grouped together. From the multiple characteristics seen in each malware family, as illustrated in Figure 3, 

the clustering model was able to identify which ones constitute a certain profile that correlates among the 

similar samples. Figure 4 shows an analogy of how the clustering model sees the similar characteristics 

among the malware families.

Figure 4. Network flows as seen by the clustering model

Blacole seems like an outlier for the reason that it was categorized as a Trojan and not specifically as 

an exploit kit in the dataset labelling However, when its network traffic was examined, we found out that 

the key similarity that links Blacole to some exploit kits is that its malware routine takes advantage of JS 

vulnerabilities. This emphasizes the fact that exploit kits can be identified without tailoring features to a 

specific attack instance.

Another analysis was conducted to variants of Gh0st RAT (Remote Administration Tool) – a well-known 

Trojan affiliated with the GhostNet bot network.34 A number of Gh0st RAT variants have emerged over time 

since its source code is publicly available.35

RIG FLASHPACK ANGLER NEUTRINO BLACOLE

Figure 5. Variants of Gh0st RAT36

Figure 6 illustrates the streams that were clustered across multiple versions of Gh0st RAT because they 

contain similar payloads.
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Figure 6. Gh0st RAT clusters

With threats reusing old malware to carry payload for backdoor capabilities (as seen in Figure 7), 

cryptocurrency mining37 (see Figure 8), and targeted attacks,38 machine learning can associate incoming 

traffic to future Gh0st RAT variants.

Figure 7. Hex dump of Gh0st RAT variant KrisR
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Figure 8. Hex dump of Monero cryptocurrency mining payload
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V. Conclusion and Future Work
Clustering malicious network flows with features from the raw byte stream, when augmented with 

handcrafted features as input from the data, can provide insights on different network patterns from 

malicious traffic. It can also show similar characteristics between different malware families, albeit within 

the same classification—such as exploit kits. Indeed, this approach is useful in augmenting signature 

creation for detecting network malware.

As shown in this research, machine learning plays a key role in the process of successfully clustering 

network threats. Using machine learning for analysis vastly improves the speed at which data is organized 

and conclusions are obtained. In addition, the results show how machine learning can be used to efficiently 

identify a widely used vulnerability as it is spreading, or to recognize a certain vulnerability used in a novel 

way as part of another malware campaign.

For analysts who would conduct similar studies in the future, we recommend feature refinement—an 

approach that can lead to better modelling of malicious flow clustering. At this stage, the model would 

benefit most from taking a closer look at URLs in the streams, and from other experimentation with other 

features extracted from the header contents, such as measuring string randomness. In order for real-

time detections to be more accurately clustered, the model must be equipped, in future iterations, with 

the capacity to handle sequential data. This will also bolster its capabilities to cluster flows from other 

protocols than HTTP.
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