
In partnership with

Attacks on Smart
Manufacturing Systems
A Forward-looking Security Analysis

Federico Maggi
Trend Micro Research

Marcello Pogliani
Politecnico di Milano

Attacks on Smart Manufacturing Systems
A Forward-looking Security Analysis

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information and educational purposes only.

It is not intended and should not be construed to constitute legal advice. The information

contained herein may not be applicable to all situations and may not reflect the most

current situation. Nothing contained herein should be relied on or acted upon without the

benefit of legal advice based on the particular facts and circumstances presented and

nothing herein should be construed otherwise. Trend Micro reserves the right to modify

the contents of this document at any time without prior notice.

Translations of any material into other languages are intended solely as a convenience.

Translation accuracy is not guaranteed nor implied. If any questions arise related to the

accuracy of a translation, please refer to the original language official version of the

document. Any discrepancies or differences created in the translation are not binding and

have no legal effect for compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate and up-to-date

information herein, Trend Micro makes no warranties or representations of any kind as to

its accuracy, currency, or completeness. You agree that access to and use of and reliance

on this document and the content thereof is at your own risk. Trend Micro disclaims all

warranties of any kind, express or implied. Neither Trend Micro nor any party involved

in creating, producing, or delivering this document shall be liable for any consequence,

loss, or damage, including direct, indirect, special, consequential, loss of business profits,

or special damages, whatsoever arising out of access to, use of, or inability to use, or

in connection with the use of this document, or any errors or omissions in the content

thereof. Use of this information constitutes acceptance for use in an “as is” condition.

For Raimund Genes (1963-2017)

Published by

Trend Micro Research

Written by

Federico Maggi
Trend Micro Research

Marcello Pogliani
Politecnico di Milano

With contributions by

Martin Rösler,
Marco Balduzzi, and
Rainer Vosseler
Trend Micro Research

Stefano Zanero,
Davide Quarta, and
Walter Quadrini
Politecnico di Milano

Stock image used under license from

Shutterstock.com

Attacks on Smart Manufacturing Systems
A Forward-looking Security Analysis

Contents

2 Technology101 Introduction06 3 Security
 Analysis

16

4 Case Study:
 Attacks

27 5 Defense and
 Mitigation

51 6 Conclusion53

1.1 Scope

1.2 Methodology

1.3 Angle

1.4 Background

1.5 Research Questions

2.1 Machines and
 Process

2.2 Voices From Field
 Experts

3.1 Attacker Goals,
 Resources, and
 Capabilities

3.2 Entry Points

3.3 Targets

4.1 Compromise Through
 a Malicious Industrial
 Add-in

4.2 Trojanization of a
 Custom IIoT Device

4.3 Exploitation of a
 Vulnerable Mobile
 HMI

5.1 Securing Current
 Smart Manufacturing
 Systems

5.2 Countermeasures
 Against Future
 Threats

4.4 Data Mangling on
 the MES

4.4 Use of the Vulnerable
 or Malicious
 Automation Logic
 in a Complex
 Manufacturing
 Machine

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 4 |

This research presents a systematic security analysis that we performed to explore a variety of attack vectors on

a real smart manufacturing system and to assess the attacks that could be feasibly launched on a complex smart

manufacturing system. The main, two-pronged question we want to answer is: Under which threat conditions

and attacker capabilities are certain attacks possible, and what are the consequences?

While smart manufacturing systems are often isolated from other company networks, there is a trend toward

less isolation between information technology (IT) and operational technology (OT) systems. This could worsen

the consequences of the attacks that we describe in this research because future attackers would have more

opportunities for remote entry points, which currently are relatively unlikely. Recent incidents such as the

ransomware infection that halted production at a major semiconductor foundry in 20181 have already shown the

impact of IT-to-OT lateral movement.

When traditional, well-known attacks such as those involving malware designed for general-purpose IT systems

hit a smart manufacturing system, they are typically visible as unexpected or blacklisted patterns in the network

or host. These cases are spotted with network and endpoint protection solutions. In this research, we take a

forward-looking viewpoint and look at what future advanced attackers would do given the technology-specific

attack opportunities offered by smart manufacturing environments. We consider the smart manufacturing system

in its entirety, without focusing on the presence of specific vulnerabilities. For example: What would happen if

an attacker was able to “blend in” as legitimate network traffic or expected host activity (regardless of how it

could happen)? What would such an attacker do to remain persistent? Furthermore, how could the legitimate

functionalities of smart manufacturing technologies be abused?

Through concrete and detailed attack descriptions, we provide insights on how to protect a real smart

manufacturing system. We show, for example, how an attacker could remotely and indirectly compromise an

entire system using malicious software extensions, which some vendors are already distributing via app store-

like ecosystems, as the attack vector. Not only do we show that such malicious extensions have full capabilities

on the target system, but we also show how an attacker could maintain a lower profile and silently use such

extensions to “trojanize” the logic that will be executed on complex machines (e.g., industrial robots). We describe

how the attack, once the malware is propagated in the physical machines, could continue by harvesting network

and host information or planting services to support the next steps of the attack and to remain persistent.

The flourishing market of industry-grade embedded devices — often referred to as industrial internet-of-things

(IoT) devices — offers another interesting entry point for attackers. Using one of these devices, we show how

third-party development libraries could be abused for implementing both silent and noisy denial-of-service (DoS)

attacks, e.g., to stop operations on the production floor until the device is identified and removed, thus creating

additional downtime due to the missing, legitimate services that it was running.

Given the results of our research, we highlight the following security-sensitive areas in a typical smart

manufacturing system:

• Industrial software delivered as packaged add-ins, extensions, or apps are powerful attack vectors that

have not yet been seriously considered. Our findings show that if the delivery platforms (e.g., app stores) are

not properly secured, they could offer a unique way to indirectly infect critical endpoints such as engineering

workstations, from which attacks can propagate down to the production floor and remain persistent (e.g., in

the form of machine logic introduced via a backdoor).

• Custom industrial IoT (IIoT) devices are gaining popularity because they allow engineers to run fully custom

automation logic on the production floor, as opposed to less powerful nodes or traditional hardware such as

programmable logic controllers (PLCs). We show that this flexibility and lowered access bar for developers

create a change in the security management model: Instead of trusting one vendor that develops the software

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 5 |

running on these devices — usually the devices’ vendor — the users (e.g., system integrators) will have to

manage an oft-intricate chain of trust, with many third-party libraries imported in the final software. Given

that attackers have recently been targeting such libraries to compromise software at its origin,2 we deem it

important to raise awareness of the very same risk in industrial settings, where it is likely to have a greater

impact.

• Human-machine interfaces (HMIs) are a central component of the smart manufacturing ecosystem. As

shown in previous research by the Trend Micro™ Zero Day Initiative™ (ZDI) program,3 HMIs have a wide

attack surface as they are general-purpose computers with many interfaces, can be seldom upgraded, and

are often affected by software vulnerabilities. The complexity of HMIs is also growing. We show that current

mobile HMIs suffer from the typical issues found in unsecure mobile apps — a sign that they might not be

ready for widespread use. Some are deployed via sideloading, use unsecure protocols to communicate with

the back-end, and are shipped with hard-coded credentials, all of which position them as one of the weak

links in this complex ecosystem.

• The manufacturing execution system (MES) is the most sensitive endpoint in a smart manufacturing system

because it acts as a trusted bridge between the production floor and the rest of the corporate network, e.g.,

enterprise resource planning (ERP) systems. MESs are highly customized products that revolve around one

or more databases that contain complex automation logic and work plans. We show the consequences of a

slight alteration in one of the databases, which could result in damaged manufactured goods if the MES was

not designed with security in mind and with specific countermeasures.

• Complex, programmable manufacturing machines such as industrial robots possess computational

power that can go beyond performing physical movements, which is their main functionality. Nowadays, they

can run general-purpose computing tasks, which not only can be a source of vulnerabilities, but can also be

abused by an attacker to hide malicious logic that could evade current endpoint protection solutions since it

will be considered as valid machine automation code.

The impact of cyberattacks on smart manufacturing systems can be very high4 because many organizations

operating these kinds of systems are part of important industries or critical infrastructures. There are also several

security challenges because an attacker can have many targets to choose from: the connection between the

MES and the actuators, the sensors (the attacker can, for example, tamper with the measured values), the

network itself (traffic is often unencrypted), the HMIs (e.g., traditional or mobile), humans in the loop, and a

complex software supply chain with many dependencies.

Major manufacturers around the world either already use and rely on smart manufacturing technologies or will

do so in the near future, and thus should consider the findings of this research.

 6 |

Attacks on Smart Manufacturing Systems
A Forward-looking Security Analysis

Introduction
Smart manufacturing systems can be seen as the modern implementation of the totally integrated

automation (TIA) concept that has been developed by Siemens since 1996.5 But such is the complexity

of smart manufacturing systems that it is difficult, if not futile, to provide any “crisp” definition of

them. From a security research standpoint, it is challenging to obtain access to a sufficiently generic,

fully functioning system, deployed within realistic conditions, because the concept of a “generic” or

“reference” smart manufacturing system does not really exist. Therefore, any security analysis —

including this one — must be interpreted with a grain of salt: It is easy to jump to conclusions such as,

“All smart manufacturing systems are unsecure,” or, worse, to view attack scenarios as ready-to-use

best practices on “how to secure smart manufacturing systems.” In this research, our aim is to provide

food-for-thought examples and use cases intended for concerned organizations and individuals to

carefully contextualize in their specific settings.

In this section, we describe the scope of our analysis (an actual smart manufacturing system deployed

in an Industry 4.0 research laboratory), the methodology we used during our research (a holistic, hands-

on driven approach), the research angle we employed (focusing on concrete attack vectors in the hands

of a forward-looking attacker), and some background concepts needed throughout the remainder of

this research paper.

Scope
Tracing a boundary for this research was difficult because smart manufacturing encompasses a wide

and diverse set of technologies and disciplines. Ultimately, we decided to concentrate our attention

on a single instance of a smart manufacturing system, including the software ecosystem that revolves

around it.

1.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 7 |

Figure 1.

Figure 2.

A photo of Industry 4.0 Lab, the system that we analyzed during this research

The system under analysis is Industry 4.0 Lab,6 a research laboratory assembled by Festo and currently

housed at the School of Management of Politecnico di Milano,7 the largest technical university in Italy.

Although the lab, which costs around €250,000, is used for research and education purposes, it is

engineered with the same equipment and basic principles used on real-world production floors.

The overall architecture of the smart manufacturing plant that we used in this research
Note: A detailed description of the system and its parts is in Section 2.

Although we did consider their existence within the ecosystem, we left human resources (e.g., operators,

contractors, engineers) out of our security analysis since the extent to which human behavior directly

affects the operational security of a smart manufacturing system was beyond our scope. However,

we considered the opposite — how the technology could be abused with the goal of influencing the

decisions of the operator, e.g., via user interface (UI) tricks — but did not examine whether and how a

human would successfully fall for such tricks.

Custom
IIoT device

Conveyor
belt

PLC

Drill

PLC

HMI

AssemblyLoader

PLC PLC

PLC

Check

PLC

AssemblyPress

PLC

HTML page
HMI

HMI HMI

HMI HMI

Manufacturing
execution system

Database

ERP system

• Designs work plans
• Starts production orders

Development
workstation

Custom
firmware

Programmer

Third-party
libraries

Mobile HMI • Loads boxes with components
• Unloads finished goods

Loads boxes
with components

PLC

Controller

Engineering
workstation

HMI

Machine
programmer

Automation
logic

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 8 |

Methodology
We followed a practical, hands-on methodology: We invested time to understand the internals of the

smart manufacturing system, while also using it to produce some goods, as a real operator would do.

Once we understood the basic operational aspects, we consulted with the lab’s plant maintainers to

better understand the details of the system and also read technical documentation as needed.

Upon gaining a deep enough understanding of what we were working with, we started thinking about

the security models at play, under what threat model assumptions they could be violated, and how.

If we found a feasible example, we tried to implement an attack to prove our point. For instance,

once we discovered that the communication between the programmable logic controllers (PLCs), the

manufacturing execution system (MES), and the human-machine interfaces (HMIs) was unencrypted,

we verified whether valid messages could be spoofed, and to what extent these would be accepted by

the endpoints. We always tried to verify our findings in an end-to-end fashion, i.e., without limiting them

to the attack possibilities. Overall, we created proofs of concept for five attacks, which are described

in Section 4.

We consulted several times with operational technology (OT) experts, including automation engineers,

operators, and industrial robot programmers. On top of that, we made extensive use of online discussion

forums typically used by experts to exchange tips and best practices. Later on, we used the very same

forums to recruit some volunteers for an online survey, and to “measure” the overall security awareness

of the community, the results of which are discussed in Section 2.2.

Angle
We looked at what an advanced attacker would be able to accomplish, given the technology-specific

attack opportunities afforded by smart manufacturing environments. Taken on its own, each part of

a smart manufacturing system likely would have already been analyzed from a security viewpoint,

either by us or by other researchers; industrial robots, PLCs, HMIs, industrial endpoints or networking

appliances, and the like have all been subject to scrutiny. Thus, we focused instead on how an advanced

(and creative) attacker, with access to one or more of the system’s components, would be able find their

way into other parts of the system. In other words, this research focuses on the system in its entirety as

a set of entry points and targets, under various attacker model assumptions.

Despite discovering and reporting some vulnerabilities, we stress that this analysis does not focus on

any specific vulnerabilities, new or existing, in the products of the named vendors. Rather, it focuses

on attack vectors, design issues, and post-exploitation opportunities. As a matter of fact, we took

advantage of the physical laboratory as a concrete starting point to understand the architecture of

a real smart manufacturing system and perform practical experiments on it; we did not use it solely

as an exploitation target. When needed, we responsibly disclosed any security vulnerabilities that we

discovered along the way through the Trend Micro™ Zero Day Initiative™ (ZDI) program.

Background
We assume that readers of this paper are familiar with the concepts of industrial automation that are

essential to understanding the high-level functionalities and the interactions of components at various

levels of the automation pyramid,8 as depicted in Figure 3. Section 2 introduces the basic terminology

and provides a technical overview of a typical smart manufacturing system.

1.2

1.3

1.4

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 9 |

Level 4
Business planning

and logistics

Level 3
Manufacturing operations

management

Level 2
Monitoring and supervising

Level 1
Sensing and manipulating

Level 0
Production process

ERP

MES

SCADA/HMI

PLC

Sensors and signals

Months

Days

Hours

Minutes

Seconds

milliseconds/
microseconds

The automation pyramid

This research focuses on Levels 1 to 3. Specifically, we assume that the sensors are trusted components,

so an attacker may be able to spoof signals coming from the real sensors (without compromising the

actual sensors). Similarly, we assume that Level 4 is considered trusted by the lower layers, which

means that an attacker may be able to craft messages coming from it (although we did not investigate

how that could happen).

Research Questions
We collected a list of “research questions” that we kept as a reference during our work. It is not meant

to be exhaustive, but we hope that it will be a useful resource for future OT security research:

• Under which threat and attacker models are certain attacks possible, and what are the

consequences? (This is the main question.)

• Are there any overlooked vectors that could facilitate an attacker’s getting a foothold in these

systems?

• What is the security impact of modern industrial software development practices, including the use

of open libraries, with complex interdependencies?

• What is the cybersecurity awareness level of the technical personnel who engineer, program, and

operate in smart manufacturing environments?

Readers who wish to know our high-level answers to these questions without going through the rest of

this paper may do so by reading our conclusion in Section 6.

1.5

Figure 3.

 10 |

Attacks on Smart Manufacturing Systems
A Forward-looking Security Analysis

Technology
Smart manufacturing is the convergence of automation and information technology (IT), and is at the

essence of the ongoing industrial revolution known as Industry 4.0.9 To draw an analogy: In the past,

we would have needed to purchase a hardware computer in order to run our software, but today, we

can quickly provision a bare-metal server in a data center and connect to it in less than five minutes

— thanks to the integration and automation of IT operations. Similarly, we are getting to a point where

manufacturing a product will be completely streamlined, with little or no human intervention required.

Smart manufacturing has become a major technology trend. For example, 10% of the 2021 edition

of Hannover Messe, one of the largest industry exhibitions in the world,10 will be dedicated to digital

factories (based on the number of exhibitors in the different categories), with more than 600 exhibitors,

about 300 of which exclusively target the manufacturing industry. Within the manufacturing industry,

smart manufacturing affects sectors including those that deal with: minerals; metals; oil; food; chemicals;

textiles and clothing; electric products and electronics; furniture; glass and ceramics; leather, rubber

and plastics; paper, cardboard, and related products; pharmaceutical products; tobacco; and cars and

automotive products, components, and equipment.

In this section, we describe the technologies that drive a smart manufacturing system by focusing on

the features that are relevant from a security standpoint. We conclude this section with a quantitative

analysis of the security awareness of the online communities of practitioners who both talk about and

work in the fields that revolve around smart manufacturing technologies.

Machines and Process
Industry 4.0 Lab, the smart manufacturing system that we analyzed during this research, comprises

seven stations, each with PLCs and HMIs made by Siemens, various physical actuators (e.g., drills,

presses) and sensors (e.g., temperature, pressure, camera), a conveyor belt, and a Mitsubishi Melfa

industrial robot. Industry 4.0 Lab is part of the Fenix Project,11 which is partially funded by the Horizon

2020 research and innovation program of the European Union (EU).12 The goal of the Fenix project is to

create a reconfigurable multi-material pilot plant producing various goods, including but not limited to

3D printing metal powders, customized jewels, and advanced filaments. In its current installation, the

system produces toy cell phones.

2.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 11 |

Details of a machine (drill), HMI, and PLC in the target manufacturing system

The target smart manufacturing system (informally referred to as “the carousel” because of its circular

workflow) is made up of stations, each comprising at least three parts, as pictured in Figure 4:

• A physical machine, such as a loader, drill, press, camera, or industrial robot, which does the actual

work.

• An HMI, which is used by the operator for monitoring and controlling the progress.

• A PLC, which serves as the interface for the interaction between the machine, the HMI, and the

rest of the network.

The PLCs are Siemens Simatic DP CPU 1510SP-1 PN units,13 the HMIs are Siemens Simatic HMI

TP700 Comfort units,14 the industrial robot is a Mitsubishi Melfa V-2AJ,15 and the network is made and

managed out of Siemens Scalance X208 switches.16

Manufacturing Execution System

The production process is coordinated by the manufacturing execution system (MES), which is a complex

logic layer on top of a database. The MES is the interface between the enterprise resource planning

(ERP) system, if any, and the actual physical plant. If used by itself, the MES can also incorporate some

ERP system-like functionalities. The MES allows the writing of “recipes” that specify the production

steps. These can be seen as “work templates” (i.e., sequences of generic actions), which are translated

to network packets to the various stations (i.e., the PLC and HMI) once they receive input parameters

(e.g., the number and variant of items to produce). When in execution, the MES receives feedback

from the stations, ensures that the sequence of instructions in the work order is followed, and takes

corrective actions if needed. Tracking each part is easy because each pallet is always transported by a

carrier identified by a radio frequency identification (RFID) tag, which is known to the MES.

Roles

We consider three broad roles in a smart manufacturing system:

• The system operator, who supervises the production (e.g., through HMIs), loads supplies as

needed, checks for alerts, and unloads the finished goods if needed.

Figure 4.

Despite discovering and reporting some vulnerabilities during our analysis, we stress that we do

not focus on exploiting or researching specific vulnerabilities (either new or existing) in the products

of the named vendors — they are reported merely for completeness. Rather, we focus on attack

vectors, design issues, and post-exploitation opportunities.

2.1.1

2.1.2

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 12 |

• The MES operator, who designs work templates and interacts with the MES.

• The machine engineer or programmer, who designs and integrates the low-level logic in specific

machines (e.g., robots, drills) and translates high-level order commands (e.g., “drill here,” “move

arm 30 degrees left”) into actuator instructions.

While some of these roles can be filled by employees of the factory, others can be filled by outsiders

(e.g., consultants, system integrators, and other contractors). For instance, the system operator can

be an employee, the MES operator can be a system integrator, and the machine engineer can be a

contractor who is called upon when needed (e.g., when a new task program needs to be developed for

a new machine or when maintenance of existing logic is required). Therefore, some workstations are

not always connected to the network, and the computers, even if never connected, may not be under

the complete control of the factory’s IT staff. Consultants may use their own computers to develop

automation logic code, which is then transferred to the factory floor (e.g., via portable media), without

connecting their computers to the factory network. This not only makes security management more

complex, but it also allows for the creation of new attack opportunities, as summarized in Figure 5 and

described in Section 4. Outsourcing, especially in low-wage countries, also includes the risk of bribery

or extortion of contractors, which could be considered by attackers.

System integration
service

Freelance
consultant

Vendor

Smart manufacturing
system

Third-party
developer Employees

• Software libraries • Custom integrations
• Operations
• Knowledge
• Design

• Custom software
• Knowledge

• Design
• Operation
• Deployment

• Parts
• Software

Provides to

Hired by

Uses
Operates

Uses

Works directly on

Deploys

Figure 5. The various roles (orange) that supply software, parts, and expertise to a smart manufacturing

plant (red), and the relationships between them (blue)

Production Flow

The system operator interacts with the system mainly through the HMI, which we assume is considered

trusted by the operator.

2.1.3

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 13 |

2.1.4

Close-up shots of the various stations of the smart manufacturing system

In the case of the system that we analyzed, the typical production workflow is as follows:

1. The operator ensures that there are enough input parts and starts the production from the HMI on

the first station.

2. The first station loads the first half of the toy phone case from a magazine onto the conveyor belt.

3. The second station assembles the case of the toy cell phone.

4. A drill drills a (programmable) number of holes through the phone case.

5. The industrial robot places the printed circuit board (PCB) into the case and assembles the

electronic components.

6. The half-assembled phone goes through an intermediate visual check with a camera.

7. The top case is assembled.

8. A press pushes the top case down.

9. The conveyor belt ensures that the finished product goes back to the loader station and informs the

MES to display a message on the HMI, prompting the operator to pick it up.

Mobile HMIs

We complemented the smart manufacturing system by considering mobile HMIs. As discussed

in Section 3.3.3.2, mobile HMIs are gaining traction in the manufacturing world because they allow

operators to conveniently interact with the system, receive production feedback, and even control

machines (e.g., robots) with high precision and with the same level of control offered by classic manual

interfaces (e.g., joysticks, physical buttons). However, there are concerns that are holding back the

ubiquitous adoption of mobile HMIs, including issues pertaining to integration, risk management, and,

of course, cybersecurity.17

Voices From Field Experts
There is a common belief that orthogonal disciplines (e.g., hardware or software engineering, automation)

have just started to fully embrace the importance of cybersecurity. But this is often backed only by

anecdotes. As part of our research, we were interested in understanding how and how often “security

matters” are discussed in OT and industrial automation online communities.

Figure 6.

2.2

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 14 |

Talking ‘Security’

After compiling a list of 11 OT-related online forums, we collected some analytics data to gain insights

into the activity levels: the number of users, the topics and replies, and the oldest posts. Then, combining

the forums’ search feature with site-specific web searches, we counted how many times security-

related words were used in the discussions. This clearly does not provide an unbiased outcome. The

keyword “security,” for example, may or may not always indicate that a post is actually about security

(e.g., a phrase or sentence like, “Please update your software to the most recent release to get all the

security fixes,” does not necessarily indicate that the users are talking about a security topic). However,

we accept and interpret these results as an upper bound — an optimistic snapshot of the true situation.

2.2.1

2.2.2

Community Affiliation
Indexed

since

Total
number of

users

Total
number of

topics

Total
number of
replies or

comments

Overall number
of mentions of

security-related
terms

Control.com18 N/A 1997 N/A N/A 69,700 5,068

PLC.MyForum.ro19 N/A 2012 93,948 41,841 N/A 1,968

Mr.PLC20 N/A 2006 46,144 33,540 164,787 1,810

Robotforum21 Robtec 2006 17,611 19,166 90,134 892

Reddit - robotics22 N/A 2008 83,614 N/A N/A 638

Adam Forum23 N/A 2010 33,286 3,783 6,702 170

Automation
Forum24

N/A 2012 220 1,900 7,800 147

DoF25 Robotiq 2016 N/A 1,500 N/A 83

ABB Robotics26 ABB 2013 19,723 8,959 19,723 68

Universal Robots27 Universal Robots 2017 N/A N/A N/A 24

SolisPLC28 SolisPLC 2018 134 36 87 0

Table 1. The OT-related online forums we considered and their relevant details (as of August 2019)

As expected, the conversations that mentioned security-related keywords (e.g., “security,” “vulnerability,”

“hacked,” “attack,” and variations thereof) were a slim minority. There have been anecdotal claims that

people from the OT and IT security community “talk different languages” and “have different priorities,”

and the numbers in Table 1 provide concrete evidence in support of these claims.

The lack of discussion regarding security lends credence to the belief that many of these communities

often view “security” as mere compliance with whatever regulations apply to their specific manufacturing

fields. This, of course, is a very far cry from the desired situation, where people in the industry fully

embrace security concepts and design as part of their work. This further motivates our research, with

the goal of raising awareness specifically within these communities.

Asking Experts Technical Questions

The thinking that industrial cybersecurity is a major priority and industrial systems are likely to be a

target of cyberattacks is not new. However, we were interested in understanding the technical aspects

that might create preconditions for increased risk. For example, while it was interesting to know whether

a manager was aware of the possibility of cyberattacks that could compromise the safety of their

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 15 |

organization’s equipment, we instead wanted to know whether the engineers used custom software,

and who created it and why. Indeed, assuming “perfect” network-level protection, there is very little

that can be done when a trusted yet malicious or vulnerable piece of software manages to sneak into

industrial plants.

We interviewed six experts over the phone and had them fill in a fairly technical questionnaire. We

focused on select experts within our trusted contacts, ranging from consultants working for system

integrators to employees of major system integrators and even academic professors. On top of that,

we reached out to 14 OT practitioners through online community discussion groups and mailing lists.

Overall, we had the six experts helping us at various points throughout our research and 20 respondents

for our survey; 70% of them were from the industry, 10% were from academia, and 20% were system

integrators.

One of the key takeaways, as indicated in Figure 7, was that almost half of the respondents confirmed

the use of custom industrial internet-of-things (IIoT) devices (e.g., Arduino, Raspberry Pi) on their factory

floor; custom code was developed mostly internally, with some parts outsourced — thus trusting

the external developers — with only a minority having a risk assessment process in place for these

devices. Another was that industrial robot programming languages were used by more than half of the

respondents, who confirmed that most of their use cases were interconnection with the external world

— in some cases by using advanced features. We clarify some of these aspects in Sections 3.3.2, 3.3.5,

4.1, and 4.5.

Yes
45%

50%
No

Don’t know
5%

0% 100%

Trust the system
integrator

Purchase code

Have risk
assessment process

Do code review

Internal development 87.5%

50.0%

37.5%

25.0%

25.0%

Yes
55%

45%
No

0% 100%

Subroutine

Dynamic code
loading

File operations

Network sockets 50%

50%

40%

10%

The main answers to our survey, focusing on the presence of custom IIoT devices and software,

with some hints on development practices

Figure 7.

 16 |

Attacks on Smart Manufacturing Systems
A Forward-looking Security Analysis

Security Analysis
In a smart manufacturing system, traditional attacks are visible as unexpected or blacklisted patterns

in the network or host activity, and can be spotted and blocked with current countermeasures, such

as network and endpoint protection solutions. We do not consider these cases as a subject of this

research.

We take a different viewpoint and look at what an advanced attacker29 would be able to accomplish,

while considering the system as a whole, made up of more than just what exists on the factory floor.

What would happen, for example, if an attacker was able to blend in as legitimate network traffic or

normal host activity? What would such an attacker do to remain persistent? Are there some unique

attack opportunities, perhaps outside the network perimeter, which are currently being overlooked?

Figure 8 provides a visualization of the many dependencies in the software and data ecosystem that

revolves around a smart manufacturing system. At the development stage, we see software add-ins

and digital twins being supplied by the vendor or being developed on the engineering workstation (and

optionally uploaded to an online catalog, usually provided by the software extension). This workstation

is also used to create custom automation logic (for machines like robots) or firmware for custom IIoT

devices. All of these, together with the other components like the HMI, MES, and PLC, make the

automation logic work. High-level business decisions are translated into data written in the ERP system

(or some other database), which in turn determines the actions scheduled by the MES, which then

defines the automation routines executed by the PLC. In this, we can see the indirect impact of the

software supply chain in the final automation actions (as depicted in the lower left part of Figure 8).

Figure 9 shows a visualization of the attack opportunities in the data and software dependencies. The

attack involving compromise through a malicious industrial add-in and the attack involving “trojanization”

of a custom IIoT device (described in Sections 4.1 and 4.2, respectively) abuse software components,

which is possible (and is already being done in the wild) nowadays because of the complex supply

chain, which in turn contains plenty of weak points. The attack involving a vulnerable mobile HMI

(described in Section 4.3) shows how leaked information in a mobile HMI can be exploited to gain

access to the machine controlled by that HMI (in our case, an industrial robot). The attack involving data

mangling on the MES (described in Section 4.4) shows how any manipulation of data at the ERP system

or database level can have a later impact on the automation. The attack involving the vulnerable or

malicious automation logic in a complex manufacturing machine (described in Section 4.5) is by nature

more sophisticated, because it exploits weaknesses in the automation logic.

From our conversations with domain experts (introduced in Section 2.2), it emerged, among other things,

that isolating smart manufacturing systems within a dedicated, isolated network is common practice.

We also understood that these systems are treated like black boxes, in the sense that it is assumed

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 17 |

that nobody will ever be able to compromise them. On the other hand, connectivity is increasing and

vendors are pushing for wireless networks on the factory floor, with assets such as industrial robots

directly connected to them.

Inputs

Inputs

Triggers actions

Status
updates

Serves
data to

Enables
automation

logic

Data
exchange

Actions

Measurements

Measurements

Builds automation
logic for

Builds
firmware for

Develops

Develops

Uploaded to

Served to

Uploaded to

Supplies software

Supplies software

Development Software Automation Outcome

HMI

PLC

Vendor

MES

Machine

Custom
IIoT device

Other
systems

ERP
system

MES
database

Physical
environment

Engineering
workstationStore

Digital
twins

Add-ins

Figure 8. Data and software dependencies in the context of a smart manufacturing system

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 18 |

Inputs

Inputs

Triggers
actions

Status
updates

Serves
data to

Enables
automation

logic

Data
exchange

Actions

Measurements

Measurements

Builds automation
logic for

Builds
firmware for

Develops

Develops
Uploaded to

Served to

Uploaded to

Supplies software to

Supplies software to

Development Software Automation Outcome

• Vendor
• Third party

• Contractor
• System integrator
• Internal development

• internal process

Development Software Automation Outcome

Inside smart manufacturing network

Attack: Exploitation
of a vulnerable mobile HMI

Leaked data

Attack: Use of
the vulnerable

or malicious
automation logic

in a complex
manufacturing

machine

Attack: Data
mangling on the MES

Attack: Data
mangling on

the MES

Trojanizes

Trojanizes

Alters
data

Alters
data

Attack: Trojanization
of a custom IIoT device

Trojanizes

Attack: Compromise
through a malicious

industrial add-in

Attack: Compromise
through a malicious

industrial add-in
Attack: Compromise
through a malicious

industrial add-in

On-premise

Contractor or
system integrator

Trojanizes

HMI

PLC

Vendor

MES

Machine

Custom
IIoT device

Other
systems

ERP
system

MES
database

Physical
environment

Engineering
workstationStore

Digital
twins

Add-ins

Attack opportunities in the data and software dependencies

Attacker Goals, Resources, and Capabilities
In an industrial setting, we are looking at advanced attackers with enough resources and capabilities

to compromise at least one machine, directly or indirectly connected to the smart manufacturing

system. We consider attackers who want to cause malfunctions, damage the produced goods, or alter

the workflow such that it would manufacture defective products. There may be a variety of motives:

Attackers may be employed by a competitor, may be financially motivated (e.g., attackers may request

payment in exchange for revealing details of the batches in which they have introduced “hidden”

defects, as we pointed out in one of our previous researches30), or may even just want to affect the

factory’s overall reputation. Attackers may also be interested in the automation logic, which is usually a

well-guarded intellectual property.

Figure 9.

3.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 19 |

Depending on their profiles, attackers may or may not have a foothold in the smart manufacturing

system network. For example, if an attacker is on an adjacent network, they may be able to write one

field in the database of the MES because the MES is often a “bridge” between the enterprise and the

factory floor networks. A remote attacker with no access to the factory network may attempt to create

a malicious program for the industrial robot and use an insider or other software-based attacks to

make it run on the robot. If the attacker knows that the system integrator or the target factory is using

a specific piece of development software, they will likely target either the software itself or some third-

party extensions for that software.

In the past several years, we observed a number of supply chain attacks on software development tools

or libraries, especially open-source ones.31, 32, 33, 34, 35 Interestingly, 42% of attacks on the manufacturing

industry reportedly do not directly target facilities, but rather target some of the systems along the

supply chain.36

Entry Points
This section provides a security-oriented overview of a smart manufacturing system, from which we

derive its attack surface or the set of entry points that an attacker may consider targeting.

Figure 10 shows the security-sensitive areas of the smart manufacturing system that we analyzed, with

the physical network perimeter highlighted. In our case, this indicates where the factory floor network is

separated from other networks (e.g., internet, enterprise network) by firewalls. The red indicators signify

endpoints that can be used as entry points for attacks.

3.2

Custom
IIoT device

Conveyor
belt

PLC

Drill

PLC

HMI

AssemblyLoader

PLC PLC

PLC

Check

PLC

AssemblyPress

PLC

HTML page
HMI

HMI HMI

HMI HMI

Manufacturing
execution system

Database

ERP system

• Designs work plans
• Starts production orders

Development
workstation

Custom
firmware

Programmer

Third-party
libraries

Mobile HMI • Loads boxes with components
• Unloads finished goods

Loads boxes
with components

PLC

Controller

Engineering
workstation

HMI

Machine
programmer

Automation
logic

Physical network perimeter

Figure 10. An overview of the attack surface, with the physical network perimeter highlighted

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 20 |

Engineering Workstation

The engineering workstation is a shared system with domain users that is always connected to the

production floor. It is used to develop and deploy program logic, or to connect to field devices (e.g.,

PLCs, HMIs) for maintenance, diagnostics, or reprogramming. Occasionally, it is used to simply deploy

programs that are developed elsewhere, perhaps outside the factory premises by personnel working

for the system integrator.

There is a trust relation between any workstation used for engineering purposes and the rest of the

system. Sometimes this relation is known and is part of the security planning. Other times, it becomes

more difficult to see, considering how many indirect or implicit trust relations there are between, on one

side, the person who develops automation logic and, on the other, the smart manufacturing system

where the logic is finally deployed. This does not necessarily mean that the developer is malicious:

Their computer could simply have been compromised, or even one library that they use could have

been compromised at the source. A case in point is the XcodeGhost malware, which was used in one of

the earliest instances of supply chain attacks: One of the techniques of the malware was to modify the

Xcode compiler such that the compiled iOS apps would be infected.37 As we demonstrate in Section

4.1, the industrial software that we analyzed offers concrete opportunities for attackers to compromise

the entire engineering workstation or alter the digital twins.

Custom IIoT Device Development Environment

There are custom IIoT devices (e.g., embedded systems, Arduino-like devices, Raspberry Pi, or other

single-board computers) programmed by system integrators or internal employees. They are gaining

popularity because they allow more automation flexibility than classic automation hardware such as

PLCs.

There are many trust relations between the multiple software libraries in this ecosystem and the smart

manufacturing system, where the final software is deployed. What we discuss in the previous section

regarding the engineering workstation applies even more strongly in this instance: It is highly likely that

a developer needs to use a third-party library, a library based on a third-party library, or a third-party

library based on a library from another party. This software dependency chain is very complex. As we

show in Section 4.2, there is no way for a developer to easily validate the end-to-end integrity and

authenticity of a library, which can lead to the inclusion of trojanized components.

MES Database

The MES database is often shared with the upper layers of the automation pyramid. Its function is to

contain work orders and work templates, which are clearly sensitive data. When a work template is

created on the MES, a new record is saved to the database. Similarly, when a work order is started, the

state of the production operations is updated in the database.

At a conceptual level, the MES trusts the data coming from the database. This implies that if there is no

authentication and integrity of the database storage, an attacker on the network (or on the database)

could forge or alter records, thus resulting in altered production. As we show in Section 4.4, alteration

can happen at the product-feature level and can be nondestructive.

3.2.1

3.2.2

3.2.3

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 21 |

Targets
Taking a more in-depth look at the peculiar aspects of smart manufacturing technologies, this section

highlights the components that offer attack opportunities.

Industrial Add-ins

The delivery mechanism of industrial software is evolving to keep up with the pace of innovation.

Specifically, we found out that some solutions are being inspired by app-store models. For example,

ABB has an app store38 where anyone can register (registration is automatic with only email validation

in place) and upload add-ins for ABB’s RobotStudio, which is used by engineers to write automation

logic for ABB industrial robots. There are about 1,000 add-ins on the store, some of which have been

downloaded thousands of times. These numbers must be interpreted by first considering that industrial

robotics is currently a niche sector, where developers tend to keep everything “in house.” This is

expected to change, and app stores such as ABB’s are the first signs of this change in direction.

Intelligent Plant’s solution39 is similar in spirit to ABB’s app store. It is not dedicated to robotics in

particular, however, but to industrial applications in general. Individuals cannot upload apps; only

registered businesses can. After trying to contact the owners, we argued that the apps are procured via

a business-to-business (B2B) channel and served via a business-to-consumer (B2C) channel.

OrangeApps40 is dedicated to Kuka, despite not being developed or managed by Kuka directly. Unlike

ABB’s app store, OrangeApps does not accept submissions from users; it is seemingly a closed

ecosystem. Interestingly, it serves apps for both desktop software and the industrial robot controller.

Therefore, the apps obtained from OrangeApps include code that runs directly on the industrial robot

controller. Unfortunately, we noticed that the network transport uses plain HTTP, which opens the

possibility for network man-in-the-middle (MitM) attacks.

Siwiat’s solution41 has a slightly different model: The vendor provides the hardware (an IIoT device),

which has functionalities that can be extended by downloading apps from its app store. This software

delivery model is very similar to the mobile device ecosystem, where users just purchase a piece of

hardware and expand its functionality by downloading apps delivered from (trusted) stores. As a matter

of fact, anything that comes from the app store is considered trusted.

Security Trade-off

This centralization provides some benefits, as we have learned from mobile app stores. However, we

argue that in their current state, these models require some attention. Software extensions or apps can

become weak spots, and app stores can become interesting targets for attackers. Browser extensions

and mobile apps have highlighted the importance of sandboxing and the crucial role of app stores,

which should have solid vetting procedures (e.g., modern app stores have continuous scans for any new

uploaded app). Early browser extensions and mobile apps allowed full system access, but the advent

of app stores changed this due to the need for more streamlined software delivery. The most important

security change is that browser extensions and mobile apps are now sandboxed, as they should be,

because they are essentially trusted software running on a computer. To access the network, they need

to explicitly declare (and be granted) specific permissions. Sensitive software like industrial engineering

software needs to embrace the same sandboxing principles and limit the scope of the runtime.

3.3

3.3.1

3.3.1.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 22 |

Lack of Sandboxing

RobotStudio, an offline programming (OLP) application for desktop computers, is used by engineers to

write automation logic for ABB industrial robots. It allows for the creation of interactive 3D digital twins

of an industrial robot deployment, on top of which the automation logic code is written and tested.

RobotStudio, like other OLPs, comes with a plug-in or add-in system, which allows the extension of its

functionality by loading dynamic link libraries (DLLs) in proper locations. Such add-ins are accompanied

by Extensible Markup Language (XML) metadata for proper packaging, distribution, and loading.

Essentially, when a DLL is loaded by the main software, the machine code in the DLL is executed. There

is no isolation system or privilege separation: Add-ins possess “full” system and network access, to the

same extent of a regular process running with RobotStudio’s privileges.

The code written using design environments such as this ends up on the factory floor. Therefore,

an attacker who is able to compromise a plug-in or add-in can in turn obtain indirect access to the

automation code that is being written — and that will run the automation logic.

An attack that exploits a malicious industrial add-in to propagate in a smart manufacturing system is

described in Section 4.1.

Custom IIoT Devices

There is a wide and highly fragmented offering of “industry-grade” embedded devices (often advertised

as “Arduino-compatible”) that are used for both rapid prototyping and production use. Arduino Industrial

101,42 Industrial Shields devices,43 Industrino,44 Iono Arduino,45 and Siemens Simatic IoT200046 are just

a few examples. These IIoT devices bring full software customization capabilities in the hands of end

users. But we argue that the growing need for customization and flexibility increases the attack surface

of an industrial plant such as a smart manufacturing system.

3.3.1.2

3.3.2

Figure 11. Examples of industry-grade IoT devices: Iono Arduino (left) and a device from

Industrial Shields (right)

Widespread Use

Most of the domain experts whom we interviewed confirmed that they used several custom devices,

running custom firmware, on real-world production floors. Even in our Industry 4.0 Lab environment,

there is a (separate) network of Raspberry Pi nodes that monitors the physical conditions of the plant

using sensors (e.g., temperature, pressure, light, noise). Raspberry Pi devices can run anything, including

Linux malware — and the same is true for Arduino or Arduino-compatible boards.47, 48

3.3.2.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 23 |

Malicious Devices and Hardware Implants

“Extra” devices plugged to the floor network are becoming common, representing a risk on their own.

Indeed, there have been cases where such devices have flown under the radar and been used to break

into critical facilities. The case of the NASA Jet Propulsion Laboratory (JPL) is a prominent example: In

2018, a hacker accessed the JPL network by targeting a Raspberry Pi device that was not authorized

to be connected to it.49 Moreover, the miniaturization of electronic components and the increased

accessibility of fabrication laboratories make it possible to create hardware implants that are as small

as the metal portion of a USB key.50

Complex Software Supply Chain

Unlike devices such as classic PLCs, which run a simple loop and are bound to a rather simple execution

model, custom IIoT devices can run complex firmware and often include several external libraries, with

further dependencies. In short, the software supply chain of custom IIoT devices is more complex to

manage than that of a vendor-supplied hardware and software solution. The main risk is that apart from

official libraries shipped by Arduino, there is no integrity mechanism that can guarantee that the libraries

used by these devices are authentic and have not been tampered with. Indeed, attackers have realized

that they could compromise a high number of machines at once if they could get to the “source,” i.e.,

either by compromising a popular library or by “typosquatting” to have their code included in the final

product, instead of the original one.

An attack that uses a trojanized software library to cause malfunctions in a smart manufacturing system

is described in Section 4.2.

HMIs

There have been numerous security analyses of traditional HMI software, such as the research conducted

by the ZDI in 2017,51 which looked at the state of HMIs and highlighted that they often run outdated,

vulnerable software. In this paper, we emphasize that HMI technology and custom deployments create

opportunities for types of attacks beyond the classic exploitation of software vulnerabilities on the HMI

side.

Traditional HMIs

Web- and cloud-based solutions, as well as app- or plug-in-based systems, have led to traditional

HMIs’ becoming more interconnected. HMIs have also evolved from a statically defined concept of

“interaction” to a more flexible one, providing the means for end users to design or customize interfaces

and quickly upload and integrate them into existing systems. These peculiarities make HMI components

complex, leading in turn to a larger attack surface.

For example, even in the test setup of the research lab that we used, the HMIs are hybrid and use

an embedded web browser that allows the factory operators to customize the UI (e.g., by serving

custom HTML or JavaScript resources) without the need for system integrator intervention. Our domain

experts working on the engineering of manufacturing plants for large customers confirmed that this was

frequently requested by clients. We verified that, as shown in Figure 12, an attacker can manipulate

a simple webpage not only to convey exploits but also, in the absence of vulnerabilities on the HMI

side, to play several UI tricks to fool the operator and influence their decisions (e.g., simulate errors or

3.3.2.2

3.3.2.3

3.3.3

3.3.3.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 24 |

emergencies). A user is likely to trust the HMI screen and act based on its input, especially if there is no

way to ensure the authenticity of the embedded webpage.

Figure 12. UI manipulation attack on the HMI: While the manufactured item is finished correctly, the HMI

displays an error.

Mobile HMIs

Because of their flexibility and ease of use, mobile devices such as tablets and smartphones make for

good HMIs. Despite HMIs’ being a relatively niche market, we found over 170 HMI apps on the Google

Play Store, more than 40 of which had over 1,000 installations — even up to more than 100,000 in

some cases. Not only do we foresee a growing demand for these solutions, but we also see a usability

and security benefit of mobile HMIs versus classic ones. In addition to the fact that users have grown

accustomed to using mobile devices, they are also far more flexible and easier to manage than the

industrial computers that run HMI software. They are easier still to keep updated and are inherently

more secure since apps running on modern mobile operating systems are sandboxed — to name one

important feature that is lacking in touch-based industrial computers running (outdated versions of)

Microsoft Windows.

However, because of their flexibility, and because the hardware is a general-purpose computer, mobile

HMIs are subject to other classes of attacks. At the physical network layer, mobile HMIs are connected

via wireless protocols (Wi-Fi or Bluetooth), which make them more accessible to an attacker within range

than a wired connection. The main risk is that mobile HMIs are designed with the same assumptions

as traditional HMIs, i.e., that they are in a closed, wired network. For example, in Comau’s PickApp,

an HMI used to interact with industrial robots, the network protocols used do not enforce any integrity

or confidentiality of the data, nor do they authenticate or perform any attestation of the endpoint,

which means that they will trust any data as long as it complies with their application protocol. This is

discussed in more detail in Section 4.3.

One important point is that, despite being sandboxed, mobile HMI apps exist with other apps and can

interact with other software (e.g., via Android intents). The main risk of this is that other apps installed

on a device are trusted but are not necessarily trustworthy. On Android, it is indeed possible to invoke

certain actions of an app from another app via the so-called intent mechanism. Therefore, a malicious

3.3.3.2

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 25 |

app, even if sandboxed and isolated from the target mobile HMI, could invoke certain actions (e.g.,

the click of a soft button) on the mobile HMI, which would indirectly affect the physical machine it

controls (e.g., move the machine). Mobile HMI apps are thus in a very “powerful” position, because any

command that they send will be trusted by the machine, making them in turn a very interesting target.

A similar reasoning can be done regarding the use of external storage in mobile apps, which exposes

them to cross-app data leaks because the external storage is shared among all apps.

Mobile HMI apps, like other apps, could inadvertently ship with sensitive information (e.g., credentials,

private keys). The critical point here is that such information will be publicly available because the

preferred delivery mechanism is through app stores. For example, as shown in Section 4.3, PickApp

contains the password generation algorithm used to authenticate it to the endpoint. This means that

anyone can download the app from the vendor’s website, reverse-engineer it as we did, and discover

the information required to interact with the endpoint on the factory floor.

We found cases of HMI apps being delivered directly by vendors rather than through app stores.

In these cases, sideloading is the only installation option. Under this option, the vendor of an app

instructs users on how to enable the “trust external apps” security setting, which allows the installation

of any app, bypassing the end-to-end authentication and integrity checks backed by the app store

infrastructure. Consequently, a repackaged version of an official app — to name one attack vector —

would be accepted, with no way for average users to verify if the app is authentic or non-malicious.

Several of the apps that we downloaded from the Google Play Store contain unsafe, albeit not always

directly exploitable, code patterns such as the use of external (shared) storage or the use of embedded

web views with JavaScript fully enabled. These unsafe code patterns are easily found via automated

code review. If unnecessary, such unsafe features should be disabled. But based on our findings, it

seems that either the developers have ignored the output provided by automated code review tools or

no such code review has been performed at all.

An attack that exploits a vulnerable mobile HMI is described in Section 4.3.

MES

In a smart manufacturing system, the MES serves the critical role of being the gateway between high-

level manufacturing scheduling (e.g., ERP) and the manufacturing floor, where the goods are actually

produced. The MES market is “closed” and oriented toward ad hoc solutions. For example, we were

able to find only two open-source solutions,52, 53 as opposed to many more commercial and enterprise

products,54 the most popular of which include General Electric’s Predix Manufacturing Execution

Systems, Honeywell Connected Plant, Rockwell Automation’s FactoryTalk ProductionCentre MES, SAP

Manufacturing Execution, and Wonderware MES.

Enterprise-level MESs are very expensive, and it is difficult to gain access to them. From a security

research perspective, this is clearly a problem because of the importance of having access to a real,

full-fledged system for security testing. Finding internet-facing MESs is highly unlikely, apart from

cloud-based solutions and some random transient instances of Wonderware that we found exposed via

Remote Desktop Protocol (possibly a honeypot or staging system).

Looking at an MES from a security standpoint, we can reasonably assume that the attacker is already

within the network. The question we want to answer is about lateral movements. This does not mean

that we assume that the attacker has access to the MES (otherwise, it would already be too late). For

example, we consider an attacker that can access only the database of the MES and not the entire MES

endpoint.

An attack involving data mangling on the MES is described in Section 4.4.

3.3.4

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 26 |

Complex, Programmable Manufacturing Machines

Complex programmable machines such as industrial robots execute their manufacturing tasks

according to task programs, which are essentially scripts executed on the machine side (e.g., “move

right,” “open pliers,” “move down,” “pick up piece”). Each machine vendor has its own domain-specific

language for writing task programs, such as ABB’s Rapid, Comau’s PDL2, Fanuc’s Karel, Kawasaki’s

AS, the Kuka Robot Language (KRL), Mitsubishi’s Melfa Basic, and Yaskawa’s Inform. These industrial

robot programming languages (IRPLs) are all proprietary, and each of them has a unique set of features.

IRPLs can be very powerful because they allow programmers to write automation programs that also

read-write data to or from the network or files, access the process memory, execute code downloaded

dynamically from the network, and so on. One of the main use cases of such powerful features is the

need for integration with middleware software, i.e., to let a robot talk to a vendor-neutral solution such

as the Robot Operating System Industrial (ROS Industrial), which is the most popular solution (with

many top industry brands being part of the ROS Industrial consortium55).

If used improperly and without the right security mindset in place, these powerful functionalities

could be very dangerous.56 First, if used without input validation (which is the most common case we

discovered), these functionalities could introduce vulnerabilities. Second, because there is no privilege

separation during execution, a program that performs simple machine movements is indistinguishable

from a program that reads from the network, writes on a file, or executes that file (i.e., a dropper-like

behavior), or from a program that scans the network to find targets, harvests and exfiltrates files on

the manufacturing machine, or alters robot movements and other properties that affect the physical

environment.

The attack vector can simply be a malicious task program, which will not be detected by conventional

security scanners (similar to how PowerShell or JavaScript malware variants used to go undetected), or

a trojanized task program with a dropper functionality, which will download the malicious payload and

execute it when it is unexpected.

A technical description of how the vulnerable or malicious automation logic in a complex manufacturing

machine can be exploited is in Section 4.5.

3.3.5

 27 |

Attacks on Smart Manufacturing Systems
A Forward-looking Security Analysis

Case Study: Attacks
In this section, we describe how we tested the feasibility of some attacks under different attacker

model assumptions. In certain cases, we assume that the attacker does not have direct access to the

smart manufacturing (floor) network, while in others, we explain what the consequences would be if the

attacker could access the network.

Figure 13 shows a high-level overview of the possible attacks included in our case study. We focus on

the three entry points described in Section 3.2 (purposely leaving out the classic infected USB flash

drive entry point à la Stuxnet,57 which had been analyzed quite a few times in previous researches): the

MES database (or the ERP system, alternatively), the engineering workstation (which is used to create

and deploy automation logic), and a custom IIoT device (which can be a custom-developed embedded

system). We describe two attacks — compromise through a malicious industrial add-in and trojanization

of a custom IIoT device — through which an actor can gain access to the entry points indirectly. We

then describe three attacks — exploitation of a vulnerable mobile HMI, data mangling on the MES, and

use of the vulnerable or malicious automation logic in a complex manufacturing machine — that would

allow lateral movement (e.g., on the HMI or the MES) or persistence (e.g., on the robot). The key details

of these attacks — presented in this paper according to the depth of their penetration into the system,

from entry point to the final target — and their corresponding defense approaches are listed in Table 2.

Compromise through
 a malicious

industrial add-in

Use of the vulnerable
or malicious automation

logic in a complex
manufacturing machine

Trojanization of a
custom IIoT device

Data mangling
on the MES

Exploitation of
a vulnerable
mobile HMI

Trojanized
add-in

Trojanized
third-party

library

MES
database

Engineering
workstation

Custom
IIoT device

MES

HMI

Machine

Vectors Entry points Targets

A high-level overview of the possible attacks included in our case studyFigure 13.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 28 |

Attack Attacker is Target is
Attack

technique
Impact

Ease of
attack

Ease of
defense

Defense
approach

Compromise
through a
malicious
industrial
add-in

Remote Engineering
or
development
workstation

Indirect:
malicious
software
extension

(full plant
compromise)

(software
extension
vetting and
isolation)

File scanning
prevents
malicious
software
extensions from
landing on the
engineering or
development
workstation.

Details in
Section 4.1.

Trojanization
of a custom
IIoT device

Remote Custom IIoT
device

Indirect:
trojanized
library or
compromised
repository

(full plant
compromise)

(software
supply
chain
security)

Visibility over the
software supply
chain validates
every third-party
component
used in the
development of
IIoT software.

Details in
Section 4.2.

Exploitation of
a vulnerable
mobile HMI

On network Mobile HMI Credential
harvesting

(mobile
app
vetting)

Mobile app
vetting is the
minimum
required to avoid
vulnerable or
malicious apps.

Details in
Section 4.3.

Data mangling
on the MES

On network,
database or
ERP system

MES Database
data or
network
spoofing

(altered
product)

(endpoint
or network
monitoring)

Prevention of
database or
ERP system
compromise
is key since all
traffic from the
database or ERP
system to the
MES is normally
authorized.
Countermeasures
against Internet
Protocol (IP)
and Address
Resolution
Protocol (ARP)
spoofing should
also be deployed

Details in
Section 4.4.

Easy to
medium

MediumVery high

Very high Medium

Medium

Medium

Medium

Medium

High

Easy

Easy

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 29 |

Attack Attacker is Target is
Attack

technique
Impact

Ease of
attack

Ease of
defense

Defense
approach

Use of the
vulnerable
or malicious
automation
logic in a
complex
manufacturing
machine

System
integrator,
or from
compromise
through a
malicious
add-in

Machine
(e.g., robot)

Vulnerable
or malicious
automation
logic

(hijacked
physical
machine)

(custom
program
analysis
engine)

Custom program
analysis
techniques
validate each
automation
logic before
deployment,
at the system
integrator level.

Details in
Section 4.5.

Table 2. Details of the attacks included in our case study and their corresponding defense

recommendations

Overall, we envision the following multi-attack flows:

• Attack: compromise through a malicious industrial add-in → Entry point: engineering

workstation → Attack: use of the vulnerable or malicious automation logic in a complex

manufacturing machine (robot)

 º The engineering workstation is compromised via a malicious industrial add-in.

 º The malicious industrial add-in appends malicious automation logic code that will be deployed

on the robot.

 º The malicious automation logic code:

 · Maps the network.

 · Exfiltrates files and network information from the robot host.

 · Implements a malicious server to support the other steps of the attack.

• Attack: trojanization of a custom IIoT device (open-source library) → Entry point: custom IIoT

device

 º Either the development workstation or the repository of an open-source project library is

compromised.

 º The library is altered to:

 · Report incorrect temperature readings so that the plant will stop due to safety rules.

 · Perform Address Resolution Protocol (ARP) spoofing as a noisier alternative to stop the

plant.

 º The developer creates custom firmware to monitor the temperature readings and unknowingly

includes the trojanized library.

Very
hard

High Hard

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 30 |

• Entry point: MES database → Attack: data mangling on the MES

 º The attacker obtains access to the database of the MES.

 º The attacker reverse-engineers the structure of the database.

 º The attacker alters one number in one row of the database.

App store

 Smart
manufacturing

plant

Engineer
laptop

Third-party
developer

library

Developer
laptop

Official Arduino
libraries

Official Arduino
libraries

Custom IIoT
development

Malicious industrial add-in

Installs

Trojanized logic

Command
and control

Attacker

• Compromises popular
 repository
• Uses typosquatting or
 similar technique

HTTPS

Trojanized firmware

To the
smart manufacturing

plant

HTTPS +

Integrity checks on the
downloaded libraries

Attacker

1

1

3

4

Figure 14. The overall multi-step attack scenarios that we envision given our findings described in the

remainder of this section, including initial compromise using a malicious industrial add-in (left) and

a “backdoored” third-party library (right)

Compromise Through a Malicious
Industrial Add-in
In this section, we show, using tools and development environments that are specific to industrial

automation, how an attacker can gain access to the target engineering workstation, steal secrets

from it, and remotely trojanize every task program developed, in order to move laterally to the smart

manufacturing system.

The attacker’s end goal is to alter the production or remain persistent in the smart manufacturing plant,

even if the engineering workstation is not directly connected to it (e.g., the engineering workstation

could be a consultant’s laptop, used to develop the automation logic that would be delivered to the

customer).

4.1

Defense approach: Malicious industrial add-ins are essentially DLL files. Since DLL files do not

represent a threat per se, the best defense approach is to use behavioral endpoint protection

solutions, which can detect whether an executable is trying to harvest and exfiltrate files, among

other actions.

Background concepts and a security analysis of industrial add-ins, which are relevant to the discussion

of this attack, are in Sections 3.2.1 and 3.3.1.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 31 |

Industrial Add-ins as Attack Vectors

In this section, we explain how a vulnerable development environment could be exploited by an attacker

as a first, indirect step toward gaining access to the entire smart manufacturing system. We estimate

that an attacker in this case would be able to infect about two distinct computers per day.

We found out that ABB’s app store was affected by a file-upload bypass vulnerability, in which

RobotStudio made non-approved add-ins immediately available. We reported this finding to ABB,

which acknowledged and fixed the vulnerability. In addition, we verified that it is possible to create add-

ins that collect data from the target engineering workstation and send it out over the public internet. We

also verified that it is possible to create add-ins that append malicious code that will be delivered to the

robot. (It should be noted that RobotStudio is used to develop, among other things, automation logic,

specifically in the Rapid programming language.) Essentially, these add-ins have access to all of the

system resources that are necessary to implement any functionality. As shown in Figure 15, the normal

workflow is such that a developer could install add-ins from the app store via the web view (e.g., using

a browser) or via the desktop view embedded in RobotStudio.

4.1.1

Figure 15. Add-ins can be downloaded from the web-facing app store and the app store client built into the

desktop application (RobotStudio), the latter of which makes add-in installation seamless with just

the click of a button.

Going into more detail, we discovered three issues (from high- to low-level) involving add-ins uploaded

to the ABB app store.

Weak Vetting Process

Anyone can register and upload add-ins; there is no developer registration process as seen with mobile

app stores. Moreover, there is no strict vetting of the uploaded code. In our case, it was possible for

one of our research partners to successfully upload a (harmless) add-in that included the following note:

“[…] prepared it and uploaded it to check whether this app store has any manual vetting procedure. […]

to check whether someone would be able to uploading [sic] software, including non-benign software,

via this app store.” The add-in was readily accepted, and within 10 days it had been downloaded by

18 users.

4.1.1.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 32 |

Lack of Sandboxing

Although the uploaded add-in was harmless, we verified that, once downloaded, an add-in can do

anything on the system, including network communication and file system harvesting, without any

sandboxing or other restrictions. To this end, we created an offline add-in that performed these actions.

As shown in Figure 16, a test add-in that we created was able to recursively walk the C:\Users directory

tree, collect full file paths from it, and make web requests, e.g., to send out harvested information to a

remote endpoint.

4.1.1.2

Once downloaded (and automatically installed), an add-in is not sandboxed and can perform

actions on the system using the same privileges of the host app.

File-upload Vetting Bypass

While waiting for approval, the uploaded add-in was not showing up in the web view of the app store.

But it was immediately available for download through the built-in desktop app store interface of

RobotStudio, as shown in Figure 17.

ABB has fixed this server-side issue in response to our disclosure. A completely remote attacker could

have indirectly infected the users of RobotStudio by uploading a malicious add-in that would bypass

the vetting process.

Figure 16.

4.1.1.3

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 33 |

Figure 17. While still waiting for approval, the test add-in could already be downloaded and installed.

Digital Twin Compromise

We found and reported a slight variation of the aforementioned issues in the Kuka development

ecosystem, specifically in the engineering and development software Kuka.Sim, which is used for both

robots and computer numerical control (CNC) machines. An advisory for this vulnerability, which has

been assigned the identifier CVE-2020-10635, has been published by the Industrial Control Systems

Cyber Emergency Response Team (ICS-CERT).58

Like any OLP software, Kuka.Sim is used to design and test automation logic programs offline, before

on-site testing. The version that we tested, Kuka.Sim Pro 3.1, has a feature called eCatalog, which allows

developers to import externally developed, interactive 3D models in their simulations. In other words,

eCatalog contains the digital twins of the industrial machines, which we consider a fairly advanced and

forward-looking function. Internally, each of these digital twins, examples of which are shown in Figure

18, is made up of a 3D model combined with the KRL source code that defines its physical behavior.

Any modification in the code will be reflected in the behavior of the digital twin.

4.1.2

Figure 18. Like many other digital twins, each of Kuka’s digital twins is made up of a 3D model along with

simulation parameters, which “govern” its physical behavior when in use.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 34 |

We found two security issues that, despite their simplicity, could have serious consequences if exploited.

Lack of Code Signing or Integrity

There are no application-level integrity checks on the data fetched from eCatalog, including the digital

twins. The integrity of the digital twins is critical because they are used as the references for creating

industrial automation tasks and workflows. They are simple ZIP files containing both code (written in

the KRL) and 3D models (in 3D Studio format). Without any integrity checks, there is no way to verify

whether the digital twins have been tampered with.

Unencrypted Network Transport

The network communication between the Kuka.Sim client and the remote eCatalog endpoint is over

plain HTTP, not via HTTPS. Given the ubiquity of HTTPS thanks to the Let’s Encrypt initiative,59 we

believe there are very few barriers to its adoption. With minimal time investment, anyone can set up an

HTTPS endpoint, which provides an immediate gain in security.

The digital twins are fetched from the remote eCatalog servers as soon as the Kuka.Sim software

boots. After having downloaded and installed a fresh copy of Kuka.Sim, we observed a lot of plain-text

HTTP traffic to the visualcomponents.net host, which we later discovered was related to the eCatalog

feature. The directory of the catalog is fetched via HTTP from “http://download.visualcomponents.net/

elib/KUKA_Sim_3.1/components.xml”. (There seems to be no HTTPS endpoint configured.)

Even if there were application-level integrity mechanisms to protect the files served from the directory

(e.g., hashes or other checksums for Kuka.Sim to verify), they could not be considered secure because

an MitM between the host computer and http://download.visualcomponents.net would be able to

tamper with the XML code, including any integrity information. On top of that, even the individual digital

twin files are fetched via HTTP, making it trivial for an MitM to tamper with them. In our responsible

disclosure to Kuka, we suggested that they switch to HTTPS for any network communication from

Kuka.Sim (or with any other software).

Tampering With Digital Twins

By exploiting the lack of integrity (at both the application and transport levels), an attacker — even a

remote one — on the network can do several things. Since their integrity is not checked, an attacker can

change the code, the 3D model, or both. Furthermore, the attacker can modify a digital twin by altering

its visual 3D appearance, its reference system (coordinates), or both. An unaware programmer would

then create a program for the machine based on the (altered) simulation parameters. The program

would run smoothly when simulated on the machine that runs the altered digital twin.

Consequently, programmers may create projects based on tampered digital twins. When these projects

are tested on real machines (e.g., robots, CNC machines), the effect is going to be unpredictable. The

program will fail the on-site, preproduction tests, but it will be difficult to determine why. In addition,

programmers will waste time figuring out why the simulation runs smoothly.

We verified this information with the aid of a field expert and reported the issue to Kuka.

4.1.2.1

4.1.2.2

4.1.2.3

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 35 |

Figure 19. Kuka’s eCatalog does not use any integrity protection at both the application and transport levels,

making it possible for an attacker to modify the digital twins.

Trojanization of a Custom IIoT Device
In this section, we show how an attacker can compromise a smart manufacturing system through custom

IIoT devices. Although the attack vector that we use is not specifically tied to smart manufacturing

environments, this attack can certainly have an impact in such a setting.

We assume that the attacker wants to either cause malfunctions on the smart manufacturing system

or facilitate other attacks on the network. In our attacker model, the attacker does not have direct

access to the smart manufacturing system or its network. We assume that the attacker can access

a developer’s computer — possibly via the method described in the section on compromise through

a malicious industrial add-in (Section 4.1) — either to alter an installed library or to compromise the

original library repository (in the case of a more capable attacker).

4.2

Defense approach: The best approach is to have full visibility over the software supply chain,

including the third-party components used (internally) by developers to build custom firmware for

IIoT devices. This means that whenever a library is included in a software project — and many open-

source libraries are used nowadays — it needs to be considered as untrusted, in the sense that a full

code review needs to be performed whenever it changes.

Background concepts and a security analysis of custom IIoT devices, which are relevant to the

discussion of this attack, are in Sections 3.2.2 and 3.3.2.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 36 |

Security Risks of Modern (Industrial) IoT Development
Practices

Arduino provides its own official integrated development environment (IDE) along with an online catalog

of about 80 official libraries,60 which are vetted and considered stable. The end-to-end integrity of these

libraries is between the Arduino servers and the developers’ computers that download them. While

using the Arduino IDE, developers are assured that the libraries that they download are authentic, and

their integrity is guaranteed by a cryptographic hash. From there, however, whatever happens on a

developer’s computer is outside Arduino’s control. There is no way to guarantee that the code that will

end up being loaded and executed on the IoT node has not been tampered with. Another risk, which

is mitigated by the vetting at the source, is that the original library developer could have included a

malicious functionality or a vulnerability in the library, e.g., the original developer’s repository could have

been compromised.61, 62, 63, 64 For this, Arduino is the trusted third party because it (periodically) checks

all of the official libraries in the official catalog.

Modern embedded development ecosystems are often extremely large and complex, and are filled with

a variety of resources, tutorials, and libraries that are casually uploaded to code repositories and other,

similar places. Developers are inclined to take libraries apart, modify them, and then re-upload them

somewhere else, copying code from and onto community forums such as Stack Overflow. Moreover,

advanced developers do not rely on the Arduino IDE; they are used to incorporating libraries coming

from unofficial sources. The most representative example is PlatformIO, a fairly advanced development

environment that also offers a catalog of more than 7,000 libraries.65 On PlatformIO, anyone can register

a library for other developers to download. There is no end-to-end integrity mechanism apart from the

fact that the libraries must be downloaded via HTTPS. In other words, there is no way to detect whether

the source repository that hosts the library has been compromised or even whether it still contains the

original code written by the developer, as with what happens in the official Arduino libraries.

Furthermore, the Arduino hardware abstraction layer is compatible with several target boards — which

is its main goal. For example, even if the Siemens Simatic IoT2040 is meant to run Yocto Linux and

its official Siemens software distribution, any custom firmware will run seamlessly on it, without any

hardware modification. There are several tutorials that clearly explain how to do this. Aside from the

Siemens Simatic IoT2040, there are many industrial devices that are compatible with Arduino, as noted

in Section 3.2.2.

Attack Demonstration

To avoid calling out a specific brand or product, which is not what we aim to do, we demonstrate the

attack using generic Arduino-compatible devices from an unknown brand, like the one shown in Figure

20. Indeed, the brand is not relevant in this case because the issue is unrelated to the vendor but rather

lies in the (open-source) software supply chain.

4.2.1

4.2.2

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 37 |

The custom IIoT device we used to demonstrate the attack

Given the above premise, we show how an attacker could trojanize firmware via a software supply

chain attack targeting one of the libraries used by a developer. We assume that an IIoT developer wants

to create a monitoring node that collects temperature readings, e.g., for predictive maintenance or

anomaly detection. This is a very common scenario these days: multiple sensors attached to various

key points in the production plant that detect signs of anomalous behavior (e.g., a machine that may

be faulty or may be working beyond its physical limits). In Industry 4.0 Lab, the monitoring network is

on a separate, air-gapped network (although this may not always be the case), and is used to send

monitoring data to a cloud service, which activates an alarm (with a loud siren) every time the measured

value is out of safety range. Figure 21 shows the main loop running on the custom IIoT device and the

readings that are reported over time.

Figure 20.

Figure 21. A timeline of the temperature readings

Because of the trojanized library, the developer is not aware that the firmware will report incorrect

temperature readings after some time, as shown in Figure 22. From then on, an anomaly will be triggered,

the alarm will go off, and any further reaction procedure will be engaged.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 38 |

Figure 22. A timeline of the altered temperature readings

As an alternative strategy, the attacker could use the trojanized library to cause a denial of service (DoS)

in the smart manufacturing plant by including less subtle malicious functionalities. As shown in Figure

23, an ARP spoofing loop could be included by the attacker. While the code that the developer wrote

was the same as the one above, the library had been compromised by an attacker to launch an ARP

spoofing attack at random intervals, which would disrupt network communication.

Figure 23. ARP spoofing caused by a trojanized library included in the custom IIoT device responsible for

monitoring the temperature

Exploitation of a Vulnerable Mobile HMI
In this section, we explain how an attacker can obtain control of a connected machine by exploiting

a vulnerable mobile HMI. For our attacker model, we assume that the attacker has access only to the

(wireless) network that connects the mobile HMI and the connected machine.

4.3

Defense approach: Detecting vulnerable or malicious mobile apps can help prevent the root cause

that an attacker might exploit. In the specific case of our case study, we found that the developers

implemented a weak authentication scheme, which stored secrets right in the code. We do not think

that this case would be detected by streamlined code analyzers. Thus, in this specific case, the best

defense approach would be manual code review of the mobile app that implements the HMI.

Background concepts and a security analysis of HMIs, which are relevant to the discussion of this

attack, are in Section 3.3.3.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 39 |

Controlling Connected Machines via Mobile HMIs

We found one public mobile HMI app leaking sensitive authentication information, which would allow an

attacker to easily reverse-engineer the credentials stored in it, and then reuse the same credentials to

authenticate and send movement commands to a Comau industrial robotics controller. We responsibly

disclosed this case to Comau through the ZDI; the relevant vulnerabilities have been assigned the

identifiers CVE-2020-10998 and CVE-2020-10999. In response to our disclosure, Comau indicated that

it would be blocking downloads of the affected app and making a new, updated version of the app

available. As of the publication of this paper, Comau said that it did not know when a new version of the

app would be available, or if a new version would be available at all.

Like many modern vendors, Comau offers a mobile HMI in the form of an app. In this particular case,

Comau’s PickApp can be used to interact with the robot as if the operator were using a traditional robot

teach pendant, which is normally a wired, dedicated device. As depicted in Figure 24, the UI has control

soft buttons for interacting directly with the physical robot. We are seeing a trend, beyond the robotics

domain, of functionalities being implemented in apps or on general-purpose devices like tablets.

4.3.1

Comau’s PickApp implements some of the functionalities of a robot teach pendant.

Credential Leaks

PickApp is free, so anyone can download it. While this is not an issue in itself, we managed to decompile

and reverse-engineer the application package, where we found out the supposedly secret algorithm

used to compute the password needed to connect to the robot (based on the calendar date and time),

as shown in Figure 25.

Figure 24.

4.3.2

From the source code obtained via decompilation, we found out the algorithm used to compute

the password to connect to the robot.

Figure 25.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 40 |

An attacker who has gained network-level access to a smart manufacturing plant that uses this line

of robots, with PickApp enabled, can interact with the robot directly because they now know the

credentials.

From a remediation viewpoint, the vendor needs to implement proper authentication protocols. This

shows that a security upgrade is due for both the controller and application sides. Moreover, users need

to create, deploy, and use proper credentials.

Application Sideloading

As shown in Figure 26, PickApp’s manual instructs users on how to disable a security feature on

their tablet or phone, which otherwise would prevent the app from running. It explains how to enable

sideloading to allow the installation of applications outside official app stores, i.e., to allow the installation

of PickApp, which is not officially distributed. This alone is an issue because users have no way to

verify the authenticity of the app being installed. In addition, the manual neither warns users about this

security risks nor explicitly states that users should re-enable the security feature once they are done

with the installation.

4.3.3

Figure 26. PickApp’s manual explains in detail (including screenshots) how to enable sideloading of

unofficially distributed apps like PickApp, without explaining the security consequences and

advising users to disable it once the installation is finished.

To remediate this issue, the vendor should either distribute the app through the Google Play Store if

the company policy allows for the use of internet connections (e.g., limited to the app store IP range) or

create an internal “app store” with valid certificates if not.

Impact on Safety

Merely using software machine interfaces carries safety risks because there is no direct mechanical

or electrical connection from the command-issuing device (e.g., the HMI) and the final actuator (e.g.,

the motor). The PickApp case, which is no exception, allows us to comment on this problem. The app

substitutes the hardware teach pendant but is unable to fulfill the emergency stop time requirements

(which are subject to standards and regulations). This is because a software failure on the mobile side

may prevent the operator from issuing timely emergency stop commands.

As seen in the manual excerpt shown in Figure 27, the use of this mobile HMI requires the installation

of a hardware bypass circuit, which transfers the emergency stop commands to the cell (e.g., robot)

level. This assumes that the operator must stay close to the robot to issue an emergency stop command

using the usual hardware red button.

4.3.4

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 41 |

Figure 27. The PickAPP manual describes the impact on safety when software teach pendants such as

PickApp are used.

Data Mangling on the MES
In this section, we show how an attacker can affect the proper operation of the MES. We assume that

the attacker wants to cause malfunctions, damage the produced goods, or produce defective products.

We assume that the attacker is not on the smart manufacturing system network and cannot access it,

but can write one field in the database of the MES, which may or may not be on the same network.

4.4

Defense approach: The best strategy to avoid this attack is to prevent the database or ERP system

from getting compromised because all traffic from the database or ERP system to the MES is

normally authorized. Thus, if an attacker manages to compromise any trusted machine that can

legitimately send data to the MES, it is already too late.

If the attacker is already on the network and if the MES accepts commands from the network, the

attacker may try to spoof them. In this case, the recommendation is to deploy countermeasures

against IP and ARP spoofing.

Background concepts and a security analysis of MESs, which are relevant to the discussion of this

attack, are in Sections 2.1.1, 3.2.3, and 3.3.4.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 42 |

While this attack is not tightly coupled with the Festo MES4 that we analyzed, it can affect any MES that

does not implement data integrity checks on the database records. The MES we analyzed is running

Festo MES4 1.1.0.9. This software is used to create a work plan and distribute it in the form of operations

to the manufacturing line. A work plan specifies the operations that need to be executed from the line to

process a piece and to create a final product. Each operation is executed by one distinct station, e.g.,

a drill that drills a hole through the piece under process.

The MES uses an internal database (Microsoft Access) to store the work plans that are created by

the operator. When a work plan is executed, the MES uses this database to translate the work plan’s

operations in a series of parameter values for the different stations. For example, the operation “right

drill” corresponds to Parameter Value No. 2 (table tblOperationParameter) and is used in communication

with Station No. 3 (DRILL-CPS in tblResource).

We verified empirically that the MES neither authenticates the database nor contains a way of validating

each of the records. This allows an attacker to arbitrarily tamper with the database and conduct two

practical attacks. One involves the introduction of an error in the production. In this scenario, the

attacker changes the value of the parameter associated with an operation, e.g., by changing No. 2

(“right drill”) with No. 1 (“left drill”). As a result, every time the operator creates a “right drill” operation,

this gets substituted by a “left drill” operation. Clearly, this attack would be even more effective if the

attacker had the ability to alter the Q&A process, e.g., by tampering with the results of the camera check

in order to return “OK” in the presence of defects.

The other practical attack involves blocking the production. As previously mentioned, each station is

configured with a set of preconfigured available operations (e.g., “drill right” or “drill left”), which are

configured in the PLC of the station. As a consequence, the station expects to receive one of these two

values from the MES. We verified that it is possible to cause a DoS if an attacker introduces an out-of-

bound value in the parameter values of one of these operations. For example, an attacker may replace

Value No. 2 with Value No. 5. In this case, every time the operator creates a work plan with a “right drill”

operation, the drilling station will trigger an error and block the production.

The attacks can be conducted either manually, by updating parameter values in the database (e.g., via

an SQL update), or automatically, via malware.

A high-level demonstration of the attack sequence is shown in Figures 28 to 32.

Figure 28. Data mangling on the MES, Step 1: A normal order is inserted via the MES and the production

starts.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 43 |

Figure 29. Data mangling on the MES, Step 2: The raw product (white box) enters the production line for

drilling on the right.

Figure 30. Data mangling on the MES, Step 3: The drill drills a hole in the correct position.

Figure 31. Data mangling on the MES, Step 4: The same order is restarted, again with a “drill right”

instruction.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 44 |

Figure 32. Data mangling on the MES, Step 5: The drill unexpectedly drills on the left.

Use of the Vulnerable or Malicious
Automation Logic in a Complex
Manufacturing Machine
Using the programming environments from major industrial robot vendors, we show that it is possible to

create vulnerable or malicious machine automation logic. We also show how we found real-world cases

of vulnerable task programs, one of which has since been removed by the vendor upon our responsible

disclosure. In our attacker model, we assume that either the attacker is on the network and cannot

access the target machine (e.g., robot) or the attacker is already on a target machine (e.g., robot) and

wants to remain persistent while loading additional control logic, mapping the network, and exfiltrating

sensitive information from it.

4.5

Defense approach: This situation requires custom program analysis techniques to validate each

automation logic before deployment at the system integrator level. Unfortunately, network and

endpoint monitoring are not enough for a couple of reasons. First, there are legitimate reasons

that a robot, for instance, must receive data from a machine, and blocking that traffic will result in

the disruption of the machine’s functions. Second, automation logic is not compiled in common

executable formats such as the Portable Executable (PE) format and the Executable and Linkable

Format (ELF), neither of which is written in general-purpose languages such as C, for which scanners

— which can point out vulnerabilities or signs of malicious behavior — are readily available.

Trend Micro has developed a technology with specific countermeasures for this attack. Certain

portions of this technology are patent pending.

Background concepts and a security analysis of industrial robots and IRPLs, which are relevant to the

discussion of this attack, are in Section 3.3.5.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 45 |

Task programs for complex manufacturing machines are among the industry’s best-kept secrets

since they are essentially the digital twins of manufactured goods and, as such, carry a lot of value.

For this reason, we were not expecting to find any public or open-source task program to analyze

for vulnerable or malicious code patterns. However, by using a mixture of web search techniques

(e.g., “site: github.com”) and GitHub’s search feature, we were able to crawl GitHub and similar code-

hosting sites and collect nearly 2,000 task program files covering major industrial robot vendors. Since

we knew the file extensions used by each vendor and the characteristic language keywords, we were

able to narrow down the search and find several repositories containing real code. Despite most of the

programs’ being clearly used for educational purposes, we found a recurring and interesting use case:

integration programs. These programs allow the connection of an industrial machine to on-premise

services, either by exposing a network service on the machine’s side or by acting as a client to an

existing network service.

We extended this finding further by using our knowledge of the domain-specific programming language

of each vendor to show three patterns for vulnerable programs and one for malicious programs. The

most striking aspect is that, while it is possible to introduce input validation or logic vulnerabilities,

the vendors’ languages are rather limited in their string-processing functions. Therefore, it is hard

to implement input validation routines. Moreover, and most importantly, the lack of cryptographic

primitives makes it practically impossible to implement proper authentication or integrity checks on the

data coming from the network.

Universal Robots is very peculiar and different from all of the other vendors because it allows the writing

of automation logic in a general-purpose programming language (Java and Python being the most

representative examples). In other words, Universal Robots is not limited to using its own IRPL. On one

hand, this may sound very dangerous because it gives complete power to a malicious developer to

write advanced malware with direct access to all of the hardware resources. On the other hand, it is a

security advantage: All of the best practices and state-of-the-art code analysis tools (e.g., for Java and

Python) can be used to find vulnerable code patterns, and general-purpose programming languages

are powerful enough to allow the implementation of strong security measures such as authentication

and encryption.

The mere presence of the named program language features does not represent a security issue.

Only its unsafe use can create venues for vulnerabilities, the degree of exploitation of which depends

on several conditions, as explained in the remainder of this section.

Figure 33 summarizes the broad cases of unsafe automation logic. On one hand, developers can

introduce vulnerabilities by using unsafe programming patterns. On the other hand, malicious actors

can purposely write programs that abuse specific functionalities. There is an interplay between the two

cases, which can lead to malware that loads remote external code, enumerates the network (e.g., to find

further targets), exfiltrates secrets, modifies configuration, or causes general damage.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 46 |

Benign but
unaware developer

Malicious developer

Can load
malware
for

Can be exploited for

Can be
exploited to

Look for new targets

Can lead to

Unsafe
automation

logic

Vulnerable
program

Unintended robot
movement

Control flow hijack

Arbitrary file access

Configuration
tampering

Malicious
program Dropper

Information
theft

Network target
enumeration

Figure 33. A summary of the broad cases of unsafe automation logic

Arbitrary File Access or Configuration Tampering

We found and reported a real case of a vulnerable web or file server implemented in ABB’s Rapid

language that was meant to run on an industrial robot.66 As summarized in Figure 34, the file server

was affected by a classic input validation vulnerability, which would have allowed an attacker to pass

any string as the file path — including directory separators (e.g., “../”). This made directory traversal

possible, allowing an attacker access to any files on the machine’s controller computer. By checking the

features of the other vendors’ programming languages, we verified that a programmer can make similar

mistakes on other platforms, so the issue is not limited to this case.

Also by looking at the features of the other programming languages, we concluded that variations of

this vulnerable code pattern exists. For example, if there is an “unsanitized” path from an inbound

communication primitive (e.g., network socket, field bus, serial) and a configuration-handling or file-

writing function, then an attacker could exploit it to tamper with sensitive configuration files. This

could result in instances like unexpected behavior from the controlled machine or even in the entire

programming logic’s being replaced by arbitrary files at the attacker’s will.

4.5.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 47 |

/www

FILE

/vault

SECRET

• Path traversal vulnerability
 (read-only)
• Exploit for information theft

GET file

File

Get …/vault/secret

secret

../

No input sanitization

/www

FILE

/conf

CONFIG

• Path traversal vulnerability
 (read/write)
• Exploit for configuration
 tampering

Put file

Put …/conf/config ../

No input sanitization

Figure 34. Vulnerable code pattern: from unsanitized (e.g., file, network, serial) data to read/write file access

Arbitrary, Unintended Movement Commands

A vulnerable code pattern emerged after we found that in all of the cases that we examined, there was

no authentication or input validation on the movement coordinates. This means that an attacker who

can send data on the network is also able to issue any movement command to the machine since there

is no granular control on the coordinates sent to the robot. While seemingly straightforward at first, this

vulnerability is difficult to mitigate in the context of a smart manufacturing environment, where every

endpoint is trusted by default. A firewall will not help because even if machines are whitelisted, there

is no way to block or control unexpected movement commands from those trusted machines. The

only solution is to authenticate all packets. Implementing this at the source-code level is challenging

because cryptographic support is either absent or very limited.

The only effective mitigation is to implement an authenticated and encrypted connection, such as a

virtual private network (VPN) connection, between the robot and each of the endpoints that need to

communicate with it. However, this can prove impractical, and even if it is implemented, the lack of input

validation on the movement coordinates will still need to be taken care of at the source-code level (e.g.,

by checking values against boundaries).

4.5.2

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 48 |

Deg = 20

Deg = 50

MOVE(deg)

Deg = 20

Deg = 50

.

.

.
Deg = “stuff”

MOVE(deg)

Invalid

Unintended movement

Unintended movement

Input validation (0, 20)

No input validation

Exploit for unintended robot
movement

Figure 35. Vulnerable code pattern: From unsanitized (e.g., file, network, serial) data to movement

commands

Control Flow Hijack

Some of the programming languages that we analyzed have a very powerful feature, called late

binding or call by name, that is normally available in general-purpose, high-level programming

languages such as C, C++, Java, and Python. Basically, this feature allows a programmer to write

code that programmatically calls another routine by its name. Thus, instead of statically writing, say,

function_reset_coordinates(), a programmer can write callbyname(func_name), where

func_name can be the function_reset_coordinates string value (or any other dynamic value).

If there is no input validation on the func_name variable in question, and if func_name is controllable by

the attacker (e.g., because it comes from or is influenced by inbound network data), then the program is

vulnerable. Not only did we find out that it is possible to implement programs that have this vulnerability,

but we also found an instance of this vulnerability in an open-source, educational program.

By exploiting this vulnerable code pattern, an attacker can change the original automation logic behavior

completely (e.g., by calling other code already present on the machine or by creating DoS loops).

The next section describes how the call-by-name feature is essential in creating advanced dropper-like

malware whose operation differs from the loading of the actual malicious payload.

4.5.3

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 49 |

Funct = “Start cycle”

Funct = “Wait”

Call(“Start cycle”)

Funct = “Start cycle”

Funct = “Wait”

Funct = <any…>

Call(“Start cycle”)

Call(“Wait”)

Call(<any defined function>)

Invalid

Robot will wait

Input validation

No input validation

Exploit for:
• Unintended robot movement
• Control flow hijack
• Denial of service

Figure 36. Vulnerable code pattern: From unsanitized (e.g., file, network, serial) data to command invocation

Malicious Code Loading

By combining networking primitives and call by name (i.e., deferred code loading and execution), we

verified that it is possible to craft fairly advanced malicious programs. As summarized in Figure 37,

the program that we used in our demonstration opens a connection to a remote server, receives the

malicious payload, writes it onto a file, executes it (after a delay), and, finally, deletes it once done. An

excerpt of an example of this malicious program written in ABB’s Rapid is shown in Figure 38. The first

three lines of the excerpt regard the robot movement instructions. From the fourth line onward, the

malicious part starts receiving data from the network; the data is stored as code, which is dynamically

loaded with the load dynamic instruction. The connect_socket function shows how the network

connectivity can be implemented.

4.5.4

Host controlled
by attacker

System
integrator

Fetch file

Malicious code

Exfiltrated host data

Network map

Deploy

Execution

. . .
. . .

Network host
enumeration

. . .

Attacker
trojanizes
code

Socket

Figure 37. Malicious code pattern: Malicious code loading for creating targeted malware with dropper-like

capabilities

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 50 |

Figure 38. An example of automation logic that embeds a malicious component

From this, the attacker can implement various payloads, depending on the features available on the

manufacturing runtime. For example, if the specific programming language has low-level network

functionalities available (e.g., open socket), these can be used to enumerate host targets in the same

network by trying to connect to well-known ports. If there are low-level file-system access functionalities

(e.g., open, read, or write files and directories), these can be used to harvest files on the machine. By

combining these two sets of functionalities, an attacker can create over-the-network data exfiltration

routines.

Given the interplay between vulnerable and malicious code summarized in Figure 33, instead of the

malicious (or compromised) system integrator shown in Figure 37, such a dropper might first infect the

target machine via a vulnerability (e.g., the file access case described in Section 4.5.1), and then find

further targets by enumerating hosts on the network.

 51 |

Attacks on Smart Manufacturing Systems
A Forward-looking Security Analysis

Defense and Mitigation
Defending a smart manufacturing system is challenging because the environment itself is complex.

Focusing on “keeping attackers out” is clearly important, but this has been the usual advice for decades,

regardless of the system. Such an approach is not future-proof because there is a tendency toward

increased connectivity and dynamic setups with modular plants that can be reconfigured as needed,

as opposed to the classic, static deployments. This has an impact on security policies, which should

be moving away from the assumption that every endpoint or machine within a manufacturing plant is

trusted, leaving the floor open to a more granular approach. As we have shown, network traffic coming

from an industrial robot — to take just one example — may not be coming from trustworthy software

because it might be malicious or it could have been exploited. The challenge is that there are currently

no simple ways of authenticating and signing the software and data flowing into these complex systems,

essentially because not all systems support such security requirements.

Securing Current Smart Manufacturing
Systems
This section complements the attack-specific defense approaches presented in Table 2 and at the

beginning of Sections 4.1, 4.2, 4.3, 4.4, and 4.5.

At the network level, deep packet inspection that supports the relevant OT protocols should be

implemented to spot anomalous payloads. For endpoints, integrity checks should be run periodically

to receive alerts for any altered software component (e.g., an automation script or a file that holds

calibration parameters). For IIoT devices, code signing is also required, but it should not be limited to

the final firmware; it should also include any other dependencies because we have seen that third-party

libraries could also be hiding malicious functionalities.

Risk analysis related to automation software is another important element. Traditional risk analysis in

industrial automation settings focuses on safety and sometimes relies on safety mechanisms as a sort

of “insurance” or “safety net.” However, modern manufacturing machines are evolving in their use of

complex safety systems. For example, in systems involving collaborative robots, which work side by

side with humans, safety is implemented in the software (at the firmware level), which clearly changes

its position in the risk analysis process.

As a general guiding principle, we recommend “thinking outside the box.” This paper should serve as

a prompt for thinking exercises for both basic and unconventional attack vectors, which are precisely

what advanced attackers think about for the attacks that they eventually act on.

5.1

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 52 |

Countermeasures Against Future Threats
What we demonstrate in this paper is what we predict might happen in the future. Our predictions are

not based on intuition; all of the technical prerequisites are in place. Before witnessing the first attacks

from or involving infected PLCs, only a few people were persuaded that it would be a reality, but now

people are dealing with the exploitation of PLCs. Similarly, we hope that this paper can persuade enough

key players to believe and invest in the required innovation that is necessary to raise the bar for security.

The first step is to realize that the same level of maturity found in the secure coding practices and

defenses of non-OT software (e.g., mobile apps, web apps, cloud environments) must be reached. In

the context of web apps as a comparative example, despite the continued existence of input validation

vulnerabilities, the overall situation has improved substantially, since it is much harder to find basic

input validation bugs today than it was, say, a decade ago. Likewise, despite the continued existence

of malware in mobile devices, rudimentary mobile malware has been eliminated. In this paper, we show

that we are at a stage where simple input validation vulnerabilities are present in automation code for

complex manufacturing machines (e.g., robots) and where malicious or altered extensions (e.g., add-

ins, digital twins) can be written and distributed through app stores, much as they were when the very

first version of the Google Play Store was initially released. (Malware found in the Google Play Store

has become newsworthy on account of its being uncommon, and it takes quite a lot of effort on an

attacker’s part to evade all of the security checks Google has in place.) Our desire is to see the software

delivery mechanisms for OT software being ready for the attacks that we demonstrate in this paper.

The second step is to focus on these three areas to improve current products and embed them with

security functionalities:

• A full chain of trust should be properly set up for data and software within a smart manufacturing

environment. The code that implements the automation logic, including the firmware running on

a custom IIoT device, should not be just “transferred” from the engineering workstation — or

worse, the developer’s laptop — to the industrial machine. A cryptography-backed code-signing

mechanism is required to ensure that all of the libraries incorporated by that code are signed

and that the final code is signed as well. This entails support from industrial machine vendors.

Similar verification routines should be in place in the development environment: Active software

components (e.g., plug-ins, add-ins, extensions) and digital twins must all be signed.

• Detection mechanisms should be in place to recognize vulnerable or malicious logic in complex

manufacturing machines (e.g., industrial robots). As we demonstrate in this paper, in addition to

the more outright scenario of a malicious developer intentionally creating malicious logic (with

time bomb-like behavior), a developer can mistakenly introduce vulnerabilities even in domain-

specific languages. Being able to detect these cases will enable short-time prevention because it

will alert engineers to the fact that they are about to deploy vulnerable automation logic (e.g., with

an “overprivileged” routine or input validation bugs), so that they can take corrective actions. Trend

Micro has developed a technology with detection capabilities that can protect its customers from

these advanced attacks. Certain portions of this technology are patent pending.

• Sandboxing and privilege separation mechanisms should be implemented for software running on

industrial machines and development environments. Mobile apps, for example, must declare and

request permission before accessing storage or network resources. So must automation logic and

active software components because they are not trustworthy and must never be considered as

trusted elements

5.2

 53 |

Attacks on Smart Manufacturing Systems
A Forward-looking Security Analysis

Conclusion
Smart manufacturing systems are designed and deployed under the assumption that they will be

isolated from both the outside world and the rest of the corporate network. On one hand, this does not

necessarily mean that remote attackers should not be considered: Remote attackers will try alternative,

indirect routes (e.g., infected automation logic or software extensions), which we show in this paper to be

possible. On the other hand, and perhaps more importantly, the closed-world assumption automatically

implies that local attackers have full power: Because of the lack of isolation between the parts of a smart

manufacturing system (e.g., all PLCs and machines on the same, flat network), any endpoint will trust

any other endpoint and a local attacker will be able to do practically anything they want. We believe this

should change.

Attackers are not sitting back and hoping for a high-profile, vulnerable smart manufacturing system to

pop up on search engines like Shodan, ready for them to attack. We believe that unconventional attack

vectors such as the ones we explore are more likely for an advanced attacker profile. This possibility is

increased by the fact that smart manufacturing systems, while made of hardware, live in an ecosystem

with an intricate net of interdependencies. Hardware is only one, small part of the equation. There are

also other components: software, libraries, developers, business relations, and so on, including software

used to develop other software, libraries sold by one company that is used by another company, system

integrators who work for several factories. We show how this has repercussions on the types of attacks

that are possible in smart manufacturing systems, such as those that involve malicious industrial add-

ins and those that trojanize custom IIoT devices.

Once an attacker has landed on a smart manufacturing system, they have unique opportunities for

lateral movement, some of which we believe had been unexplored until now. We found security-critical

design issues in the automation logic in robots, which not only create ground for vulnerabilities (for

which no automated vulnerability scanners exist yet), but also allow the implementation of malicious

logic (which will pass undetected, again in the absence of scanners).

We are now ready to answer the research questions stated in Section 1.5. The first, main question was,

“Under which threat and attacker models are certain attacks possible, and what are the consequences?”

Setting internal attackers aside, we note that external attackers will try to indirectly infect the endpoints

through targeted malware. This alone is not surprising; the novel part is that some OT software may

offer opportunities for targeting not only one specific person but broader categories of people who all

use the same software (e.g., OT developers). This similarly holds true for software libraries used for IIoT

development. This answers the second question, “Are there any overlooked vectors that could facilitate

an attacker’s getting a foothold in these systems?”

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 54 |

Using such attack vectors, the attacker can gain persistence using, for example, compromised

automation logic (e.g., running on industrial robots). The next question follows up on this point: “What

is the security impact of modern industrial software development practices, including the use of open

libraries, with complex interdependencies?” Programs written in industrial development environments,

which do not enforce the use of secure components (e.g., code signing, sandboxing), end up running on

a manufacturing machine (e.g., robot). Similarly, IoT firmware that includes complex dependencies and

a lot of “unofficial” libraries ends up monitoring or affecting the behavior of the machines. Since all of the

components of a smart manufacturing plant are usually connected to the same, flat network, anything

can happen. And because an attacker could really do anything to the system, the consequences are

difficult to estimate.

The final question was, “What is the cybersecurity awareness level of the technical personnel who

engineer, program, and operate in smart manufacturing environments?” Our survey and our analysis of

online community discussion groups confirm that people working in OT environments consider security

as an “add-on” rather than a process.

A smart manufacturing system does not exist in a vacuum: It is a complex ecosystem of machines,

components, and people that can be taken advantage of by threat actors to launch both conventional

and unconventional attacks. By shedding light on the different attack vectors that need to be focused on,

especially the unconventional ones, we hope that this paper will increase awareness levels, particularly

of individuals who are involved in operating smart manufacturing systems.

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 55 |

Appendix

The tactics and techniques used in the attacks discussed in this paper are mapped below using the

MITRE ATT&CK® for Industrial Control Systems matrix.67

Tactic Technique ID Description

Initial access
Engineering workstation
compromise

T818
Used to access the control system
applications and equipment.

Persistence Project file infection T873

Used to download an infected program
to a PLC in the operating environment,
enabling further execution and
persistence techniques

Discovery
Network service
scanning

T1046
Used to get a listing of services
running on remote hosts

Impact

Loss of safety T880
Used to possibly inhibit safety
mechanisms that allow the injury and
possible loss of life

Manipulation of Control T831
Used to communicate with and
command physical control processes

Table 3. The tactics and techniques used in the attack involving compromise through a malicious industrial

add-in

Tactic Technique ID Description

Initial access
Supply chain
compromise

T862
Used to gain access to the control
system environment

Persistence Module firmware T839
Used to install malicious or vulnerable
firmware onto modular hardware
devices

Inhibit response
function

Denial of service T814
Used to disrupt expected device
functionality

Impact

Denial of control T813
Used to deny process control
access to cause temporary loss of
communication with the control device

Loss of control T827
Used to achieve sustained loss of
control

Loss of productivity and
revenue

T828
Used to cause loss of productivity and
revenue

Loss of safety T880
Used to possibly inhibit safety
mechanisms that allow the injury and
possible loss of life

Table 4. The tactics and techniques used in the attack involving trojanization of a custom IIoT device

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 56 |

Tactic Technique ID Description

Execution Graphical user interface T1061
Used to search for information and
execute files

Lateral movement Default credentials T812
Used to abuse default credentials that
have not been properly modified or
disabled

Impact

Loss of safety T880
Used to possibly inhibit safety
mechanisms that allow the injury and
possible loss of life

Manipulation of control T831
Used to communicate with and
command physical control processes

Theft of operational
information

T882
Used to steal operational information
on a production environment

Table 5. The tactics and techniques used in the attack involving the exploitation of a vulnerable mobile HMI

Tactic Technique ID Description

Initial access
Data historian
compromise

T810
Used to gain a foothold in the control
system environment

Impair process
control

Modify parameter T836
Used to produce an outcome outside
of what was intended by the operators

Impact

Denial of control T813
Used to deny process control
access to cause temporary loss of
communication with the control device

Loss of safety T880
Used to possibly inhibit safety
mechanisms that allow the injury and
possible loss of life

Manipulation of control T831
Used to communicate with and
command physical control processes

Table 6. The tactics and techniques used in the attack involving data mangling on the MES

Tactic Technique ID Description

Initial access

Engineering workstation
compromise

T818
Used to access the control system
applications and equipment

Supply chain
compromise

T862
Used to gain access to the control
systems environment

Persistence Project file infection T873

Used to download an infected program
to a PLC in the operating environment,
enabling further execution and
persistence techniques

Collection Program upload T845
Used to gather information about an
industrial process

Impact

Loss of productivity and
revenue

T828
Used to cause loss of productivity and
revenue

Manipulation of view T833
Used to manipulate the information
reported back to the operators or
controllers

Table 7. The tactics and techniques used in the attack involving the use of the vulnerable or malicious

automation logic in a complex manufacturing machine

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 57 |

References
1 Mohit Kumar. (7 August 2018). The Hacker News. “TSMC Chip Maker Blames WannaCry Malware for

Production Halt.” Last accessed on 25 February 2020 at https://thehackernews.com/2018/08/tsmc-wannacry-

ransomware-attack.html.

2 Sophos. (19 September 2017). Naked Security by Sophos. “PyPI Python repository hit by typosquatting sneak

attack.” Last accessed on 24 February 2020 at https://nakedsecurity.sophos.com/2017/09/19/pypi-python-

repository-hit-by-typosquatting-sneak-attack/.

3 Brian Gorenc and Fritz Sands. (23 May 2017). Trend Micro. “Hacker Machine Interface.” Last accessed on 25

February 2020 at https://documents.trendmicro.com/assets/wp/wp-hacker-machine-interface.pdf.

4 Nilufer Tuptuk and Stephen Hailes. (April 2018). UCL Discovery. “Security of smart manufacturing

systems.” Last accessed on 17 March 2020 at https://discovery.ucl.ac.uk/id/eprint/10051762/1/1-s2.0-

S0278612518300463-main.pdf.

5 Siemens. (n.d.). Siemens. “Totally Integrated Automation – Future inside.” Last accessed on 24 February 2020

at https://new.siemens.com/global/en/products/automation/topic-areas/tia.html.

6 Politecnico di Milano. (n.d.). Industry 4.0 Lab. “A Teaching and Research Lab for Industry 4.0.” Last accessed

on 24 February 2020 at https://www.industry40lab.org/.

7 Politecnico di Milano. (n.d.). Politecnico Milano School of Management. “Politecnico Milano School of

Management.” Last accessed on 27 February 2020 at https://www.som.polimi.it/.

8 Magnus Åkerman. (June 2018). ResearchGate. “Implementing Shop Floor IT for Industry 4.0.” Last accessed on

24 February 2020 at https://www.researchgate.net/publication/326224890_Implementing_Shop_Floor_IT_for_

Industry_40.

9 Trend Micro Research. (3 April 2019). Trend Micro. “Security in the Era of Industry 4.0: Dealing With Threats to

Smart Manufacturing Environments.” Last accessed on 6 March 2020 at https://www.trendmicro.com/vinfo/us/

security/news/internet-of-things/security-in-the-era-of-industry-4-dealing-with-threats-to-smart-manufacturing-

environments.

10 Hannover Messe. (n.d.). Hannover Messe. “Hannover Messe.” Last accessed on 27 February 2020 at https://

www.hannovermesse.de/en/expo/exhibitor-short-index/index-2.

11 Politecnico di Milano. (n.d.). The Fenix Project. “The Fenix Project.” Last accessed on 27 February 2020 at

http://www.fenix-project.eu/.

12 European Commission. (n.d.). European Commission. “What is Horizon 2020?” Last accessed on 18 March

2020 at https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020.

13 Siemens. (n.d.). Siemens. “Simatic DP CPU 1510SP-1 PN.” Last accessed on 27 February 2020 at https://mall.

industry.siemens.com/mall/en/us/Catalog/Product/6ES75101DJ000AB0.

14 Siemens. (n.d.). Siemens. “Simatic HMI TP700 Comfort.” Last accessed on 27 February 2020 at https://

support.industry.siemens.com/cs/pd/127118.

15 Mitsubishi Electric. (n.d.). Mitsubishi Electric. “Melfa V-2AJ.” Last accessed on 27 February 2020 at https://

www.mitsubishielectric.com/fa/products/rbt/robot/pmerit/vertical/fseries/index.html.

16 Siemens. (n.d.). Siemens. “Scalance X208.” Last accessed on 27 February 2020 at https://support.industry.

siemens.com/cs/pd/501190.

17 Ian Verhappen. (17 April 2019). Control Global. “What’s holding back mobile HMI?” Last accessed on 24

February 2020 at https://www.controlglobal.com/articles/2019/whats-holding-back-mobile-hmi/.

18 Control.com. (n.d.). Control.com. “Forum.” Last accessed on 31 August 2019 at https://control.com/forums/.

19 PLC.MyForum.ro. (n.d.). PLC.MyForum.ro. “PLC.MyForum.ro.” Last accessed on 31 August 2019 at http://plc.

myforum.ro/.

20 Mr.PLC. (n.d.). Mr.PLC. “Forums.” Last accessed on 31 August 2019 at http://forums.mrplc.com/.

21 Robotforum. (n.d.). Robotforum. “Forum.” Last accessed on 31 August 2019 at https://www.robot-forum.com/

robotforum/.

22 Reddit. (n.d.). Reddit. “Robotics.” Last accessed on 31 August 2019 at https://www.reddit.com/r/robotics/.

https://thehackernews.com/2018/08/tsmc-wannacry-ransomware-attack.html
https://thehackernews.com/2018/08/tsmc-wannacry-ransomware-attack.html
https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://documents.trendmicro.com/assets/wp/wp-hacker-machine-interface.pdf
https://discovery.ucl.ac.uk/id/eprint/10051762/1/1-s2.0-S0278612518300463-main.pdf
https://discovery.ucl.ac.uk/id/eprint/10051762/1/1-s2.0-S0278612518300463-main.pdf
https://new.siemens.com/global/en/products/automation/topic-areas/tia.html
https://www.industry40lab.org/
https://www.som.polimi.it/
https://www.researchgate.net/publication/326224890_Implementing_Shop_Floor_IT_for_Industry_40
https://www.researchgate.net/publication/326224890_Implementing_Shop_Floor_IT_for_Industry_40
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/security-in-the-era-of-industry-4-dealing-with-threats-to-smart-manufacturing-environments
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/security-in-the-era-of-industry-4-dealing-with-threats-to-smart-manufacturing-environments
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/security-in-the-era-of-industry-4-dealing-with-threats-to-smart-manufacturing-environments
https://www.hannovermesse.de/en/expo/exhibitor-short-index/index-2
https://www.hannovermesse.de/en/expo/exhibitor-short-index/index-2
http://www.fenix-project.eu/
https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020
https://mall.industry.siemens.com/mall/en/us/Catalog/Product/6ES75101DJ000AB0
https://mall.industry.siemens.com/mall/en/us/Catalog/Product/6ES75101DJ000AB0
https://support.industry.siemens.com/cs/pd/127118
https://support.industry.siemens.com/cs/pd/127118
https://www.mitsubishielectric.com/fa/products/rbt/robot/pmerit/vertical/fseries/index.html
https://www.mitsubishielectric.com/fa/products/rbt/robot/pmerit/vertical/fseries/index.html
https://support.industry.siemens.com/cs/pd/501190
https://support.industry.siemens.com/cs/pd/501190
https://www.controlglobal.com/articles/2019/whats-holding-back-mobile-hmi/
https://control.com/forums/
http://plc.myforum.ro/
http://plc.myforum.ro/
http://forums.mrplc.com/
https://www.robot-forum.com/robotforum/
https://www.robot-forum.com/robotforum/
https://www.reddit.com/r/robotics/

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 58 |

23 Adam Forum. (n.d.). Adam Forum. “Industrial Automation Discussion.” Last accessed on 31 August 2019 at

https://forum.adamcommunity.com/index.php.

24 Automation Forum. (n.d.). Automation Forum. “Automation Forum.” Last accessed on 31 August 2019 at

https://automationforum.in/.

25 DoF. (n.d.). DoF. “DoF.” Last accessed on 31 August 2019 at https://dof.robotiq.com/.

26 ABB Robotics. (n.d.). ABB Robotics. “User Forum.” Last accessed on 31 August 2019 at https://forums.

robotstudio.com/.

27 Universal Robots. (n.d.). Universal Robots. “Forum.” Last accessed on 31 August 2019 at https://forum.

universal-robots.com/.

28 SolicPLC. (n.d.). SolisPLC. “Forum.” Last accessed on 31 August 2019 at https://solisplc.com/forum/.

29 Harry Garrood. (12 July 2019). Harry Garrood. “Malicious code in the purescript npm installer.” Last accessed

on 24 February 2020 at https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/.

30 Federico Maggi, Davide Quarta, Marcello Pogliani, Mario Polino, Andrea M. Zanchettin, and Stefano Zanero. (3

May 2017). Trend Micro. “Rogue Robots: Testing the Limits of an Industrial Robot’s Security.” Last accessed on

24 February 2020 at https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf.

31 Catalin Cimpanu. (7 July 2019). ZDNet. “Canonical GitHub account hacked, Ubuntu source code safe.” Last

accessed on 24 February 2020 at https://www.zdnet.com/article/canonical-github-account-hacked-ubuntu-

source-code-safe/.

32 Bertus. (21 October 2018). Bertus. “Cryptocurrency Clipboard Hijacker Discovered in PyPI Repository.” Last

accessed on 24 February 2020 at https://medium.com/@bertusk/cryptocurrency-clipboard-hijacker-discovered-

in-pypi-repository-b66b8a534a8.

33 Sophos. (19 September 2017). Naked Security by Sophos. “PyPI Python repository hit by typosquatting sneak

attack.” Last accessed on 24 February 2020 at https://nakedsecurity.sophos.com/2017/09/19/pypi-python-

repository-hit-by-typosquatting-sneak-attack/.

34 Curtis Franklin Jr. (27 June 2019). Dark Reading. “How Hackers Infiltrate Open Source Projects.” Last accessed

on 24 February 2020 at https://www.darkreading.com/application-security/how-hackers-infiltrate-open-source-

projects-/d/d-id/1335072.

35 Tara Seals. (2 April 2019). Threatpost. “ThreatList: Half of All Attacks Aim at Supply Chain.” Last accessed on

24 February 2020 at https://threatpost.com/half-all-attacks-supply-chain/143391/.

36 Carbon Black. (April 2019). Carbon Black. “Carbon Black’s Global Incident Response Threat Report: The

Ominous Rise of “Island Hopping” & Counter Incident Response Continues.” Last accessed on 24 February

2020 at https://www.carbonblack.com/global-incident-response-threat-report/april-2019/#form.

37 Claud Xiao. (21 September 2015). Unit 42. “More Details on the XcodeGhost Malware and Affected iOS Apps.”

Last accessed on 25 February 2020 at https://unit42.paloaltonetworks.com/more-details-on-the-xcodeghost-

malware-and-affected-ios-apps/.

38 ABB Robotics. (n.d.). RobotStudio. “RobotStudio.” Last accessed on 27 February 2020 at https://robotapps.

robotstudio.com/.

39 Intelligent Plant. (n.d.). Industrial App Store. “Industrial App Store.” Last accessed on 27 February 2020 at

https://appstore.intelligentplant.com/.

40 OrangeApps. (n.d.). OrangeApps. “OrangeApps.” Last accessed on 11 March 2020 at https://www.orangeapps.

de/?lng=en#appstore.

41 Siwiat. (n.d.). Siwiat App-Store. “Siwiat App-Store.” Last accessed on 27 February 2020 at https://siwiat.com/

en/app/app-store/.

42 Arduino. (n.d.). Arduino. “Arduino Industrial 101.” Last accessed on 27 February 2020 at https://store.arduino.

cc/usa/arduino-industrial-101.

43 Industrial Shields. (n.d.). Industrial Shields. “Industrial Shields.” Last accessed on 27 February 2020 at https://

www.industrialshields.com/.

44 Industruino. (n.d.). Industruino. “Industruino.” Last accessed on 27 February 2020 at https://industruino.com/.

45 Sfera Labs. (n.d.). Iono Arduino. “Iono Arduino.” Last accessed on 27 February 2020 at https://www.sferalabs.

cc/iono-arduino/.

https://forum.adamcommunity.com/index.php
https://automationforum.in/
https://dof.robotiq.com/
https://forums.robotstudio.com/
https://forums.robotstudio.com/
https://forum.universal-robots.com/
https://forum.universal-robots.com/
https://solisplc.com/forum/
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf
https://www.zdnet.com/article/canonical-github-account-hacked-ubuntu-source-code-safe/
https://www.zdnet.com/article/canonical-github-account-hacked-ubuntu-source-code-safe/
https://medium.com/@bertusk/cryptocurrency-clipboard-hijacker-discovered-in-pypi-repository-b66b8a534a8
https://medium.com/@bertusk/cryptocurrency-clipboard-hijacker-discovered-in-pypi-repository-b66b8a534a8
https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://www.darkreading.com/application-security/how-hackers-infiltrate-open-source-projects-/d/d-id/1335072
https://www.darkreading.com/application-security/how-hackers-infiltrate-open-source-projects-/d/d-id/1335072
https://threatpost.com/half-all-attacks-supply-chain/143391/
https://www.carbonblack.com/global-incident-response-threat-report/april-2019/#form
https://unit42.paloaltonetworks.com/more-details-on-the-xcodeghost-malware-and-affected-ios-apps/
https://unit42.paloaltonetworks.com/more-details-on-the-xcodeghost-malware-and-affected-ios-apps/
https://robotapps.robotstudio.com/
https://robotapps.robotstudio.com/
https://appstore.intelligentplant.com/
https://www.orangeapps.de/?lng=en#appstore
https://www.orangeapps.de/?lng=en#appstore
https://siwiat.com/en/app/app-store/
https://siwiat.com/en/app/app-store/
https://store.arduino.cc/usa/arduino-industrial-101
https://store.arduino.cc/usa/arduino-industrial-101
https://www.industrialshields.com/
https://www.industrialshields.com/
https://industruino.com/
https://www.sferalabs.cc/iono-arduino/
https://www.sferalabs.cc/iono-arduino/

| Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis 59 |

46 Siemens. (n.d.). Siemens. “Simatic IoT2000.” Last accessed on 27 February 2020 at https://new.siemens.com/

global/en/products/automation/pc-based/iot-gateways/iot2000.html.

47 Sergio Pastrana, Jorge, Rodriguez-Canseco, and Alejandro Calleja. (2016). Jornadas Nacionales de Investigación

en Ciberseguridad (JNIC). “ArduWorm: A Functional Malware Targeting Arduino Devices.” Last accessed on 25

February 2020 at https://evosec.eu/wp-content/uploads/2016/11/2016jnic1.pdf.

48 Aurélien Francillon and Claude Castellucciaa. (22 January 2009). Arxiv.org. “Code injection attacks on harvard-

architecture devices.” Last accessed on 25 February 2020 at https://arxiv.org/abs/0901.3482.

49 NASA Office of Inspector General. (18 June 2019). National Aeronautics and Space Administration.

“Cybersecurity Management and Oversight at the Jet Propulsion Laboratory.” Last accessed on 25 February

2020 at https://oig.nasa.gov/docs/IG-19-022.pdf.

50 Luca Bongiorni. (16 August 2019). Luca Bongiorni. “USBSamurai — A Remotely Controlled Malicious USB HID

Injecting Cable for less than 10$.” Last accessed on 25 February 2020 at https://medium.com/@LucaBongiorni/

usbsamurai-a-remotely-controlled-malicious-usb-hid-injecting-cable-for-less-than-10-ebf4b81e1d0b.

51 Brian Gorenc and Fritz Sands. (23 May 2017). Trend Micro. “Hacker Machine Interface.” Last accessed on 25

February 2020 at https://documents.trendmicro.com/assets/wp/wp-hacker-machine-interface.pdf.

52 Qcadoo. (n.d.). Qcadoo. “Qcadoo.” Last accessed on 27 February 2020 at https://www.qcadoo.com/.

53 Factority. (n.d.). Factority. “Factority.” Last accessed on 27 February 2020 at https://www.openhub.net/p/

factority.

54 Gartner. (n.d.). Gartner. “Manufacturing Execution Systems Market.” Last accessed on 27 February 2020 at

https://www.gartner.com/reviews/market/manufacturing-execution-systems.

55 ROS-Industrial. (n.d.). ROS-Industrial. “ROS-Industrial Consortium.” Last accessed on 27 February 2020 at

https://rosindustrial.org/ric/current-members/.

56 Federico Maggi, Davide Quarta, Marcello Pogliani, Mario Polino, Andrea M. Zanchettin, and Stefano Zanero. (3

May 2017). Trend Micro. “Rogue Robots: Testing the Limits of an Industrial Robot’s Security.” Last accessed on

24 February 2020 at https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf.

57 Trend Micro. (13 May 2014). Trend Micro. “Stuxnet.” Last accessed on 11 March 2020 at https://www.

trendmicro.com/vinfo/us/threat-encyclopedia/malware/stuxnet.

58 ICS-CERT. (7 April 2020). Cybersecurity and Infrastructure Security Agency (CISA). “ICS Advisory (ICSA-20-098-

05).” Last accessed on 14 April 2020 at https://www.us-cert.gov/ics/advisories/icsa-20-098-05.

59 Let’s Encrypt. (n.d.). Let’s Encrypt. “Let’s Encrypt.” Last accessed on 12 March 2020 at https://letsencrypt.org/.

60 Arduino. (n.d.). Arduino. “Libraries.” Last accessed on 26 February 2020 at https://www.arduino.cc/en/

reference/libraries.

61 Federico Maggi, Davide Quarta, Marcello Pogliani, Mario Polino, Andrea M. Zanchettin, and Stefano Zanero. (3

May 2017). Trend Micro. “Rogue Robots: Testing the Limits of an Industrial Robot’s Security.” Last accessed on

24 February 2020 at https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf.

62 Harry Garrood. (12 July 2019). Harry Garrood. “Malicious code in the purescript npm installer.” Last accessed

on 24 February 2020 at https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/.

63 Catalin Cimpanu. (7 July 2019). ZDNet. “Canonical GitHub account hacked, Ubuntu source code safe.” Last

accessed on 24 February 2020 at https://www.zdnet.com/article/canonical-github-account-hacked-ubuntu-

source-code-safe/.

64 Sophos. (19 September 2017). Naked Security by Sophos. “PyPI Python repository hit by typosquatting sneak

attack.” Last accessed on 24 February 2020 at https://nakedsecurity.sophos.com/2017/09/19/pypi-python-

repository-hit-by-typosquatting-sneak-attack/.

65 PlatformIO. (n.d.). PlatformIO. “Libraries.” Last accessed on 27 February 2020 at https://platformio.org/lib/

search.

66 Marcello Pogliani, Davide Quarta, Mario Polino, Martino Vittone, Federico Maggi, and Stefano Zanero. (13

February 2019). Journal of Computer Virology and Hacking Techniques. “Security of controlled manufacturing

systems in the connected factory: the case of industrial robots.” Last accessed on 25 March 2020 at https://

link.springer.com/article/10.1007/s11416-019-00329-8.

67 MITRE. (4 March 2020). MITRE. “ATT&CK® for Industrial Control Systems.” Last accessed on 25 March 2020 at

https://collaborate.mitre.org/attackics/index.php/Main_Page.

https://new.siemens.com/global/en/products/automation/pc-based/iot-gateways/iot2000.html.
https://new.siemens.com/global/en/products/automation/pc-based/iot-gateways/iot2000.html.
https://evosec.eu/wp-content/uploads/2016/11/2016jnic1.pdf.
https://arxiv.org/abs/0901.3482
https://oig.nasa.gov/docs/IG-19-022.pdf
https://medium.com/@LucaBongiorni/usbsamurai-a-remotely-controlled-malicious-usb-hid-injecting-cable-for-less-than-10-ebf4b81e1d0b
https://medium.com/@LucaBongiorni/usbsamurai-a-remotely-controlled-malicious-usb-hid-injecting-cable-for-less-than-10-ebf4b81e1d0b
https://documents.trendmicro.com/assets/wp/wp-hacker-machine-interface.pdf
https://www.qcadoo.com/
https://www.openhub.net/p/factority
https://www.openhub.net/p/factority
https://www.gartner.com/reviews/market/manufacturing-execution-systems
https://rosindustrial.org/ric/current-members/
https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/stuxnet
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/stuxnet
https://www.us-cert.gov/ics/advisories/icsa-20-098-05
https://letsencrypt.org/
https://www.arduino.cc/en/reference/libraries
https://www.arduino.cc/en/reference/libraries
https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://www.zdnet.com/article/canonical-github-account-hacked-ubuntu-source-code-safe/.
https://www.zdnet.com/article/canonical-github-account-hacked-ubuntu-source-code-safe/.
https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://platformio.org/lib/search
https://platformio.org/lib/search
https://link.springer.com/article/10.1007/s11416-019-00329-8
https://link.springer.com/article/10.1007/s11416-019-00329-8
https://collaborate.mitre.org/attackics/index.php/Main_Page

TREND MICROTM RESEARCH
Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key
insights, and supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily,
leads the industry in vulnerability disclosures, and publishes innovative research on new threat techniques. We
continually work to anticipate new threats and deliver thought-provoking research.

www.trendmicro.com

©2020 by Trend Micro, Incorporated. All rights reserved. Trend Micro, the Trend Micro t-ball logo, and Trend Micro
Zero Day Initiative are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or
company names may be trademarks or registered trademarks of their owners.

	1 Introduction
	Scope

