
Caught in the Act: Running a
Realistic Factory Honeypot to
Capture Real Threats

Stephen Hilt, Federico Maggi, Charles Perine, Lord Remorin, Martin Rösler, and Rainer Vosseler

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information

and educational purposes only. It is not intended and

should not be construed to constitute legal advice. The

information contained herein may not be applicable to all

situations and may not reflect the most current situation.

Nothing contained herein should be relied on or acted

upon without the benefit of legal advice based on the

particular facts and circumstances presented and nothing

herein should be construed otherwise. Trend Micro

reserves the right to modify the contents of this document

at any time without prior notice.

Translations of any material into other languages are

intended solely as a convenience. Translation accuracy

is not guaranteed nor implied. If any questions arise

related to the accuracy of a translation, please refer to

the original language official version of the document. Any

discrepancies or differences created in the translation are

not binding and have no legal effect for compliance or

enforcement purposes.

Although Trend Micro uses reasonable efforts to include

accurate and up-to-date information herein, Trend Micro

makes no warranties or representations of any kind as

to its accuracy, currency, or completeness. You agree

that access to and use of and reliance on this document

and the content thereof is at your own risk. Trend Micro

disclaims all warranties of any kind, express or implied.

Neither Trend Micro nor any party involved in creating,

producing, or delivering this document shall be liable

for any consequence, loss, or damage, including direct,

indirect, special, consequential, loss of business profits,

or special damages, whatsoever arising out of access to,

use of, or inability to use, or in connection with the use of

this document, or any errors or omissions in the content

thereof. Use of this information constitutes acceptance for

use in an “as is” condition.

Contents

Building the ICS Environment

6

Conceptualization

4

Building the Company

12

Building the Honeypot

17

For Raimund Genes (1963-2017)

Published by

Trend Micro Research

Written by

Stephen Hilt, Federico Maggi,
Charles Perine, Lord Remorin,
Martin Rösler, and Rainer Vosseler

Stock images used under license from

Shutterstock.com

Incidents

28

Conclusion

60

Different critical infrastructures have been hit with attacks such as those that

involved the infamous Stuxnet malware1 and the more recent Triton malware.2

These incidents — attacks on manufacturing and other sectors that use industrial

control systems (ICSs) — continue to be heard of through the years. In 2017, for

instance, the notorious WannaCry ransomware shut down a car manufacturing

factory in Japan,3 and another ransomware attack took down a factory in North

Carolina, U.S.4

Smart factories attract the interest of threat actors for the critical and sensitive

infrastructures they usually handle. A successful attack, no matter how difficult the

execution, can yield high-impact results that can corner an organization into giving

in to cybercriminals’ demands or, at the very least, cost it considerable losses.

Prompted by our desire to determine how knowledgeable and imaginative

attackers could be in compromising a manufacturing facility, we built the most

realistic factory honeypot we had ever created. And in doing so, we also created

an ideal environment where we could monitor and learn about the attacks that

the honeypot came to attract. From conceptualization to actual execution,

our factory honeypot was designed to be an attractive target for potential

cybercriminals.

Our factory honeypot took on the ruse of a small fictitious company that

apparently handled clients from critical industries yet possessed inadequate

security defenses. Our ruse proved successful as our honeypot saw several

attacks, which we had the freedom and resources to monitor. These attacks

included a malicious cryptocurrency mining campaign, two ransomware attacks,

another that posed as a ransomware attack, and several scanners.

In this research paper, we detail the conceptualization and creation of our

most elaborate honeypot to date, and discuss the result of our monitoring and

tracking of the incidents that occurred on the honeypot.

4 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Conceptualization
Trend Micro had already created several honeypots, specifically ones that ran ICSs. In 2013, Trend Micro

released a research that centered on a honeypot for a water system.5 This research was focused on a pure-

production honeypot that mimicked a real system, including a human-machine interface (HMI) and other

components of an ICS. And in 2015, Trend Micro released research around the Guardian AST monitoring

system using a honeypot called GasPot,6 which simulated a gas tank monitoring system. The purpose

of this honeypot was to deploy multiple unique systems that did not look the same but nonetheless

responded like real deployed systems.

We evolve our honeypots by making them more and more realistic each time we build them. This is why

for this research we wanted to build a honeypot that not only mimicked a real system but could also start

making products. The goal was to build a honeypot that appeared so real that not even a well-trained

control systems engineer would be able to tell that it was fake without diving deeply into the system.

First, we decided on what services and ports would be exposed to the internet to make our honeypot

attractive to attackers. At the same time, we would maintain a minimal number of exposed services to

prevent our honeypot from being identified as such. Second, we created a backstory for our fictitious

company, which included made-up employee names, working phone numbers, and email addresses —

anything and everything that a real company would need to run a day-to-day business. Third, we created

a strategy to build the factory with equipment we already owned and equipment we needed to purchase.

5 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 1. Our original layout plan

Looking at the equipment that we had and what we wanted to achieve, we replaced the Modbus

programmable logic controllers (PLCs) with ones from Omron. This was to see if there would be any other

attacks that we did not observe in our 2013 research on water facilities; in that research, we received

12 targeted attacks out of 39 total attacks. After we finalized our build-out, we decided on what type

of products we wanted to make and how we were going to design the logic, HMI screens, and other

ICS components.

Industrial
cellular router (1)

Consumer
cellular router (1)

Industrial
cellular router (2)

Consumer
cellular router (2)

Proxy router

Protocol gateway (1)
(e.g., Fieldbus)

Protocol gateway (2)
(e.g., Modbus)

Dell Precision M4800

HMI

VM

Server

VM

DNS/AD?

VM

ROS

VM

ABB
services

VM

Siemens S7-1200

Allen-Bradley
MicroLogix 1100 (x2)

GE Fanuc

Phoenix Contact
ILC 131

6 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Building the ICS Environment
In building our ICS environment, one of our primary goals was to prevent attackers from simply flagging

our system as a honeypot, which would of course drive them away. Advanced attackers could be very

picky in choosing systems they wanted to compromise and would check every small detail that they

could before conducting an attack. With this is mind, we decided to use real ICS hardware and a mixture

of physical hosts and hardened virtual machines (VMs).

Figure 2. Shodan data classifying our honeypot as ICS

Hardware
For our ICS hardware, we ran four PLCs from three different brands: one Siemens S7-1200, two Allen-

Bradley MicroLogix 1100 units, and one Omron CP1L. These PLCs were chosen for their popularity in the

control systems markets from around the world. Also, each PLC brand uses a different protocol, allowing

us to see if there would be any attacks on any of these PLCs that we could monitor.

7 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

 Figure 3. Hardware equipment that ran our factory

Each PLC was loaded with logic and performed specific and associated tasks that together ran the

manufacturing facility. These roles were agitator, burner control, conveyor belt control, and palletizer,

which used a robotic arm. To make our manufacturing process realistic, we used incremental and

decremental functions through logic to vary the feedback values, which imitated the starting and stopping

seen in motors or heaters. Random generator functions were also created to make slight fluctuations in

the feedback values.

Machines
We had three VMs and one physical machine running our factory. The three VMs included an HMI to

control our factory, a robotics workstation to control our palletizer, and an engineering workstation to

program our PLCs. The physical machine was used as a file server for our factory.

Human-Machine Interface

Aside from the different brands of PLCs that we used in our production environment, we wanted to

monitor the status of the logic we loaded on our devices. To mimic a realistic manufacturing environment,

we created an HMI to quickly identify whether the states of our “virtual” actuators, motors, and feedback

values were being modified.

8 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

During our planning stage, we found out that starting with the layout of our HMI would be much easier

than starting with the PLC logic. The HMI machine of our honeypot was exposed through Virtual Network

Computing (VNC) without control access.

Figure 4. A screenshot of the HMI used to control the plant in our factory

Robotics Workstation

Industrial robots are a key component of modern smart manufacturing. They are used for automating

not only simple pick-and-place tasks but also complex ones. Because of this, we decided to include a

robotics station and its corresponding engineering workstation in our factory. To further make our factory

realistic, we included a robotics workstation that would be used by engineers to graphically write the

automation logic. Since actual industrial robot machines are normally isolated in an internal network, we

decided to expose only the workstation via VNC.

9 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 5. Industrial robots typically found in modern factories

Given our experience with the ABB Robotics ecosystem,7 we opted for the programming environment of

RobotStudio. We downloaded this from the ABB Robotics website, installed it on a dedicated VM, and

configured it accordingly. We then opened a simulation file and saw to it that the rendered 3D digital twin

of the robot was visible on screen to ensure that VNC scans — such as those used by Shodan and similar

search engines — would grab it and display it to whoever might be interested in exploring VNC targets. In

addition, we collected some code and left it on the machine.

Figure 6. A screenshot of the robotics workstation, used to write automation routines for the robotics station

10 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

The effectiveness of our design and implementation in creating an attractive and realistic target was

confirmed by the several attempts to attack the robotics workstation that we later observed, some of

which were successful, with the attackers coming back several times.

Engineering Workstation

To program logic on the PLCs that would perform tasks similar to those required in a production line, we

added an engineering workstation to our honeypot network. Like the robotics workstation, this workstation

would be used by engineers to create logic for the PLCs. Accordingly, we installed industrial software for

programming the PLCs we used: Totally Integrated Automation Portal (TIA Portal) for Siemens, MicroLogix

for Allen-Bradley, and CX-One for Omron.

We decided that the engineering workstation would not be exposed outside of our network. Rather, we

used the same admin password as that of the exposed HMI and robotics workstation. This mimicked a

common setup in companies maintained by an administrator.

Unfortunately (for our purpose, that is), the engineering workstation did not receive any attacks, even

though we purposely used the same admin password as that of the other exposed machines.

File Server

We set up a file server to lure attackers and also to serve as a backup for some of our own “work” in our

simulated company. This provided us with the ability to sneak net files in and out of the network using

a multi-USB method to ensure that we were not leaving any traces of other systems on our honeypot

network. The file server was a Windows 7 Professional build that had a shared directory and allowed

anyone read and write access.

At first, we built it with no files or structure and intended to build up the structure over time. But once we

found that actors were actively looking at the structure, we decided to populate it with false files. To do

this, we created a script that would create a file from a list of extensions. Using multiple words from a

dictionary, the script would create a file of a random size.

11 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 7. The script we created to generate random file patterns

After we ran the script for a given number of files, we populated our file server with the generated

“honeyfiles.”

Figure 8. Honeyfiles placed in the file server to make it look realistic

12 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Building the Company
The proliferation of honeypots used to collect attack traces has significantly raised the bar for future

honeypots. Not only are current attackers already accustomed to encountering honeypots virtually

everywhere, but advanced actors also typically perform in-depth investigation — using open-source

intelligence (OSINT), for example — before attacking a target system to make sure that they are not about

to be “caught” by a honeypot system. For this reason, our honeypot did not only need to look realistic

from a design and technical implementation standpoint, but it also had to reflect a system that a real

company would use.

Trying to put ourselves in the shoes of an advanced attacker, we took advantage of our OSINT knowledge

to better anticipate how an attacker would act, which information they would cross-check, and from

which sources. Would they check used IP addresses in reputation systems? Would they try to match the

reverse lookup history of an IP address? Would they search for names and keywords, trying to find online

evidence of a real company linked to that system? With such questions in mind, we started to create a

list of ideas.

In this section, we discuss the details we came up with to make our honeypot more convincing as a real

company.

An Attractive Target
Although it would have resulted in a very attractive target for attackers, posing as an existing company

could have posed legal issues. We ruled out this option immediately because the potential reputational

damage in case of an attack would be out of proportion. If existing companies would like to run honeypots,

they would need to do it on their premises, under their legal responsibility. However, we still wanted to

be an attractive target. Fortunately for us, many large companies rely on external workforce, especially

for bleeding-edge applications and technologies (e.g., smart manufacturing). This presented a perfect

position for us to take in the market.

13 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

We decided to pose as a small industrial prototyping boutique working for special customers. Considering

that some small companies offer consultancy services to larger ones, we thought we could invent one

such company. In this way, we would not need to claim ownership of any existing brand. After some

brainstorming, we decided to pose as a small industrial prototyping boutique: a consultancy firm that

specialized in advanced prototyping, serving very large anonymous customers in the military, avionic, and

manufacturing sectors.

Vision and Brand Image
At this point, we started thinking like an entrepreneur. We needed to pick our business mission and name,

and build an image around those ideas. We decided that we would be a company with only a small

number of employees, all founding members. We wanted to convey the message that we were highly

specialized, focused on our business, and for this reason worked for large and important enterprises.

This was to lure the attackers into thinking that we were dealing with sensitive projects, despite being a

small company. In other words, we wanted our company to appear “weak” in terms of cybersecurity, as

this was not its focus, and at the same time show that it handled important assets in our target systems.

After weeks of discussing the company among ourselves, we started to feel it was real. Embracing the

idea, vision, and brand of our faux company was very important because we had to depict a realistic

company image while reducing room for mistakes, such as leaking details about our real affiliation. To

avoid leaving any trace of our actual purpose, from the day we decided to start developing assets (e.g.,

images, brand material, domain registration, website), we created an isolated VM on a specific laptop,

which we used exclusively to perform any activity related to our faux brand.

Online Presence
Even small companies are nowadays expected to maintain a bare minimum of presence online. Creating

the illusion of a real company through social media was our first thought, but we discarded it quickly as

it could be a very tedious and error-prone process. While creating social network profiles was actually

easy, keeping them active was the hard part. And inactive, freshly created social profiles would just be red

flags. We decided that we did not want to invest time and resources in maintaining social media profiles.

Anyone who might be planning on recreating our setup should consider making the same decision, as

they could fall into thinking that it would only take a few posts once in a while to maintain a believable

social media account.

With this in mind, our first asset was a website. In creating a website, we first needed a company name.

We chose a name that reflected our rapid prototyping specialization: MeTech. MeTech was a fictitious

company name that we came up with to give the honeypot additional credibility. It is not now, nor has it

ever been, affiliated in any way with any real company that uses the word “MeTech” or any similar words

or phrases as part of its company name.

14 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

We then decided on a motto and a logo, for which we simply used a free logo generator. Similarly, we

used a royalty-free web template to design a professional-looking website with only a few pages. The

front page was the most important one. We needed to quickly convey a clear message in only that one

page, which was that we were contractors for large enterprises. Our advertised business (i.e., rapid

prototyping) needed to be in line with our honeypot system. The finished homepage of our website,

metech.co, is shown in Figure 9.

Figure 9. A screenshot of our company’s homepage

We hand-picked royalty-free images from various sites. We focused on large, low-popularity pictures,

from which we could crop relevant objects (e.g., machines, prototypes, labs). This also reduced the

chances of anyone finding the same photos should they search for keywords related to our business.

Similarly, cropping and rotating avoided the possibility of someone finding the real source of an image

using, for instance, Google reverse image search.

15 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

People and Contacts
We wanted to look like a real company composed of real people, with professional profiles in line with

the expertise needed by our job. We came up with the full names of four fictitious people and looked for

stock images that would fit their ethnicities. Initially, we focused on group photos or photos from which

we could crop and slightly alter good head shots.

We did not want a casual attacker to be able to use the reverse image search features of some web services

(e.g., Google Images) to discover that we had used photos taken randomly off the web. Eventually, we

looked for good-quality AI-generated photos of nonexistent people. We then came up with a short profile

for each name and photo. We kept the profiles short and essential, without providing too many details,

which could be used by an attacker to cross-check the profiles. For this reason, we avoided putting any

affiliation (e.g., school or city names) and kept the profiles rather generic and focused on technical skills.

Since we were just a small company working for important customers, we thought that discretion would

fit our overall image. The result is shown in Figure 10.

 Figure 10. Screenshots of the contacts page of our company website

Creating a contact email address was very easy. We used our hosting provider’s mail server. On top of that,

we used a simple online service to build a web form that we could put on our website for it to look even

more professional. The form that we created had a simple handler that forwarded any contact request to

our email inbox.

16 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 11. Virtual receptionist configuration

Creating phone numbers required an external VoIP provider. Considering the many options available

nowadays (a simple web search for “e-receptionist” or “cloud phone service” would yield a number of

results), we opted for a service run by a personal contact of our own. We wanted someone whom we

could trust and who would allow us a little control over the system, e.g., allow us to customize the service

if needed.

We created two phone numbers under the U.S. country code, one per site (the engineering lab and the

front office). We wanted someone who could answer professionally, so we configured the e-receptionist

system with a distinct recorded message, with a voice guide and the option to leave messages.

17 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Building the Honeypot
With a clear concept of what we wanted for our honeypot, we were able move on to the execution of

our plans. In this section, we discuss the infrastructure and tools we used to create our honeypot. These

include actual operational technology (OT) software and monitoring tools that would allow us to record

incidents in our honeypot in real time. We also illustrate the actions we took to lure potential threat actors

into attacking our system.

Monitoring Environment
To get the most out of our honeypot, we had to carefully design our monitoring environment. We needed

to get relevant data in real time while keeping the evidence of our monitoring to a minimum so as not to

deter threat actors from naturally conducting an attack.

Infrastructure

The monitoring infrastructure consisted primarily of a Raspberry Pi 3, four USB Ethernet adapters, four

SharkTap Ethernet taps, and a large external drive. We inserted the Ethernet taps into four specific

locations in the network, as illustrated in Figure 12.

Figure 12. The full honeypot design with the red boxes depicting the SharkTap Ethernet taps

Internet Cellular modem Cisco ASA 5505 Switch Siemens S7-1200

Omron CP1L

Allen-Bradley
MicroLogix 1100

Allen-Bradley
MicroLogix 1100

File server

Laptop

HMI

ENGR

Robot

Raspberry PI

ETH4 - Siemens

ETH3 - Allen-Bradley
MicroLogix

ETH2 - Omron ETH1 - Laptop

Internet Wireless router for host
and network monitor

18 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

The location of three of the PLC Ethernet taps allowed us to monitor external traffic sent specifically to the

three internet-exposed PLCs, with one PLC accessible only from the local network. The fourth Ethernet

tap was used to monitor the exposed VirtualBox guests and any traffic from the guests to any of the other

systems on the network.

 Figure 13. A SharkTap device and the Sierra Wireless AirLink RV50 that we used

The Raspberry Pi 3 was able to handle our packet load with few dropped packets, although the new

Raspberry Pi 4 would have worked better as it supports USB 3.0. The Raspberry Pi could be accessed

only via the VirtualBox host. We set up the Raspberry Pi to capture the traffic in 24-hour increments,

which made it easy to parse what was happening on a daily basis. For some lightweight analysis, the

summary scripts described in the “Tools” subsection below was performed on the Raspberry Pi, while

other analysis required the packet capture (PCAP) files to be off-loaded to a secondary server.

The internal infrastructure was connected to the internet via an industrial cellular router (as illustrated in

Figure 12), the Sierra Wireless AirLink RV50. We chose this router since its predecessor, the AirLink Raven,

is commonly used in the U.S. An industrial cellular router is similar to a consumer cellular router built for

industrial environments in that it also has features such as indoor and outdoor use and greater operating

temperatures.

Firewall

During our research, we found out a limitation of our industrial router, which was that it would not let us

do selective blocking to prevent attacks that ran counter to what we were trying to encounter with our

honeypot. To remedy this, we deployed a firewall in transparent mode between the router and the switch.

Our firewall was a Cisco ASA 5505, which we had on hand, but this could have just as well been any

firewall that could operate in transparent mode. Adding the firewall allowed us to block things with little

impact to the network.

19 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 14. Access lists that we ran on our network appliance

Figure 14 shows an example of the access lists that we ran on our network appliance. We had an object

group called “bad hosts” where we put hosts that we did not want communicating with our honeypot

and vice versa. These included known good hosts that for the purpose of our honeypot we tagged as

malicious. Adding these known good hosts to our firewall also prevented fraud from originating from our

systems.

Tools

Scripts

Any internet-facing system nowadays immediately receives a lot of traffic, especially from scanners. For

our purpose, it was not straightforward to enumerate and whitelist all the scanner sources as they vary

over time. In addition, not all scan traffic comes from legitimate scanning services such as Shodan, which

advertises its scanners in such a way that people could filter out their source IP addresses. Initially, we

had to perform some manual work to tell “signal” and “noise” apart. For this reason, we wanted to

receive daily summary emails with traffic statistics, rankings, and other analytics that could help us spot

interesting patterns.

We generated three different scripts to assist in monitoring traffic. The first script created a list of IP

addresses that connected to our PLCs and VirtualBox guests, created the corresponding reverse Domain

Name System (DNS) information for each IP address, and counted the number of packets from each IP

address. The list is then emailed to the members of our team.

20 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 15. Output of the first script, containing actual IP addresses and host names

The second script looked at external conversations. It used Wireshark’s tshark CLI application to gather

the statistics of the conversations, perform a reverse DNS and GeoIP lookup, and email the list to the

team.

Figure 16. Output of the second script, showing external conversations

The third script was added later to search for IP addresses that connected to the factory honeypot multiple

times over the course of days, weeks, or months. This script crawled through all of the PCAP files we had

collected, which were segregated by date. It aggregated IP addresses, reverse DNS information, the last

date an IP address connected to the honeypot, and the number of days an IP address had connected to

any of our systems.

21 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 17. Output of the third script, showing aggregated statistics on each IP address

These scripts made it easier for us to hunt for and monitor specific or potentially interesting actors using

Moloch.

Network Traffic Analysis and Investigation With Moloch

We needed an effective way to manually dig into the network traffic recordings. While using command-line

tools (e.g., tshark and tcpdump) along with some shell scripts is great for quick tasks, such an approach

would not be enough to fully handle an environment where multiple people need to collaboratively analyze

and look at many gigabytes of traffic. We turned our attention to Moloch,8 an open-source traffic analysis

system developed by AOL. It provides a user experience similar to that of Wireshark but has more features

for collaborating, annotating packets, tagging, exporting, drilling, and other tasks.

Figure 18. A screenshot of Moloch, purposely picked from Moloch’s official website

to avoid revealing any detailed information about the real traffic that our honeypot had received

22 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Installation was rather easy, but we needed some fine-tuning. Since we did not want to process the

network data using the same machines used for our honeypot, we exported the PCAP dumps every day

to an Amazon Simple Storage Service (S3) bucket. We then set up a daily cron script that imported the

files from the S3 bucket to the Moloch machine, which we located on the Amazon Web Sevices (AWS)

cloud. Moloch’s default setup is to process live network traffic from the system interfaces. However, it is

possible to configure it to process offline data and move it away from a “queue” folder once done.

VirtualBox Screen Recording

To properly document the attacks that we would be receiving on our honeypot system, we decided to

record video of the screen every time there was a change made or every time there was VNC access to

the opened robotics workstation. We created a script that would monitor the VirtualBox guest’s screen

through our host machine and take a screenshot on a fixed interval. We then compared two images

to check if there were any big differences — an indicator that someone had been trying to access our

honeypot through unauthenticated VNC. We started screen-recording the monitored guest VM once a

screen change was detected, continuously checking whether the VM was still being accessed before

stopping the recording.

The VirtualBox screen recording proved effective. We minimized any VirtualBox installation footprint on

our guest VM by not installing any guest additions. We also tried replaying VNC traffic from the PCAP to

see what had been changed on our system, but using the custom screen recording was an easier route

for us to go with.

VNC Utilities

We investigated both VNC and Remote Desktop Protocol (RDP), and determined that VNC was easier to

monitor from a pure network perspective than RDP. To make sure the honeypot looked as real as possible,

we did not have additional tools running on the VirtualBox guests that might tip off an attacker. The

“remote framebuffer” (RFB) protocol VNC is built on was easier to extract information from — information

such as keystrokes and clipboard data. In some cases, the VNC session could even be replayed.

The main tools we used for VNC monitoring were Chaosreader9 and VNCLogger.10 Chaosreader can

extract VNC sessions and keystrokes from a PCAP file. While the VNC session replay worked well with

internal testing, it was difficult to get working for much of the real-world VNC connections, which was

why we relied on the VirtualBox screen recording. The keystroke extraction worked, but we found that it

did not show certain keystrokes (e.g., backspace, enter, control), so it was not as useful as VNCLogger

for keylogging.

VNCLogger did a better job of extracting all of the keystrokes, but there were a couple of drawbacks to it.

One drawback was that it is designed to listen on an interface instead of processing PCAP files. This issue

was easily overcome using tcpreplay. The other drawback to VNCLogger, one shared by Chaosreader,

was that it does not show clipboard data. In order to obtain clipboard data, we used Wireshark. A few

minor updates to VNCLogger would address the gaps we noticed.

23 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Zeek and Intel Stack

We looked into the network security monitor Zeek,11 formerly known as Bro, combined with Intel Stack,

a marketplace of free threat intelligence optimized for it.12 While some of the output was interesting, we

determined that Trend Micro’s own tools and the Suricata threat detection engine13 provided data that

was more relevant to our purposes.

Syslog Feed From Router, Firewall, and Other Appliances

As mentioned earlier, we implemented a transparent firewall, allowing us to log our access lists and syslog

them to a host. This host did not need to have any syslog systems running as we configured our syslog to

use User Datagram Protocol (UDP). We then pointed syslog to the file server IP address so that we could

pick up the syslog messages on our previously described full packet captures.

Figure 19. Enabled syslog logging on the Cisco ASA 5505

We also logged our AirLink router for any events that were possibly caused by an attacker to the router

itself. Figure 20 shows examples of messages we saw from the router and the transparent firewall.

Figure 20. Examples of messages we saw from the router and the transparent firewall

24 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Luring Attackers
One of the main goals of a honeypot is to be attacked. But how does one go about setting up a honeypot

to be attacked? The approach we took was to stage leaking information, to put us in such a position that

attackers might find our honeypot interesting enough to play around in and eventually attack. To do this,

we started by opening specific ports when we brought the honeypot online, as listed in Table 1.

Port Number Service

102 Siemens S7

3389 RDP

5900 VNC

5901 VNC

9600 Omron FINS

44818 EtherNet/IP

Table 1. Exposed services on the external router

These were the ports that we started with in opening our honeypot to the internet through our AirLink

Wireless gateway. However, because of the increased amount of scanning on RDP TCP/3389, we saw

huge performance issues on our network and we decided to not run RDP as it at times made the internet

unusable from our stance. With RDP open on a certain network, there may be performance issues on the

network due to the amount of traffic that is coming at the network to brute-force RDP, including ones that

use exploits to get into the network with RDP. After we removed RDP, the final setup looked as shown in

Figure 21.

Figure 21. The final setup on the external cellular router

25 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

This was how we ran the system for months, with both of the VNC services in view-only mode, which

required no password. Here was where we tried to make things look realistic and see how fast it would

take for an attacker to notice if something got changed on the network and take advantage of it.

About a month into running our honeypot, we “misconfigured” VNC to allow remote input on the robotics

workstation. We did this over the HMI just to see whether anyone would try to pivot from machine to

machine to machine.

Later, we acted like a victim infected by malware and uploaded several items to an online antivirus

aggregation service, including network diagrams of our factory and some other sensitive information. This

was to see whether an attacker might be using credentials to search for information leakage. However, we

saw no attacks related to this information leakage in the online antivirus aggregation service.

Shortly afterward, we posted some information about our honeypot on Pastebin, as shown in Figure

22. This included a link to our submission to the antivirus aggregation service and basic information, to

again see whether we could lure attackers with information leakage in one of the typical places where

it happens.

Figure 22. Information about our honeypot, which we posted on Pastebin to attract attackers

We then wanted to see whether there would be an increase in attacks if we exposed the web HMI from the

vendor of the HMI that we were using. We made a second Pastebin post, shown in Figure 23, about this

a few days later. The post included an update that made it sound as though the post came from a group

that was actively monitoring the system.

26 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 23. Our second Pastebin post, including an update that made it sound as though

the post came from a group that was actively monitoring our honeypot

We then monitored underground forums and other online locations for any communications about our

honeypot to see whether anyone else was discussing it. However, we did not find anything related

specifically to our honeypot.

Lessons Learned
During the time that we ran our honeypot, we learned several things that needed to be checked to make

our honeypot more appealing, realistic, and resilient to attacks. This subsection discusses a short list of

details that need to be accomplished before running a complicated factory honeypot:

• Remove all VirtualBox artifacts. On the first few weeks we went live, a member of our team checked

whether there was a VirtualBox tray icon on the Windows task manager.

• Back up files. We did this for resiliency to ransomware attacks, which our honeypot would encounter

often.

• Frequently take snapshots of VirtualBox images. We took a snapshot when the system was clean,

after an attack, and/or after a Windows update. Ideally, snapshots should be taken daily if storage

space is not an issue.

27 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

• Design the HMI before creating the logic. We searched for the normal operating values of the

actuators and motors needed on the manufacturing line. From there, we decided on the layout of the

HMI and created the appropriate logic. We then refined the logic and HMI as needed.

• Install a firewall. Filtering fraud-related attacks and other unwanted attacks can take some time.

Unfortunately, it is difficult to find the right balance between “attacks that you want to filter” and

“attacks that may turn out to be useful and related to the honeypot.” For this reason, we had to adjust

the firewall rules over time, as we learned of new attacks.

28 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Incidents
Our honeypot went online in May 2019. For seven months, we maintained the image of a real company

and monitored the honeypot closely. The first attack we encountered came a month after the honeypot

went live, with several others following in its wake. This showed that our ruse as a small business with

critical clients and inadequate security was effective in luring threat actors.

Some of the attacks we saw had been briefly mentioned in the previous section detailing the

conceptualization and creation of our honeypot. In this section, we discuss each type of incident that

we saw. We also provide a summary of our findings in a single timeline illustrating the order in which the

attacks occurred and which of them overlapped.

Scanners
As mentioned earlier, when we started looking at incidents we specifically wanted to exclude any traffic

that was generated by scanners of well-known, reputable companies. These included ip-ip, Rapid 7,

Shadow Server, Shodan, and ZoomEye,. However, during our review of all the traffic, we found that there

were many other scanners from companies that performed internet figure monitoring and related services,

which we also needed to exclude. To do so, we did reverse lookups of IP addresses that were observed

hitting our honeypot in a scanner-like manner. We excluded IP addresses that resolved to sites that, when

visited, explained the nature of their scanning.

Of the 9,452 unique IP addresses observed over the period our honeypot was online, 610 were linked to

scanners. That was 6.45% of all unique IP addresses.

Frauds
One of the biggest risks we ran into, as with anyone else who has VNC or RDP open to the internet, was

misuse of the system and resources by third parties to engage in fraudulent activities. We observed that

third-party actors had used the resources in the honeypot to engage in and obscure possibly abusive

and inappropriate activities, such as buying smartphones by upgrading mobile subscriber accounts and

cashing out airline miles for gift cards.

29 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Malicious Cryptocurrency Mining
One of the first uses our honeypot took on shortly after we opened remote control on VNC was as a

cryptocurrency miner. A threat actor came into our system, opened a web browser, went to a website, and

downloaded a PyInstaller14 bundle file called host.exe.

Figure 24. A PyInstaller file called host.exe, which was downloaded by one of the

threat actors who accessed our honeypot

Using a combination of PyInstxtractor15 and Uncompyle616 to decompile the file, we learned that this file

was an open-source tool called Ares17 that had a hard-coded command-and-control (C&C) server. Based

on these findings, we then looked into what information was being sent to the C&C server. This was where

we discovered that the threat actor had installed and joined our system to a well-known Monero-mining

system. We found cryptocurrency mining on a VM strange as it seemed that it would not yield much.

However, if this was going on with many other machines around the world, the threat actor behind it could

cash in on the attack well.18

Ransomware Attacks
During the period we were running our honeypot, we came across two ransomware infections on

our system. As mentioned earlier, we purposely exposed an accessible VNC service on our robotics

workstation and recorded videos of the attackers carrying out their campaigns. These two separate

incidents were most likely carried out by two unrelated individuals or groups, but the execution flows of

the ransomware attacks were quite similar.

30 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Crysis Ransomware

The first ransomware attack we encountered happened in late September. We were able to document the

entire duration of the attack. We also responded to the attackers, still posing as our organization, to gain

further insight into how similarly threat actors might conduct their deals.

On Sept. 22, a threat actor began looking around our system. Typical of threat actors, they first investigated

the system, likely looking for important and sensitive files. They looked at a few items such as the shared

drive. Their next actions were to close the robotics workstation application and to go back to the shared

drive to see how much information was on it.

Figure 25. Investigation of the system carried out by the threat actor

After these initial actions on our system, they then downloaded the remote desktop software TeamViewer.

In fact, they opened Bing and searched for “timeviwer” to do so. Then they ran the TeamViewer installer.

They chose to run TeamViewer only once and chose the option to use it for personal use.

Figure 26. Downloading and running of TeamViewer performed by the threat actor

31 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Once they started connecting to our system using TeamViewer, we lost further keystrokes from the PCAPs.

This did not stop us from monitoring this attack, however, especially since at this point the threat actor had

started to take more interesting actions. They then transferred three files over TeamViewer, which included

the ransomware file:

• 1btc.exe

• The ransomware file, a variant of Crysis

• Detected by Trend Micro as Ransom.Win32.CRYSIS.SM19

• SHA1: ddf8c065d45c734b5b58e770e4f1ea086a293f19

• First submission from VirusTotal: 2019-07-24 10:14:26 UTC

• Everything.exe

• A normal application that lists all files on a file system. It allows an attacker to check whether a
system is already infected by another piece of ransomware using the search function.

• SHA1: c8107e5c5e20349a39d32f424668139a36e6cfd0

• NS.exe

• A tool used to scan mounted and unmounted physical and network drives. Its ability to scan
unmounted drives makes it very effective for ransomware attacks.

• Detected by Trend Micro as HackTool.Win32.NetTool.A20

• SHA1: 629c9649ced38fd815124221b80c9d9c59a85e74

• It is highly similar to a sample analyzed by Hybrid Analysis.21

Figure 27. Downloading of files by the threat actor using TeamViewer

After downloading the files, they connected to the system using the computer name “X555DG” with a

TeamViewer ID of “1 405 532 321”. They then started transferring the files to the Documents library under

the subfolder they named Yandex.

After this point, the threat actor began running each of the downloaded files, beginning with NS.exe,

the tool used to scan for mounted and unmounted drives. Next, they ran the Everything.exe file as an

administrator. While this was running, they opened a command window and typed in the command

32 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

“vssadmin delete shadows /all”, which is commonly used in ransomware attacks. Finally, they ran the

1btc.exe file, the Crysis ransomware variant, as an administrator. We were able to record all of these

activities, as shown in Figures 28 through 30.

Figure 28. The NS.exe file being run

Figure 29. The command “vssadmin delete shadows /all” being run

33 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 30. 1bitc.exe being run as an administrator

After setting all of these in motion, the threat actors watched and waited by opening the task manager.

They even stopped other services to give their activities more processing power, as shown in Figure 31.

They then checked the result of their work by looking at all of the files listed in Everything, the otherwise

legitimate tool used for listing files on a file system. As shown in Figure 32, the ransomware seemed

to have successfully affected the files in our system. The threat actors even looked at a particular

file (AcroRdrDCupd1901220034.msp.id-7C24B999) and checked its properties to confirm that the

ransomware had worked.

Figure 31. The threat actor viewing task manager and stopping services

34 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 32. The threat actor checking files to see whether the ransomware had worked

Finally, with their work done, they closed TeamViewer. A ransom message then popped up, containing

the typical content like the contact details of the threat actor, how to pay them in bitcoin, and the usual

warning not to attempt to tamper with the encrypted files.

Figure 33. The ransom note that appeared after the threat actor closed TeamViewer

35 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

An actual company, upon realizing that its files have been encrypted and reading the ransom note, would

have to go through several decision-making processes to handle such a situation. In our case, still posing

as our cover company, we emailed the threat actor using the contact information they had left behind.

Our first email was meant simply to engage the threat actor behind the provided email address. The reply

we received was an obviously automated response, and it was followed a day later by an email asking for

further details. These first few exchanges can be seen in Figure 34.

Figure 34. The first few emails exchanged with the threat actor

We responded to the email shown in the last image in Figure 34 by saying that one computer and one file

server were affected in the attack. The next email from the threat actor contained a list of instructions and,

more significantly, their demand for US$10,000 worth of bitcoin in exchange for having our files returned

to normal, to be transferred to their wallet address, also specified in the email.

36 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 35. The emailed list of instructions, including the ransom amount in bitcoin

and the wallet address where the payment should be transferred

This email was followed by another email, this time informing us of the threat actor’s working hours. This

apparently served as a prelude to the next email, which simply stated that their working hours were done

for the day and that further emails would be replied to the following day. It illustrated how organized the

crime was from the end of the threat actor. When we did not respond for some time, they emailed us again

to ask whether we had received their previous message, as shown in Figure 36.

Figure 36. Thread snippet showing the threat actor’s working hours and follow-up email

37 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

In response, we sent an email asking them to decrypt a file as an example, to make sure that they did in

fact have the decryption key. As shown in Figure 37, during this part of our exchange, we acted the part

of a disgruntled company representative asking why the threat actor was doing this in the first place. They

answered succinctly and obliged us by decrypting a sample file.

We sent them the conveyor belt PLC programing file (Omron CXP file), which they decrypted accordingly,

suggesting that they were unaware that we had in fact sent them an important file. After resending the

decrypted file, they reiterated their demand for and preferred mode of payment.

Figure 37. Thread snippet showing our request for a sample decrypted file and the other party agreeing to it

38 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

We continued the exchange by attempting to haggle. Ultimately, we managed to reduce their price to

US$6,000 worth of bitcoin from the original US$10,000, as shown in Figure 38.

Figure 38. The last part of our exchange, where we haggled for the price of the ransom

When this attack had run its course, we simply reset the system after getting all the information we could.

Phobos Ransomware

On Oct. 21, another ransomware attack occurred on the honeypot. The event took almost an hour

and consisted of the threat actor browsing the file system, scanning the network, and deploying the

ransomware. We later found out that the ransomware used for this attack was named Phobos, detected

by Trend Micro as Ransom.Win32.PHOBOS.SM.22 We recorded notable keystrokes that the attacker

typed in our honeypot network, as shown in Figure 39.

Figure 39. Notable keystrokes from the second ransomware infection

39 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

The threat actor visited the link “sendspace[.]com/file/qlhvgn” to download a RAR archive. This archive

had the filename “remove backups.rar” (SHA1: ef1418e3fcdcca4410014948116a28fa47e74fe2) and

contained the files for the attack, as shown in Figure 40 and detailed in Table 2. Perhaps noticing that

there was no archiver utility installed on our system, they decided to download WinRar as well. They

opened the archive, which was protected with the password “werty163”, as we found logged from the

network traffic.

Figure 40. The contents of the RAR archive

Filename SHA1 Trend Detection Description

1.bat 8ecff105db88464edf548b542a7837e92e56fcbe Deletes all shadow copies

NS.exe f628f11e39d2ce90e49de8774df40a248a6abcff Network scanner

PC_H32.exe c4e2953509e9a47d9ee0ecfa8c886328d700ed7e PC Hunter, an analysis tool for

Windows

PC_H64.exe d373052c6f7492e0dd5f2c705bac6b5afe7ffc24 PC Hunter, an analysis tool for

Windows

TMX64.exe 5ce6f58f46dc8ab89fd8bfc994dabb50316e7202 Task Manager Deluxe

asfasf.exe 75ba2e4bfb47feed72deed2bed9b2ef698e3253f Process Explorer

backup.bat 86f599090aa2c7c1df65dccccf00e1818e72246a Deletes all shadow copies

disable_defen.bat c17f4d57deb93050d094e5a09d2f9e58abc252f9 Disables Windows Defender

mimikatz_trunk.zip ebabab9c5b723df0fde7fe02dc22145e39ba0502 HKTL_MIMIKATZ.component Mimikatz files

ph_exec.exe 2be826b4864f86c37592a2e908638873b5ff093c Ransom.Win32.PHOBOS.SM Phobos ransomware used in the

attack

pscan24.exe 47dfbbbce8170891ddfbdcdd4e6a24d465d847e1 Port scanner

stop services.bat 8b77e8888276c8ce99746a7c0d5ca3f93ea9dee8 Batch file that stops database

services (e.g., MSSQL, MySQL,

PostgreSQL) and Windows

Defender

Table 2. Details of the files from the archive

40 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Phobos has similar attributes to Crysis, which was the ransomware variant used in the previously discussed

attack. The screenshot in Figure 41 shows the ransom note that was displayed after the malware was

executed and also after the system was rebooted. Encrypted files were renamed with the file extension

.actin, as shown in Figure 42.

Figure 41. The ransom note left by the Phobos ransomware

Figure 42. Encrypted files from the Phobos ransomware attack

41 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

A Fake Ransomware Attack

Several weeks after the second ransomware attack, on Nov. 12, another threat actor came in and dropped

“ransomware” in our system. This threat actor fumbled around our system trying to get a PowerShell

command to work.

Figure 43. The threat actor attempting to run a PowerShell command

When they were able to get it to work, it downloaded a file called haha.bat. We watched them struggle to

get this tool to work. They kept changing the bat file to “haha.rnsmwr”, as shown in Figure 44, but they

later renamed it back to “haha.bat”. This confused us until we saw that the “ransomware” was really just

using the REN or rename command.

At one point, as shown in Figure 45, the threat actor even edited haha.bat, which gave us a glimpse of the

code as its Pastebin page was no longer active. Even though we were watching them perform this attack

live, they were still quick to close the haha.bat code.

42 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Interestingly, after all of these actions, they also made sure that the ABB directory was also “ransomed”

or renamed, as shown in Figure 46.

Figure 44. The threat actor renaming haha.bat to haha.rmsmwr

Figure 45. The threat actor editing the haha.bat file

43 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 46. The threat actor renaming the ABB directory

They then moved on to editing the ransom message. First, they changed the wallet address. Then, they

changed the payment they were demanding, from US$200 to US$750. They also assigned passwords

to VNC so that only they would have access. They used the admin password “#concreTec” and the view

password “serfcx”. These actions are reflected in Figures 47 through 49.

44 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 47. The threat actor changing the wallet address

Figure 48. The threat actor deciding on the US$750 ransom

45 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 49. The threat actor assigning VNC passwords

They took a few final measures after all this had been set up. They again made sure that the ABB folder

had been “encrypted.” Then, they cleaned up the registry by editing some of the registry settings that

were modified during the process. And finally, they changed the desktop background image into their

ransom note before leaving our system. These actions are reflected in Figures 50 to 52.

Figure 50. The threat actor checking that the ABB files had been “encrypted”

46 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 51. The threat actor cleaning up the registry

Figure 52. The threat actor changing the desktop background image to the ransom note

Two days later, on Nov. 14, they came back into our system — that is, we had assumed that it was the

same threat actor based on the unfolding behavior. They went into the Documents library and deleted

everything that was in it, as shown in Figure 53. It should be noted that this was the library where the

“ransomware” actor spent some time on during their first visit to the system.

47 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 53. The threat actor deleting all of the files in the Documents library

They then created a program in Notepad that launched several de[.]youporn[.]com tabs. They executed

this program before leaving our system again. And sure enough, several tabs of the porn site were opened.

These actions, which are reflected in Figure 54, were likely meant to garner more attention, after the threat

actor’s first attempt had gone unnoticed for several days.

48 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 54. The threat actor leaving a wake of porn site tabs during their second visit to our system

49 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Attack With a Beacon
On Oct. 16, an actor came into the robotics workstation via VNC. As it turned out, their intention was to

send a beacon likely for lateral movement.

They went to https://www[.]sendspace[.]com/file/fjtdsk and downloaded a file called nsis.exe

(SHA1: 00a31ed29c06c06dde3433a5d6fa0a5dc941f13e), a self-extracting archive with several encrypted

files in it. We detail the contents of the downloaded file in Tables 3 and 4, the former pertaining to the

encrypted version and the latter to the decrypted version.

Filename SHA1 Encrypted Description

$PLUGINSDIR\System.dll f7543f9e9b4f04386dfbf33c38cbed1bf205afb3 No

$TEMP\System.Data.

SQLite.dll

42d5708ee9b662fae73e78f0fd0c5228090c3b40 No Legitimate SQLite library for

retrieving stored passwords in

Chrome browser

$TEMP\ak.tmp 1775f9cb1829910dce7b412c2e7b1b701c23709e Yes

$TEMP\ak_1.tmp b5931a99036a9a874cb917b6992e7c4510f063c2 Yes

$TEMP\config.tmp e355b51cf1b98c5d9513ff0752b59e8ab09e93d4 Yes

$TEMP\installer.ps1 552c69ab13fbc4ed770b4bed69474fbf32ba6f4b No Main script that will be executed

after extraction of archive. This

is responsible for decrypting the

component files and installing

the backdoor malware. Detected

by Trend Micro as

Trojan.PS1.CREDSTEAL.SM.

$TEMP\migwiz.tmp d5d02092dd453185f94f5882ffa090a0358be774 Yes

$TEMP\migwiz_1.tmp a2ca90c6b6efce5b85335b0cc3ecca07c024dcc0 Yes

$TEMP\rdpclip.tmp 7da837d644123e3547464273756800f22b0ed034 Yes

$TEMP\rfxvmt64.tmp 1885f2a4a58fb77c49763e09189aa3c1ec4eaa27 Yes

$TEMP\termsvc.tmp 4a6ab099aec72b4ca6b82db088e308d5542e1242 Yes

$TEMP\termsvc_1.tmp e774f3e8379615eaffb7c998c743ec119aa7b481 Yes

Table 3. The list of encrypted files from the downloaded nsis.exe file

50 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Filename SHA1 Description

ak.bin 3192ad3118b8c1eb5ee46764920a7d9120ca02e1 UAC bypass binary

ak_1.bin 61a6b265bc612d97589dddd65e8d31cc9f0625ea 64-bit version of ak.bin

config.bin 91c24a33a616168604645aacc01f32c9beac92aa RDP config

migwiz.bin fd4552e078bcae7134a3008d3b342011d835b007

migwiz_1.bin 554116aabd804663c24d8b3fa41cb72c00dc5b34 64-bit version of migwiz.bin

rdpclip.bin 306498e9a9f1c6b2813dad7cdcd8433139201794 Legitimate Microsoft binary -

rdpclip.exe (RDP Clipboard

Monitor)

rfxvmt64.bin 81d4ad81a92177c2116c5589609a9a08a5ccd0f2 Legitimate Microsoft binary

- rfxvmt.dll (Microsoft RemoteFX

VM Transport)

termsvc.bin 34dd125d42fdb33d2108896ff276cbfe71154cca

termsvc_1.bin 8ffe80190f7662422bf6c5736a01ea26880b74a2 64-bit version of termsvc.bin

Table 4. The list of decrypted files from the downloaded nsis.exe file

After the PowerShell command was executed, it decrypted the component files and dropped them in

the Windows temp folder. It then terminated Remote Desktop Services and replaced rdpclip.exe and

rfxvmt.dll with older versions. It also replaced the service dynamic link library (DLL) used by RDP from

the registry.

Figure 55. The threat actor replacing the DLL used by RDP from the registry

They then retrieved stored cookies, tokens, and credentials from the Chrome browser and wrote them on

the following files:

• c:\windows\temp\cookies.txt

• c:\windows\temp\tokens.txt

• c:\windows\temp\logins.txt

• c:\windows\temp\logins_read.txt

They then reconnected to VNC. A few minutes later, the robotics workstation began beaconing out

to afsasdfa33[.]xyz, via HTTPS (port 443), the certificate of which was generated with Let’s Encrypt, a

free certificate authority.23

At the time of writing, it was still unknown to us what exactly was being sent out by our robotics workstation.

However, we were still looking into the possibility that it was for lateral movement.

51 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Control System Attacks
As part of our conceptualization of our honeypot, we used PLCs from several different vendors to see the

possible attacks their used protocols would be prone to. We also left these PLCs somewhat exposed and

inadequately protected. In this subsection, we return to these PLCs and discuss the possible attacks we

observed on them.

Control System ‘Attacks’

In our Moloch system, as in Wireshark, it is possible to filter down. Since we wanted to see whether there

were any attacks on our exposed PLCs, we tried filtering out all known scanners, a process we described

earlier. As previously mentioned, doing so required taking the list of IP addresses, resolving them, and

excluding those that had host names that tracked back to a known internet scanner.

Excluded Scanners

We spent quite some time building a reliable whitelist of internet scanners, which proved useful in

excluding benign traffic to the exposed ports. The result is shown in Table 5.

51.15.191.81 80.82.77.139 146.88.240.6

51.254.49.101 82.221.105.7 172.105.207.40

68.169.145.238 89.248.167.131 185.142.236.34

71.6.135.131 89.248.168.51 185.142.236.35

71.6.146.130 89.248.172.16 185.173.35.0/24

71.6.146.185 89.248.174.3 185.181.102.18

71.6.146.186 92.118.160.0/24 185.216.140.6

71.6.147.254 93.174.85.106 195.154.61.206

71.6.158.166 93.174.95.106 198.20.70.114

71.6.165.200 94.102.49.190 198.20.99.130

71.6.167.142 104.251.248.86 198.108.66.0/24

71.6.199.23 139.162.65.76 208.64.252.230

80.82.77.33 139.162.83.10 212.83.146.233

139.162.99.243

Table 5. The IP addresses of excluded scanners

What this left us with was traffic to our PLCs that could be malicious or that could be originating from

scanners that are not well known. We determined the nature of the traffic by exporting and manually

verifying the PCAPs from Moloch. To do this, we filtered down by the protocol used by each PLC vendor.

52 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Siemens S7-1200 PLC

The Siemens S7-1200 PLC sat on the honeypot network and was remapped or NAT-ed from port 102 to

port 102. What we observed were hosts on the internet using valid commands to request for the CPU

functions. These hosts would make the request and the PLC would respond with the basic hardware

information. This could be seen as the same information that was collected by Shodan, as shown in

Figure 56.

Figure 56. Shodan information on Siemens S7-1200 PLC

In 2012, the independent cybersecurity researcher group SCADA StrangeLove released a tool called

PLCScan24 (now called s7scan25). It was a Python script that helped pull information about Siemens S7

PLCs to aid in identifying PLCs on the network. Shodan took this script and started scanning the internet

with it in 2015. Digital Bond built this into its Redpoint framework, and took PLCScan and made it into an

Nmap script.

From what we saw, all traffic to our PLCs that was not scanner-related was only using PLCScan (s7scan)

or using s7-info.nse (see Figure 57), which was released in 2015 into the main branch of Nmap. (The file

extension “nse” stands for Nmap Scripting Engine.) No other requests or commands were sent to our

Siemens S7-1200 PLC at the time of writing, both from known scanners and non-scanners.

Figure 57. Comparing the Siemens S7-1200 PLC traffic with s7-info.nse

53 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

The traffic was not inherently harmful. From our perspective, the traffic was simply from unknown scanners.

However, we are not discounting the possibility that this could be part of a reconnaissance activity for

further attacks that were never seen.

Allen-Bradley MicroLogix 1100 PLC

One of the two Allen-Bradley MicroLogix 1100 PLCs on the honeypot network was NAT-ed through 44818

to port 44818, while the other one was not exposed. For our discussion, we consider only the one that

was exposed as no attacks were seen laterally moving throughout the network to affect the other PLC.

In 2014, similar to what it did with the Siemens S7, Digital Bond added enip-info.nse to the main branch of

Nmap. This script sends a command 63 (request identity) to the PLC, to which the PLC will respond with

information about itself, which is the same information shown in Shodan (see Figure 58).

Figure 58. Information on an Allen-Bradley PLC as shown in Shodan

With some understanding of EtherNet/IP, the requesting host sets the sender context; this is changed

based on the station that sends the information. However, when the Nmap script was written, we found

that the sender’s context was set to “0x0000c1debed1”. This was the same for the majority of the scans

that went against our exposed Allen-Bradley MicroLogix PLC (see Figure 59).

This led us to believe that the majority of the traffic we saw was properly formed EtherNet/IP traffic,

indicating that most of the traffic was based on the Nmap script and was likely from scanners that are not

well known. As with the Siemens S7-1200, these were also good recon scripts for determining whether

an exposed device was a PLC, HMI, or any other type of EtherNet/IP-supported device.

54 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 59. Comparing the Allen-Bradley MicroLogix 1100 PLC traffic to enip-info.nse,

where the sender context is the same

While most of the information we saw was only “List Identity(Req)”, we did see a number of “unknown

commands” (see Figure 60 for an example). However, looking further revealed that these unknowns were

random information being sent to the port 44818. While in this case the PLC would respond simply by

saying that it was an unknown command, sending unknown traffic to known ICS protocol ports still

remains a dangerous practice that could cause older devices to crash. And while we never encountered

an issue because of this, it could have eventually caused an issue, as had been shown by Cisco Talos in

its released vulnerabilities for Allen-Bradley MicroLogix PLCs.26

Figure 60. An unknown command sent to the Allen-Bradley MicroLogix 1100 PLC

55 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Omron CP1L PLC

Omron communicates over a protocol called FINS, which is a UDP or Transmission Control Protocol

(TCP) that operates on port 9600. In 2015, Digital Bond released an Nmap script that identifies both the

UDP and TCP versions of FINS. Shortly after this, Shodan and other known scanners took this script and

started scanning the internet to help identify PLCs online.

Figure 61. Information about an Omron CP1L PLC as shown on Shodan

As with the other PLCs, we took the data and filtered out all the known scanners and then manually

looked at the valid FINS communications. What we saw mirrored the findings from the other PLCs. Each

request matched the omron-info.nse scripts that Digital Bond released, in this case for both the TCP and

UDP versions of the FINS protocol.

Figure 62. The UDP version of omron-info.nse

56 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 63. The TCP version of omron-info.nse

Gaining Notice From Legitimate Groups
During the course of our research, a researcher named Dan Tentler (@Viss on Twitter) posted a tweet that

captured our attention as it likely involved our honeypot. Tentler is a well-known researcher that has given

a number of talks on finding devices on Shodan and other internet-scanning services. If he was to find our

honeypot, we did not want legitimate groups to waste much time on it. This was why we had to monitor

the situation and prevent further escalation.

Figure 64. The tweet from a researcher about our honeypot

Within a few days, we were in contact with Tentler, who had by then escalated the issue to all of the

appropriate parties. These parties included all of those who needed to be notified in the event of a control

system getting exposed to the internet, meaning it also included the Industrial Control Systems Cyber

Emergency Response Team (ICS-CERT). This is the right course of action should what was happening to

our honeypot happen to a real system.

57 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Honeypot Incident Timeline
We summarize the aforementioned incidents in a single timeline that spanned the period when the

honeypot was online to better illustrate when attacks happened and which attacks overlapped.

MAY

JUN

JUL

AUG

MAY 6System launch

JUL 29Phone fraud

A threat actor conducts basic
reconnaissance and other activities that
could be related to phone fraud.

AUG 1RDP

A threat actor comes into the VNC and
enables RDP by going to Windows Firewall
and adding inbound and outbound rules.

AUG 11Reconnaissance

A threat actor performs basic
reconnaissance, such as using the
command whoamiipconfig.

AUG 14
Garnering notice from
legitimate groups

A security researcher posts a tweet
regarding our honeypot.

AUG 25System shutdown

A threat actor clicks around the robotics
application and closes the HMI application,
before eventually powering the system
down.

JUL 24 Malicious cryptocurrency mining

A threat actor installs Chrome and a
PyInstaller named host.exe, a remote
access tool (RAT) they use to mine Monero
cryptocurrency.

JUL 30
Malicious cryptocurrency mining
continued

The threat actor from July 24 comes back
and again infects the system by
downloading and launching host.exe.

AUG 2 Fixing the miner

The threat actor from July 24 comes back
to the system and uses Ares to relaunch
host.exe.

AUG 13 Net command

A threat actor runs a net command from
the command prompt.

AUG 19 Fraud continued

The same threat actor as that from July 29
comes back to continue their fraud
activities. The IP address has since been
blocked.

AUG 29 Logoff

A hacker opens the task manager and logs
off the user.

58 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

SEP

OCT

NOV

SEP 2Financial fraud

A threat actor opens Internet Explorer on the
system, signs up for an online payments
account, and tries to purchase an item
online to get credit but fails.

SEP 16A different miner

A threat actor goes to minergate.net and
attempts to download a miner.

SEP 19Python

A threat actor checks the system
configuration and opens Internet Explorer
seemingly to download Python.

SEP 30VM reset

OCT 15Network scan

A threat actor downloads a network scanner.

OCT 16Beacon

A threat actor goes into the robotics
workstation to turn it into a beacon, likely for
lateral movement.

OCT 22VM reset

NOV 1A well-intentioned hacker

A hacker leaves us a message saying that
our system is open to port 5901 and
recommends that we set a password for the
VNC.

NOV 14Fake ransomware attack continued

The threat actor from Nov. 12 comes back to
delete files in the Documents library and
leaves open porn site tabs before leaving.

SEP 13 Reconnaissance and logoff

A threat actor opens the task manager and
closes it before logging off the machine.

SEP 18 Gift card fraud

A threat actor uses the system to go into
another person’s airline account and turn
that person’s miles into gift cards for an
e-commerce site.

SEP 22 Crysis ransomware

A threat actor installs TeamViewer to
transfer three files, including a variant of
the Crysis ransomware.

OCT 1 Not so advanced attack

A threat actor makes several attempts to
download malicious files that lead to a
Meterpreter payload.

OCT 15
Malicious cryptocurrency mining
continued

The same threat actor who installed the
Monero miner in July attempts to download
another version of their first C&C, but fails
to do so as we have blocked the IP address
where they downloaded files.

OCT 21 Phobos ransomware

A threat actor downloads a RAR archive
containing Phobos ransomware, which
encrypts our files.

OCT 31 Actions on the robotics workstation

A threat actor clicks around the robotics
workstation.

NOV 12 Fake ransomware attack

A threat actor uses REN or the rename
command to pose as a ransomware attack.

59 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Figure 65. A timeline of incidents on our honeypot

We also summarize figures pertaining to the IP addresses that connected to our system and to

communication that we detected over the period our honeypot was online, from May 6 to Dec. 31, 2019.

DEC

DEC 10Factory start

A threat actor starts the factory, stops the
conveyor belt, stops the factory, and closes
the window.

DEC 13
Factory start and
activities on the HMI

A threat actor plays around with the HMI
before shutting down the factory, locking the
screen, and leaving the system.

DEC 5 Switched VNC

DEC 11 Factory start continued

The same threat actor from the day before
comes back, starts the palletizer, and opens
the log view of the optical eye.

Unique IP addresses

Non-scanners 8,842

Scanners 610

Total unique IP addresses 9,452

Total communication

Packets 565,220,996

Bytes 128,585,105,149

External-to-internal communication

Packets 32,314,351

Bytes 28,229,836,479

Scanner communication

Packets 192,473

Bytes 222,123,953

Table 6. A summary of figures pertaining to IP addresses and communication seen on our honeypot

60 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

Conclusion
During the research period, it became apparent that there was increasing activity on the honeypot, with

higher levels of interactions from day to day. For our honeypot to garner this kind of attention, we practically

had to do everything wrong when it came to our faux company’s general security stance. However, for

many small businesses with no IT or security staff, such a situation is not uncommon.

We had VNC open and allowed no password for remote control. In the information security sector, this

has long been known as a very risky configuration. Exposing any port to the internet indeed increases the

risk of compromise.

In most cases, organizations should always follow the least-privilege mode. We implemented the exact

opposite to lure attackers into our system. We used a common password throughout our network, but we

actually saw only one potential attempt to do lateral movement. However, the longer we were exposed,

the more activity we saw — and the more sophisticated attacks appeared to be compared to standard

penetration-testing techniques.

While the router that we used did not support filtering to block certain items discovered during the course

of our research, one feature we did not use was trust, which can be enabled on the router to allow only

specific hosts to and through the device. Most industrial routers also support point-to-point virtual private

networks (VPNs) to limit the exposure of remote cellular ICSs.

Our findings should serve as cautionary examples for organizations who run similar systems. We have

extensively discussed the conceptualization and creation of our most realistic honeypot to date. And

we have illustrated the conscious decisions and actions we took to make our system unsecure and

consequently inviting for cybercriminals to target. We did all this only to a limited degree to keep our

honeypot believable. This means we created openings for attacks that could realistically be found in

actual smart factories.

Therefore, such attacks would not have been so successful had adequate security measures been in place

to deter them in the first place. From this, organizations can take the cue to reevaluate their defenses.

Organizations should ensure that their equipment and the components of their ICSs are not exposed

online, as we purposely did with our various “misconfigurations.” Although we did not see any attack

taking advantage of how we used the same admin password for several workstations, organizations

would do well to not imitate the same practice and to keep strict authentication policies to minimize

the possibility of intrusions. Ultimately, weak security not only makes cyberattacks possible, but can

also serve as additional invitation for attacks on industrial systems that have long stoked the interest of

cybercriminals.

61 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

References
1 Danielle Veluz. (1 October 2010). Trend Micro. “STUXNET Malware Targets SCADA Systems.” Last accessed on 6 January

2020 at https://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/54/stuxnet-malware-targets-scada-systems.

2 Trend Micro. (22 December 2017). Trend Micro. “TRITON Wielding Its Trident – New Malware Tampering with Industrial Safety

Systems.” Last accessed on 6 January 2020 at https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/triton-

wielding-its-trident-new-malware-tampering-with-industrial-safety-systems/.

3 Andrew Krok. (21 June 2017). CNET. “WannaCry ransomware causes Honda plant shutdown in Japan.” Last accessed on 6

January 2020 at https://www.cnet.com/roadshow/news/wannacry-ransomware-causes-honda-plant-shutdown-in-japan/.

4 Emery Dalesio. (9 August 2017). AP News. “Take down: Hackers looking to shut down factories for pay.” Last accessed on

6 January 2020 at https://apnews.com/e316bd63f21a4fd181b3fb4a8dd7a5ba/Take-down:-Hackers-looking-to-shut-down-

factories-for-pay.

5 Kyle Wilhoit. (15 March 2013). Trend Micro Security Intelligence Blog. “Who Is Really Attacking Your ICS Devices?” Last

accessed on 6 January 2020 at https://blog.trendmicro.com/trendlabs-security-intelligence/whos-really-attacking-your-ics-

devices/.

6 Kyle Wilhoit and Stephen Hilt. (5 August 2015). Trend Micro Security News. “The GasPot Experiment: Unexamined Perils in

Using Gas-Tank-Monitoring Systems.” Last accessed on 6 January 2020 at https://www.trendmicro.com/vinfo/us/security/

news/cybercrime-and-digital-threats/the-gaspot-experiment.

7 Federico Maggi, Davide Quarta, Marcello Pogliani, Mario Polino, Andrea M. Zanchettin, and Stefano Zanero Politecnico di

Milano. (3 May 2017). Trend Micro Security News. “Rogue Robots Testing the Limits of an Industrial Robot’s Security.” Last

accessed on 6 January 2020 at https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-

industrial-robot-security.

8 Moloch. (n.d.). Moloch. “Moloch.” Last accessed on 8 January 2020 at https://molo.ch/.

9 Brendangregg. (n.d.). GitHub. “Chaosreader.” Last accessed on 6 January 2020 at https://github.com/brendangregg/

Chaosreader.

10 Jon Oberheide. (n.d.). Jon Oberheide. “VNC Keylogger.” Last accessed on 6 January 2020 at https://jon.oberheide.org/

vnclogger/.

11 Zeek. (n.d.). Zeek. “The Zeek Network Security Monitor.” Last accessed on 6 January 2020 at https://www.zeek.org/.

12 Intel Stack. (n.d.). Intel Stack. “Intel Stack.” Last accessed on 6 January 2020 at https://intelstack.com/.

13 Suricata. (n.d.). Suricata. “Suricata.” Last accessed on 9 January 2020 at https://suricata-ids.org/.

14 PyInstaller. (n.d.). PyInstaller. “PyInstaller.” Last accessed on 6 January 2020 at http://www.pyinstaller.org/.

15 Aldeid. (n.d.). Aldeid. “Pyinstxtractor.” Last accessed on 6 January 2020 at https://www.aldeid.com/wiki/Pyinstxtractor.

16 Python Package Index. (n.d.). Python Package Index. “uncompyle6 3.6.2.” Last accessed on 6 January 2020 at

https://pypi.org/project/uncompyle6/.

17 Sweetsoftware. (8 December 2017). GitHub. “Ares.” Last accessed on 6 January 2020 at https://github.com/sweetsoftware/

Ares.

18 Kaffeine. (31 January 2018). Proofpoint. “Smominru Monero mining botnet making millions for operators.” Last accessed on 6

January 2020 at https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators.

19 Wilbert Uy. (23 August 2019). Trend Micro Threat Encyclopedia. “Ransom.Win32.CRYSIS.SM.” Last accessed on 8 January

2020 at https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ransom.win32.crysis.sm.

20 Jay Garcia. (14 January 2020). Trend Micro Threat Encyclopedia. “HackTool.Win32.NetTool.A.” Last accessed on 15 January

2020 at https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/HackTool.Win32.NetTool.A..

21 Hybrid Analysis. (n.d.). Hybrid Analysis. “f47e3555461472f23ab4766e4d5b6f6fd260e335a6abc31b860e569a720a5446.” Last

accessed on 8 January 2020 at https://www.hybrid-analysis.com/sample/f47e3555461472f23ab4766e4d5b6f6f

d260e335a6abc31b860e569a720a5446?environmentId=100

22 Maureen Reyes. (12 July 2019). Trend Micro Threat Encyclopedia. “Ransom.Win32.PHOBOS.SM.” Last accessed on 6 January

2020 at https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ransom.win32.phobos.sm.

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/web-attack/54/stuxnet-malware-targets-scada-systems
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/triton-wielding-its-trident-new-malware-tampering-with-industrial-safety-systems/
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/triton-wielding-its-trident-new-malware-tampering-with-industrial-safety-systems/
https://www.cnet.com/roadshow/news/wannacry-ransomware-causes-honda-plant-shutdown-in-japan/
https://apnews.com/e316bd63f21a4fd181b3fb4a8dd7a5ba/Take-down:-Hackers-looking-to-shut-down-factories-for-pay
https://apnews.com/e316bd63f21a4fd181b3fb4a8dd7a5ba/Take-down:-Hackers-looking-to-shut-down-factories-for-pay
https://blog.trendmicro.com/trendlabs-security-intelligence/whos-really-attacking-your-ics-devices/
https://blog.trendmicro.com/trendlabs-security-intelligence/whos-really-attacking-your-ics-devices/
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-gaspot-experiment
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/the-gaspot-experiment
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security
https://molo.ch/
https://github.com/brendangregg/Chaosreader
https://github.com/brendangregg/Chaosreader
https://jon.oberheide.org/vnclogger/
https://jon.oberheide.org/vnclogger/
https://www.zeek.org/
https://intelstack.com/
https://suricata-ids.org/
http://www.pyinstaller.org/
https://www.aldeid.com/wiki/Pyinstxtractor
https://pypi.org/project/uncompyle6/
https://github.com/sweetsoftware/Ares
https://github.com/sweetsoftware/Ares
https://www.proofpoint.com/us/threat-insight/post/smominru-monero-mining-botnet-making-millions-operators
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ransom.win32.crysis.sm
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/HackTool.Win32.NetTool.A.
https://www.hybrid-analysis.com/sample/f47e3555461472f23ab4766e4d5b6f6fd260e335a6abc31b860e569a720a5446?environmentId=100
https://www.hybrid-analysis.com/sample/f47e3555461472f23ab4766e4d5b6f6fd260e335a6abc31b860e569a720a5446?environmentId=100
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ransom.win32.phobos.sm

62 | Caught in the Act: Running a Realistic Factory Honeypot to Capture Real Threats

23 Let’s Encrypt. (n.d.). Let’s Encrypt. “Let’s Encrypt.” Last accessed on 6 January 2020 at https://letsencrypt.org/.

24 SCADAStrangeLove. (7 November 2012). SCADA StrangeLove. “PLCScan the Internet.” Last accessed on 8 January 2020 at

http://www.scada.sl/2012/11/plcscan.html.

25 SCADAStrangeLove. (15 October 2018). SCADA StrangeLove. “s7scan to replace plcscan.” Last accessed on 8 January 2020

at http://www.scada.sl/2018/10/s7scan-to-replace-plcscan.html.

26 Talos Group. (28 March 2018). Cisco. “Vulnerability Spotlight: Multiple Vulnerabilities in Allen Bradley MicroLogix 1400

Series Devices.” Last accessed on 6 January 2020 at https://blogs.cisco.com/security/talos/vulnerability-spotlight-multiple-

vulnerabilities-in-allen-bradley-micrologix-1400-series-devices.

https://letsencrypt.org/
http://www.scada.sl/2012/11/plcscan.html
http://www.scada.sl/2018/10/s7scan-to-replace-plcscan.html
https://blogs.cisco.com/security/talos/vulnerability-spotlight-multiple-vulnerabilities-in-allen-bradley-micrologix-1400-series-devices
https://blogs.cisco.com/security/talos/vulnerability-spotlight-multiple-vulnerabilities-in-allen-bradley-micrologix-1400-series-devices

©2020 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are trademarks or registered trademarks of
Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.

TREND MICROTM RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key insights, and supporting

efforts to stop cybercriminals. Our global team helps identify millions of threats daily, leads the industry in vulnerability disclosures,

and publishes innovative research on new threat techniques. We continually work to anticipate new threats and deliver thought-

provoking research.

www.trendmicro.com

	_GoBack
	_Ref22821341
	_Ref22821569
	_Ref22821704
	_Ref22821035
	_Ref22822098
	_Ref22822495
	_Ref22822727
	_Ref22822852
	_Ref22823849
	_Ref22823951
	_Ref22824020

