
In partnership with

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

Federico Maggi
Trend Micro Research

Marcello Pogliani
Politecnico di Milano

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information and educational purposes only.

It is not intended and should not be construed to constitute legal advice. The information

contained herein may not be applicable to all situations and may not reflect the most

current situation. Nothing contained herein should be relied on or acted upon without the

benefit of legal advice based on the particular facts and circumstances presented and

nothing herein should be construed otherwise. Trend Micro reserves the right to modify

the contents of this document at any time without prior notice.

Translations of any material into other languages are intended solely as a convenience.

Translation accuracy is not guaranteed nor implied. If any questions arise related to the

accuracy of a translation, please refer to the original language official version of the

document. Any discrepancies or differences created in the translation are not binding and

have no legal effect for compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate and up-to-date

information herein, Trend Micro makes no warranties or representations of any kind as to

its accuracy, currency, or completeness. You agree that access to and use of and reliance

on this document and the content thereof is at your own risk. Trend Micro disclaims all

warranties of any kind, express or implied. Neither Trend Micro nor any party involved

in creating, producing, or delivering this document shall be liable for any consequence,

loss, or damage, including direct, indirect, special, consequential, loss of business profits,

or special damages, whatsoever arising out of access to, use of, or inability to use, or

in connection with the use of this document, or any errors or omissions in the content

thereof. Use of this information constitutes acceptance for use in an “as is” condition.

For Raimund Genes (1963 – 2017)

Published by

Trend Micro Research

Written by

Federico Maggi
Trend Micro Research

Marcello Pogliani
Politecnico di Milano

With contributions from

Martino Vittone,
Davide Quarta,
Stefano Zanero
Politecnico di Milano

Marco Balduzzi,
Rainer Vosseler,
Martin Rösler
Trend Micro Research

Stock image used under license from

Shutterstock.com

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

Contents
2 Consequences
 and Impact:
 Advanced Attacks
 and New Strains of
 Malware

131 Introduction09 3 Legacy Technology
 vs. Smart Factory

26

4 Mitigation and
 Secure
 Programming
 Guidelines

30 5 When It Is Too Late:
 Automatic
 Detection of
 Malicious or
 Vulnerable Logic

38 6 Conclusion41

1.1 Scope and
 Background

1.2 Research
 Methodology

1.3 Angle 2.1 Attacker Profile

2.2 Case 1: Stealing Data From
 a Robot

2.3 Case 2: Altering a Robot’s
 Movements via Network

2.4 Case 3: Dynamic Malware

2.5 Case 4: Not the Regular
 Remote Code Execution
 Vulnerability

2.6 Case 5: Putting It All
 Together — Targeted,
 Self-Propagating Malware

3.1 The Core of the Problem:
 Legacy, Vulnerable,
 Fragmented Technology

3.2 The Root Cause: Powerful,
 Unmediated Access to
 System Resources

4.1 Mitigation Approaches

4.2 Secure Programming
 Checklist in a Nutshell

4.3 Industrial Robots as
 Computers and Task
 Programs as Powerful
 Code

5.1 Early Detection of
 Vulnerabilities

5.2 Detecting Malicious
 Patterns in Industrial
 Automation Code

4.4 Authentication and Access
 Control

4.5 Input Validation

4.6 Error Handling

4.7 Output and Log Sanitization

4.8 Configuration,
 Dependencies, and
 Deployment

4.9 Beyond Secure
 Programming: Change
 Management for Control
 Process Code

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 4 |

In this research paper, we reveal previously unknown design flaws that malicious actors

could exploit to hide malicious functionalities in industrial robots and other automated,

programmable manufacturing machines. Since these flaws are difficult to fix, enterprises

that deploy vulnerable machines could face serious consequences. An attacker could exploit

them to become persistent within a smart factory, silently alter the quality of products, halt a

manufacturing line, or perform some other malicious activity.

Our research was set in motion a few years ago, when we stumbled upon something we had

never seen before: a store that distributed software for heavy industrial machines in the form

of apps. We downloaded some of these apps and reverse-engineered them to understand

how they worked. What we were looking at was something quite different from any software

or programming language we were familiar with. The code was written in one of the many

proprietary programming languages used to automate industrial machines, the types of

robots typically used to assemble cars, process food, and produce pharmaceutical items,

among other industrial purposes. The most notable part of our investigation is that we found

a vulnerability in one of these apps.

A year later, we delved into the technical details, including the weak spots, of the eight most

popular industrial programming environments: ABB, Comau, Denso, Fanuc, Kawasaki, Kuka,

Mitsubishi, and Universal Robots. Through custom programming, industrial robots can

indeed carry out very sophisticated automation routines with high precision. For example,

they can pick and place items, move loads, solder, and cut repeatedly and reliably. We were

fresh off our 2017 security analysis focused on industrial robots,1 so we were well aware of

how complex and intricate the attack surface of a robot could be. But this app store was like

nothing we had seen before.

How Critical Is the Vulnerability?

We found that the vulnerable app was a full-fledged web server, running on the bare-metal

computer of the controller of the industrial robot on which it was installed. It was written

in a custom, proprietary programming language. Although designed many decades ago,

languages such as this are still in use today to run critical automation tasks. And although

these custom languages are expected to have some form of networking functionalities, we

were surprised to see that they had enough features to create a working web server.

The vulnerability we found was a path traversal flaw: By supplying a crafted address, a

malicious actor could exfiltrate any file from the robot’s file system. We reported it to the

vendor, which promptly acknowledged it and removed the app in question from the store.

By that time, the app had been downloaded by a few hundred users, and it is potentially still

running in some production sites. As of this writing, the app has not been reinstated in the

store. However, it is still being distributed via one of the many online forums that automation

engineers use to exchange programming tips.

A year after our discovery of the app vulnerability, we examined 100 open-source automation

programs for robots and discovered that most of them were affected by vulnerabilities that

could allow an attacker to control or disrupt a robot’s movements. Fortunately, the most

critical ones — remote function execution vulnerabilities — were in demonstrator code.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 5 |

We hope that no one has ever used that code to teach class or, worse, derive production code.

According to reports, programmers tend to copy and paste code, causing vulnerabilities

to propagate2 across open-source projects and sometimes even into commercial, critical

products. For instance, for our previous research on industrial robots, we reverse-engineered

the firmware of an industrial router, and to our surprise, we found out that the exact same

(vulnerable) code was published many years before on an online tutorial, clearly for novice

programmers, titled “Create a REST API with PHP.”3

How Is the Programming Language Different?

The custom programming language of the app we examined not only supports the concept

of a file system, as in a regular computer, but it also has function pointers and dynamic code

loading. Using it, an attacker would have all the features needed to write malware. One year

later, we know of three more custom programming languages that have the same powerful

features.

We thought that such instructions were privileged, that is, the system would stop the

execution if the user did not have appropriate authorizations. But after digging into the

robot’s programming manual and conducting some tests, we found no concept of privileged

instructions in the system. As a result, the robot would simply run the program.

For an environment designed decades ago, it is understandable that a coarse-grained

permission system was used. In comparison, modern systems such as smartphones are

extremely secure; even if a malicious developer manages to sneak spyware into a mobile

app store, the app would still need to declare and ask permission to use the microphone,

the network, and other low-level system resources that malware needs in order to work.

But in industrial automation platforms, there is no such requirement; all resources are “flat”

and could be easily abused by malicious programmers. Moreover, most of the programming

environments for industrial robots have enough powerful features to allow malware to remain

persistent in a smart factory, silently alter the quality of products, exfiltrate secrets, or halt a

manufacturing line.

The Crux of the Problem

We believe that this legacy technology, which is intrinsically difficult to replace, has not been

discussed and scrutinized in depth from a cybersecurity perspective. Most of the security

analyses thus far have focused on finding and fixing vulnerabilities in the software, not in the

design, or else on one, specific target.

The design issues that we found broadly affect critical sectors where industrial machines

are essential, most notably automotive, avionics, military, food and beverage, and

pharmaceuticals. Attacks on industrial environments in these sectors could have serious

consequences, including operational failure, physical damage, environmental harm, and injury

or loss of life. Stuxnet is often referenced in this regard because it was the first malware that

demonstrated the possibility of concealment using nonmainstream programming languages,

which has been confirmed by subsequent research.4, 5, 6, 7 Another piece of malware of note

is Triton,8 which showed that control-process-specific and device-specific malware was

feasible and could have disastrous consequences. As evidenced by these cases, advanced

attackers devote time and resources to gain the required knowledge to hit their targets. In

this research, we show that it is possible to write self-replicating, remotely controlled malware

using proprietary programming languages. And given some preconditions, such malware

would be able to jump from one vulnerable robot to another.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 6 |

Our findings are relevant to the modern and future factory because the flaws we found

are descended from design choices made decades ago. These decisions determined the

technology, techniques, and tools that are still used today to program industrial machines.

To create an assembly line in a factory, for example, enterprises have no choice but to rely

on custom, proprietary, or even legacy programming languages. Each vendor has its own

ecosystem, but we cannot blame the developers for writing unsecure code. It is understandably

very difficult for them to implement strong security measures within automation routines.

Based on the languages that we reviewed, it appears that they have not been designed with

an active-attacker model in mind. Some lack features, such as cryptographic functions, that

are essential to implementing modern security measures. The platforms offered by some

vendors do implement a few security mechanisms, most of which are “bolt on” and do not

integrate well with the programming environment. As a result, while the operating system

may have security features such as authentication and access control, the programming layer

is a “black box” with no fine-grained security control. This leaves it open to attackers.

It is impractical to fix these design flaws because legacy programming environments cannot

be easily replaced. Not only have they become critical for current industrial automation, but

the strong technology lock-in makes every switch very expensive. Consequently, despite the

existence of newer alternatives, the big players behind the leading platforms still dominate

the market. Switching away from their platforms is simply uneconomical.

Mitigation Recommendations

The difficulty of fixing the root of the problem in the short term motivated us to develop

a prototype analyzer that control process engineers and system integrators can use to

automatically detect both vulnerabilities and malware. Validated on a dataset of 100

automation logic files written in custom, proprietary programming languages, this patent-

pending technology can automatically spot vulnerable or malicious routines, effectively

avoiding them and preventing damage at runtime.

While waiting for the next generation of secure-by-design industrial machines, as part of

this research, we provide actionable security recommendations that both control process

engineers and system integrators should follow to avoid common configuration and

programming mistakes. We provide a practical security checklist for promoting secure

software development practices in the industrial automation world. While the practices that

we highlight have become common in the IT software development industry, we understand

that developers write their code under a “closed world” assumption and thus feel no need

to adopt a defensive approach. However, things are changing: Innovation favors increased

integration of the factory floor with external services, not to mention that industrial robots

and other programmable machines are already (and sometimes directly) connected to

cellular networks for remote maintenance. Even in the best-case scenario where operational

technology (OT) systems are not directly exposed, advanced attacks have demonstrated the

capability to cross the IT/OT frontier and propagate down to the factory floor, sometimes

even reaching the safety system (as in the case of Trisis9).

In January 2020, Jake Brodsky, a veteran control systems engineer, delivered a talk that

provided concrete, actionable practices for programmers of programmable logic controllers

(PLCs) to follow to avoid common mistakes that could lead to vulnerabilities in automation

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 7 |

logic.10 With our security checklist, we want to take another step in this direction and remind

OT engineers to treat any connected industrial machinery as a traditional computer, with

inputs and outputs (I/Os), network connections, and other components — even if it is not

programmed like a computer.

Thus, authentication and access control should be implemented at the application level

where suitable. Generally, any automation program should implement proper input validation

and output sanitization, and handle errors with care. Developers should also avoid leaving the

debug code in production since it might end up revealing sensitive data to malicious actors.

As a general recommendation, we advocate for the implementation of change management

processes for automation code — inspired by the IT software development industry. This

is to ensure visibility and control over the automation routines running in a factory. While

automation code is mostly static at present, reconfigurable robot stations11 already exist.

In the future, robots will be able to self-organize, upgrade, and change their code to meet

production deadlines.12

We also provide network configuration guidelines that we formulated in collaboration with

Robot Operating System – Industrial (ROS-Industrial), a consortium of leading original

equipment manufacturers (OEMs) and research organizations. Used with proper network

security equipment, these guidelines can help reduce the exploitability of the vulnerabilities

that we discovered.

These recommendations, which are echoed by the Industrial Control Systems Cyber

Emergency Response Team (ICS-CERT) of the US Cybersecurity and Infrastructure Security

Agency (CISA),13 can be summarized thus:

• Network segmentation: Use proper network protection devices to isolate industrial

robots that need to process data coming from other networks. This should be done with

a physical cable to make spoofing possible only to an attacker who is physically on-site.

• Secure programming: In addition to adopting secure network architectures, promote

secure programming guidelines among control process engineers and programmers. This

minimizes the attack surface exposed by automation code.

• Automation code management: Know and keep track of the automation code that

is produced by a system integrator and runs in the factory. This type of oversight is a

fundamental prerequisite to finding, managing, and resolving vulnerabilities and other

security issues.

Reading Guide

This paper is structured around several orthogonal aspects and thus can be consumed

through different reading paths. Each of its four self-contained sections — between the

introductory section (Section 1) and the concluding section (Section 6) — focuses on a key

aspect of our research:

• Impact: We look at the consequences of our findings through proof-of-concept attack

scenarios that we verified either on physical equipment or in a simulation. We also

show the technical details of the vulnerabilities that we found and demonstrate how an

advanced attacker could craft new strains of malware by exploiting powerful features

made available by industrial automation platforms.

Section 2

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 8 |

• Root cause: We focus on the root cause of our findings after going through the important

technical features of the programming languages for industrial automation. We list the

security-sensitive features and explain how they could lead to vulnerabilities if used

incorrectly or let malware authors conceal malicious functionalities.

• Mitigation: We propose network and programming approaches to minimize the risk of

exploitation. In particular, we focus on network segmentation, source code management,

and secure coding practices. We also describe how programmers, system integrators,

and OEMs can contribute to an increased level of security.

• Detection: We briefly describe how the prototype detection technology we designed and

implemented can automatically detect vulnerabilities and malicious patterns in industrial

automation code. We foresee the adoption of similar detection tools by system integrators

and factory operators.

We recommend the following reading paths depending on the reader’s background and focus:

• Mainstream or business reporter: After reading this abstract, read Section 1 to get

an overview of the technology under discussion, and then read Section 2 to see the

significance of our findings.

• Technology reporter: After reading this abstract, read Sections 2, 3, and 4 in this order.

• OT engineer or operator: If familiar with industrial automation technology, read Section

3, followed by Section 2, to understand the impact of our findings, and then focus on

Section 4 and then Section 5.

• System integrator: Read Section 3 to learn about the root cause of the issues we

discovered, Section 4 to find out how to mitigate the risk of exploitation, and then Section

5 to know what existing automated tools to use to detect security issues.

• OEM: Read Section 1, followed by Section 3, and then focus on Section 4. (Readers who

are connected with OEMs can make a big difference by designing future programmable

industrial machines with our findings in mind.)

• Academic or researcher: After reading this paper preferably in its entirety, find additional

insights in our academic paper titled “Detecting Insecure Code Patterns in Industrial

Robot Programs.”14

Section 3

Section 4

Section 5

 9 |

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

Introduction
Industrial robots are the backbone of the modern factory, and the technology behind them is

fundamental to the fourth industrial revolution, aka Industry 4.0. These robots are powerful and flexible

machines, capable of very precise movements and actions. They are efficient because, through custom

programming, they can carry out very sophisticated automation routines — picking and placing items,

moving loads, soldering, cutting — with high precision, and repeatedly and reliably at that. Without

them, cars, aircraft, processed food, pharmaceuticals, and many other products would be produced

on a much smaller scale.

Scope and Background
The automation technology that drives robots and other programmable industrial machines is completely

different from the mainstream technology used to create websites or mobile apps. The so-called task

programs that define the automatic movements of these machines are written by field experts using

vendor-specific programming languages. Each original equipment manufacturer (OEM) has its own

ecosystem of languages, programming environments, and tools.

Figure 1 shows a simple example code written using the Kuka KRL language, which instructs a robotic

arm to travel between two points (pos1 and pos2), while Figure 2 shows a pick-and-place program

written for the ABB platform.

1.1

Figure 1. An example automation routine (written using Kuka KRL) for moving a robotic arm between two

points, 10 times, in a loop

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 10 |

Figure 2. A typical programming and simulation environment (by ABB) showing a pick-and-place task

program (left) and the simulated station with a digital twin of the robot (right)

In this research, we focus on eight platforms that highly ranked market reviewers consider leaders

in the field: ABB, Comau, Denso, Fanuc, Kawasaki, Kuka, Mitsubishi, and Universal Robots. These

entities all have a long history and are well established in the industry. Among them, aside from being

the most recent player, Universal Robots stands out because, in addition to its proprietary programming

language, it allows control process engineers to use mainstream languages such as Java and Python.

The root cause of the issues we discovered in this research (described in full in Section 3) is a

combination of powerful functionalities that allow low-level access to resources (such as networking, file

system access, memory manipulation, and function pointers) and the lack of isolation (no fine-grained

permission system). These not only make it relatively easy for developers to inadvertently introduce

vulnerabilities, but also allow malware developers virtually unlimited access to hardware resources.

In both cases, the consequences could vary from system exploitation and denial of service (DoS) to

equipment damage and downtime. These are all relevant threats in any factory setting and could result

in considerable operational, financial, and reputational repercussions for the enterprise.

Throughout this paper, we use the term “legacy” to indicate that the vast majority of the programming

languages and environments are still currently in use, despite the availability of newer alternatives. It

requires substantial effort and resources to migrate from, say, ABB to Kuka, or vice versa, or to newer

alternatives such as Universal Robots. For this reason, the technology discussed in this research is

 “here to stay,” in the sense that it is inconvenient for enterprises to move away from it.

Research Methodology
This research combines both technical and nontechnical sources: analysis of task programs containing

automation logic, insights from the technical documentation of eight leading industrial robotic platforms,

and information from 11 online forums and 20 domain experts.

Figure 3 illustrates that we found the first vulnerabilities while we were manually analyzing source code

(1), and this discovery motivated us to create an automated scanner (2 and 4) for finding patterns of

vulnerabilities. We later extended the functionality of the scanner to recognize any given pattern, for

example, a pattern of malicious behavior.

1.2

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 11 |

An overview of our research methodology

Concurrently, we looked for the root cause of each of the vulnerabilities we found, striving to go beyond

the scope of the specific vulnerable program. We wanted to link our findings back to the technical

features of the programming platforms (such as languages and runtime). As we have concluded, some

of the vulnerabilities could be fixed more easily and more effectively with a platform redesign or a major

upgrade, in addition to increased awareness among control process engineers.

Having understood the root cause, we moved to creating proof-of-concept malware (3) to demonstrate

that these programming languages are probably more powerful than they need to be or, in other words,

have no isolation features that would prevent easy abuse.

There are secure coding guidelines that are intended for general-purpose and mainstream programming

languages (including OWASP Secure Coding Practices,15 SEI CERT Coding Standards,16 and US

CISA Build Security In - Coding Practices17). We thus conclude this paper by proposing a series of

recommendations for secure programming, tailored specifically to an OT audience. Our guidelines

come from an IT background but have been inspired by “Secure Coding Practices for PLCs,” a talk

given in January 2020 by Jake Brodsky, a veteran control systems engineer.18

Angle
It might appear that most of the issues that we analyzed in this research are simply “regular programming

issues,” and the reader might be of the thinking that “if an attacker can change the code of an automation

routine, they can do anything.” These statements do not represent the full truth and are not the angles

of our research.

Modern programming languages, operating systems, and runtime environments show that there must

be multiple protections in place. However, we found no such level of security design in industrial robotic

platforms. Our main goal is to push OEMs and control process engineers to think differently. Although

there are system-level authentication and access-control systems, these alone will not fix the problems

that we have identified. The current authentication and access-control systems (as shown in Figure 6

in Section 2.1) can at most tell which users and which mediums (for example, USB and network share)

are authorized to upload an automation script. However, if that automation script is vulnerable or, worse,

includes malicious functionalities, there is no fine-grained authorization system that would prevent the

malicious script from, say, manipulating the program’s memory.

• Technical documentation of 8
 leading industrial robotic platforms
• Information from 11 online forums
• Information from 20 domain experts

• Instances of vulnerable code
• Design issues in the platforms
• Secure coding recommendations

Manual analysis and interviews

Automatic
vulnerability scanner

100 automation logic files

Inputs to the research

Outcome of the research

1

2
Proof-of-concept

malware

3

Evaluation

4

Figure 3.

1.3

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 12 |

To draw a comparison, if an attacker hides malicious code in a mobile app, it is not true that they can

 “do anything.” First, the mobile app stores that distribute the app serve as a basic line of defense;

such platforms have their own security checks. Nothing even close to this exists for control process

code — only a few timid attempts to deliver industrial automation code through app stores (such as

ABB-RobotApps RobotStudio19).

Second, even if mobile malware lands on a phone, the malware would be constrained by the permission

and sandboxing systems (unless the attacker has sandbox-escaping exploits), which force malicious

developers to ask and be granted permissions in order to perform truly dangerous actions like spying

or harvesting files. Nothing like this exists for control process code either. If an attacker manipulates

automation code, they could easily get away undetected. All the efforts are concentrated on prevention,

which is well and good, but there is a lack of consideration for what could happen if an attacker is able to

compromise and manipulate critical systems. An example of this is if an actor manages to compromise

the system integrator and trojanizes all the automation code that the sytem integrator delivers.

 13 |

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

Consequences and Impact:
Advanced Attacks and New
Strains of Malware
In this section, we describe the impact of our findings, leaving out the technical details of each

programming language and the in-depth description of the root cause, which are in Section 3.

A malicious actor could exploit vulnerabilities such as those we found in automation programs to gain

control of a manufacturing plant or inject malicious code for persistency. The vulnerabilities that we

found in public code make these cases a realistic expectation for future fully automated factories.

In this section, we describe five attack scenarios, all based on real vulnerabilities that we found in task

programs on public code repositories (GitHub and online communities). One was removed by the vendor

(ABB) upon our responsible disclosure.20 The other vulnerabilities fostered a fruitful conversation with

ROS-Industrial, which led to the development of some of the mitigation recommendations described

in Section 4.

While code found on GitHub and online communities might not directly represent production-grade

code, we underscore that some of the code we found was taken from technical materials such as

manuals and programming references, which novice programmers use. Moreover, previous research

has shown that vulnerabilities in open-source code do propagate and affect final products.21

We also verified that it is possible to write new strains of malware by abusing the language functionalities

we describe in Section 3. In particular, we wrote a piece of (disarmed) self-propagating malware using

one of these legacy languages to show that it is technically possible to write (and detect) such malware.

Explainer: There have to be very specific preconditions — for example, a remote code execution

(RCE) vulnerability or a missing check along the software supply chain — for such new malware to

propagate. However, when such preconditions exist, the scenario illustrated in Figure 19 in Section

2.6 could occur.

Figure 4 gives an overview of the consequences of the exploitation of vulnerabilities in industrial

automation logic. In the remainder of this section, we describe our findings that confirm the feasibility

of attacks that exploit these vulnerabilities. We are currently working with industrial automation

consortiums to raise awareness of this overlooked security issue.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 14 |

Context of the information and how our findings demonstrate the preconditions for new attacks

Money

Data

Money

CASE 3
Dynamic Malware

(Section 2.4)

Product quality
alteration

Production line DoS
Extortion-based

attacks
Financial

gain

Industrial
espionage

Information
exfiltration

Damage or injury

CASE 4
Not the Usual Remode

Code Execution
Vulnerability (Section 2.5)

CASE 5
Targeted,

Self-Propagating Malware
(Section 2.6)

CASE 1
Stealing Data From a
Robot (Section 2.2)

CASE 2
Altering a Robot’s

Movements via Network
(Section 2.3)

Attacker’s
goals

Our findings High-level consequences

Targeted sectors
• Automotive
• Avionics
• Military

Profile
• US$20,000 – US$250,000
 budget
• Advanced skills
• State-level knowledge

• Pharmaceuticals
• Food and beverage

Figure 4.

Figure 5.

Recommendation: Given our findings, we urge OEMs and control process engineers to consider

our results because, without proper protection in place, an attacker would be able to exploit

vulnerabilities and create custom malware that would pass undetected. Consequences could

range from persistent access to high-value industrial equipment damage, information exfiltration,

extortion-based attacks, and product quality alteration.

Attacker Profile
Recent industrial control system (ICS) security incidents22, 23 showed how advanced attackers (or state-

sponsored attackers) could go to great lengths to gain the required knowledge to hit specific targets. Our

attacker profile highlights a highly skilled actor with specific knowledge of the target facility, including

the industrial robotic platform being targeted. We envision a state-level actor or any other actor who

has a budget ranging from US$20,000 to US$250,000 (the price of a small lab) to set up an industrial

robotic system for experimentation, similar to the one we used for this research, as shown in Figure 5.

2.1

The lab that we used to test some of our findings

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 15 |

We recently found two main indirect entry points that such a remote attacker could take advantage of

to gain initial access to a smart factory environment even when the systems are not directly exposed on

a public network.24 In the context of the following scenarios, we consider that such an attacker can rely

on these entry points or similar ones.

The programming environments for industrial machinery make it easy for attackers to abuse any

low-level system resources, because there is no differentiation between privileged and nonprivileged

instructions. This is in contrast to the state of almost all modern computing systems.

The internal security architecture of current industrial “operating systems” is such that a task program

is either allowed or denied to run, but after it runs, it can perform any action. Current authentication and

access-control systems can at most tell whether or not a user can upload and/or run a task program,

and not which specific instructions that task program can execute. For instance, Figure 6 shows a

typical message that appears when booting a robot for the first time. It requests the user to set a

password. However, the password is used to authenticate local operator access (used for processes

such as loading a program) only and possibly gives the user a false sense of security.

Figure 6. A typical message that appears when booting a robot for the first time, requesting the user to set

a password, which is used to authenticate local operator access only

Case 1: Stealing Data From a Robot
In this scenario, we consider a robot running a task program that uses a log file to keep track of

the coordinates of movements performed by a robotic arm. Log files are usually created for auditing

purposes. The log likely contains sensitive, valuable information such as intellectual property (for

example, how a product is built). The task program also periodically opens a network socket to let an

external application read the log files for postprocessing or archiving.

In the example illustrated in Figure 7, the /www and /vault directories are in the robot’s file system, but

only /www is supposed to be reachable via the network socket. As shown in Table 1 in Section 3.2,

most industrial robotic platforms implement a file system.

2.2

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 16 |

/www

FILE

/vault

SECRET

• Path traversal vulnerability
 (read-only)
• Exploit for information theft

GET file

File

Get …/vault/secret

secret

../

No input sanitization

An example of vulnerable logic: from unsanitized (e.g., file, network, serial) data to read/write file

access

We now consider an attacker that has already compromised one computer within the same network

as the robot. As a first step, the attacker could impersonate the application, connect to the network

socket, and exfiltrate the log. The attacker could then perform lateral movement and plant malware in

the robot’s machine to remain persistent.

Even though console access to the robot is password-protected (as shown in the example in Figure

6 in Section 2.1), the attacker could exploit the task program that keeps the socket open, which is

affected by a path traversal vulnerability. The task program trusts any request coming from the agent,

which is assumed to send a genuine file path, relative to the directory where the log files are stored.

The attacker could exploit this vulnerability to access other files in other directories (including files

containing authentication secrets) and use them to finally access the target machine’s console.

Figure 7.

Figure 8 shows the default page displayed by the web server. And Figure 9 shows the line where the

path traversal vulnerability is most evident. In line 493, the sendFile function is called to send the

requested file to the client. Of note is the concatenation with pageString, which can contain “../”, thus

traversing the file system to access other files.

Vulnerability: We found and reported a real case of a vulnerable web server task program, meant to

run on an industrial robot, in the form of an app made available via ABB-RobotApps RobotStudio25

and implemented in ABB’s Rapid language.26 This vulnerability would have allowed an attacker on the

network to exfiltrate any files from the robot controller, including potentially sensitive data. (Industrial

secrets are traded for very high prices in underground marketplaces27 and have become one of the

main targets of cyberwarfare operations.) Following our responsible disclosure, ABB removed the

app from the store.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 17 |

A screenshot of the default page displayed by the vulnerable web server we discoveredFigure 8.

Figure 9. A code snippet showing the line where the path traversal vulnerability in the web server is most

evident28, 29

Figure 10 shows our proof-of-concept exploitation of the vulnerability to exfiltrate sample secret

information. We also show an excerpt from the vulnerable web server’s code with a comment left by the

developer. This indicates that they trusted that all requests would come from a (benign) browser, which

would validate the inputs on its side — by no means a secure coding practice.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 18 |

Our proof-of-concept exploitation of the path traversal vulnerability to exfiltrate a secret.txt file

placed outside the web server’s directory and to list the content of the directory

Security-aware developers treat any input coming from the network as untrusted, meaning it needs

validation on the server side before any further processing. This is because an attacker might use a

custom client — as we did — to craft requests that include “..\\..\\”. These are the characters needed

to walk into the file system outside the web server’s root directory.

Case 2: Altering a Robot’s Movements via
Network
The abuse of security-sensitive features or the exploitation of a vulnerability could lead to consequences

in the physical world. Despite the many safety layers, programmable industrial machines are very

powerful and capable of causing significant harm to the things or, worse, the people around them.

Figure 10.

2.3

Deg = 20

Deg = 50

.

.

.
Deg = “stuff”

MOVE(deg)

Unintended movement

Unintended movement

Exploit for unintended robot
movement

Figure 11. An example of vulnerable logic: from unsanitized (e.g., file, network, serial) data to movement

commands

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 19 |

We consider, for example, a task program that receives a stream of coordinates via a network socket.

The program shown in Figure 12 is real; we found it in an open-source project written for Kuka industrial

robots, but similar ones exist essentially for any brand. It is affected by a vulnerability that an attacker

could exploit to move the robot almost arbitrarily by spoofing network packets. This could happen if

no safety system is properly configured. With safety systems correctly configured and deployed, the

attacker would have a hard time causing movements that would actually generate damage, although

the attacker could still cause unintended movements or interrupt the production process.

This example represents a common class of so-called motion server automation programs, which

are used to drive connected robots. For example, large projects such as the ROS-Industrial software

 — used and endorsed internationally by most of the major market players — extensively use motion

servers to expose a common, vendor-neutral interface to industrial robots of different OEMs.

Figure 12. The vulnerable motion server program that we found

As in the previous scenario, we assume an attacker who is within the same network as the robot but

has no access to it. The attacker wants to disrupt the robot’s operation to change its movements, cause

damage, affect the safety of the manufacturing station, or simply alter the quality of the manufactured

product (as we showed in our 2017 robotics research30). There is proper network-level protection in

place (for example, IP and MAC address filtering), which ensures that the robot receives coordinates

only from the designated controller.

However, if the task program has no internal authentication other than the aforementioned network-

level protection, or if it is affected by an input validation vulnerability, any received coordinate value

is automatically trusted as long as it comes from a valid IP or MAC address — either of which can be

easily spoofed by local attackers. Therefore, an attacker could send arbitrary coordinates, and the robot

would just act accordingly and thus could cause damage.

In our lab, we confirmed that even the traffic between the robot and the engineering workstation, as

shown in Figure 13, could be tampered with.

Figure 13. Our first attempts at understanding the messages exchanged by the robot controller and the

engineering workstation

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 20 |

Safety system: To show the impact of this vulnerability, we deliberately misconfigured the safety

system. We were then able to push the robotic arm to the limits of the safety zone several times by

spoofing network packets containing wrong coordinates. We were able to hit a physical object with

the robotic arm, causing the end effector (the “hand” that the robot uses to pick objects) to fall off,

as shown in Figure 14.

Figure 14.

Figure 15.

The impact of the vulnerability when the safety system is not correctly configured

(from left to right: the end effector in place, the end effector after it fell off, and the robotic arm

without the end effector)

This experiment demonstrated the crucial role of a safety system. In it, the properly configured safety

system was triggered correctly every single time. However, whenever the safety system engaged,

the robot servo motors stopped. This means that the production process would be interrupted and

assembly lines would be delayed.

Figure 15 shows how Mitsubishi Melfa BASIC supports the motion server functionality natively.

Mitsubishi’s implementation of this functionality leaves very little room for programmer mistakes. Other

robots need extension software for motion servers and thus must resort to using adapters written in

their respective custom languages, a recourse that, as we have shown, might lead to vulnerabilities.

A screen capture of a simple automation program that receives movement commands via

Ethernet (a functionality that is implemented securely by Mitsubishi Melfa BASIC)

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 21 |

Case 3: Dynamic Malware
In this scenario, we assume that a robot runs a task program written by a system integrator, which

the factory considers trusted. This means that any task program created by the system integrator is

deployed with no special security checks on the program’s code. However, the system integrator might

have been compromised, or the task program in question might have been taken from a misconfigured

or vulnerable network-attached storage.

A naïve attacker could straightforwardly replace the task program to change the automation of the robot,

with high chances of getting noticed. But an advanced attacker knows that if the task program is written

in a programming language that supports dynamic code loading and networking primitives (for example,

ABB’s, Comau’s, Denso’s, or Fanuc’s), they could opt for stealthier and more persistent approaches.

An advanced attacker would just slightly alter the source code of the original task program to include

a networking routine that fetches malicious code from outside (or from a hidden file) and then uses

dynamic loading to run it as part of the normal automation loop — effectively creating a malware

dropper, such as the one shown in Figure 16, which we wrote in a programming language for industrial

robots. Our proof of concept shows that an external program can be used to load code into the robot

controller and execute it.

2.4

Figure 16. A malware dropper that we wrote in a programming language for industrial robots

From this point on, the attacker could download and execute any second-stage malware, which

could perform further malicious actions such as network target enumeration, file harvesting, and data

exfiltration. We explain this further in Section 2.5.

Case 4: Not the Regular Remote Code
Execution Vulnerability
We intentionally wrote the code shown in Figure 16 in Section 2.4 with malicious functionalities, achieved

by abusing dynamic code loading. On the other side of the coin is a benign program that makes

legitimate use of features such as this to (as the feature’s name suggests) load code dynamically or, as

exemplified in Figure 17, call certain functions according to external inputs. A control process engineer

might have created that program but could have forgotten to do integrity checks on the loaded code.

2.5

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 22 |

Funct = “Start cycle”

Funct = “Wait”

Funct = <any…>

Call(“Start cycle”)

Call(“Wait”)

Call(<any defined function>)

Robot will wait

Exploit for:
• Unintended robot movement
• Control flow hijack
• Denial of service

Figure 17. An example of vulnerable logic: from unsanitized (e.g., file, network, serial) data to command

invocation

As a result, if a robot runs the code shown in Figure 18 (an instance of which we found in public

repositories), it becomes vulnerable to (partial) remote code execution (RCE).

Fortunately, we found only one instance of this vulnerability, and we found it only in a demonstrator

program. We hope that this program will never be used in teaching how to code or, worse, deriving

production code. As shown in Figure 17, this would mean that an attacker could invoke arbitrary

functions on the robot, with real impact on the physical world that might vary depending on how the

system is configured and deployed. A legitimate automation routine invoked at the wrong time would at

the very least cause some downtime.

Figure 18. A vulnerable code loader that could lead to remote code execution

Case 5: Putting It All Together — Targeted,
Self-Propagating Malware
We now describe how malware that has wormlike behavior and thus is capable of self-propagation

could be written in automation logic platforms based on proprietary, legacy programming languages.

2.6

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 23 |

Host controlled
by attacker

System
integrator

Fetch file

Malicious code

Exfiltrated host data

Network map

Deploy

Execution

. . .
. . .

Network host
enumeration

. . .

Attacker
trojanizes
code

Socket

Figure 19. Malicious logic loading for creating targeted malware with dropperlike and self-spreading

capabilities

In addition to Turing completeness, which is easily confirmed in all of the programming languages that

we analyzed, wormlike malware requires network-scanning capabilities and an infection routine. Upon

infecting a new robot, the worm starts scanning the network for other potential targets and exploits a

network vulnerability to propagate.

Initial infection: We found most of the preconditions required for such self-propagating malware to

spread in a demonstrator task program, partially vulnerable to RCE (that is, an attacker could invoke

arbitrary functions already declared in the code). While we hope that this program will never be used

to derive production code, we do not have evidence to either exclude or confirm this possibility. In

the absence of such a vulnerability, the attacker would have to find other ways to trojanize the code

that will run in production. We showed that this was possible in our research paper titled “Attacks on

Smart Manufacturing: A Forward-Looking Security Analysis.”31

Figure 20 shows the network-scanning routine of the proof-of-concept wormlike malware that we

implemented. The basic routine is simple: We scan the network (purposely limiting the scope to three

IP addresses to keep our proof of concept as specific as possible) and check if some target ports are

open. From a command-and-control (C&C) server, we can contact the infected robot and ask it to run

commands (for example, to scan the network and to propagate to other robots).

The example could of course be extended. It should be noted that we used only one of the programming

languages listed in Table 1 in Section 3.2, although any other language with equivalent features would

work as well.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 24 |

Figure 20. The network-scanning routine of the proof-of-concept wormlike malware that we wrote

A more comprehensive piece of malware would also include a file-harvesting routine to exfiltrate any

relevant data found on each infected target. We show that this functionality can also be implemented

in Figure 21.

Figure 21. The file-harvesting routine of the proof-of-concept wormlike malware that we wrote to

demonstrate its feasibility

To make our proof-of-concept malware remotely manageable, we used the dropperlike routine shown

in Figure 16 in Section 2.4 along with the simple C&C update server shown in Figure 22. The server in

this example can be used to remotely update the malicious code running on an infected robot, request

that the infected robot run a network scan, keep a target list, and conduct typical botlike functionalities.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 25 |

Figure 22. The C&C update server for the proof-of-concept malware that we wrote to demonstrate its

feasibility

 26 |

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

Legacy Technology vs.
Smart Factory
Based on our technical analysis of eight popular legacy programming languages for industrial automation,

we conclude that the root cause of the flaws we discovered is a combination of powerful primitives that

allow unmediated access to low-level system resources. Although these primitives by themselves do

not represent a security risk, they could be misused, as shown in Section 2. They could critically affect

a robot’s security, the safety of its operators, and the connected systems.

The Core of the Problem: Legacy, Vulnerable,
Fragmented Technology
Even if the automation technology that drives robots and other programmable industrial machines is

completely different from the classic web application running on a Windows server, it could be affected

by the very same well-known vulnerability classes (such as path traversal and code injection) and

could be targeted by malware. In this section, we explain how the legacy technology used for industrial

automation gives malware authors a whole new set of overlooked weapons and venues for vulnerability

exploitation.

3.1

Explainer: Vulnerabilities and malware are the two main factors behind any security incident. Without

vulnerabilities, an attacker would not be able to take the first step into their target industrial system.

Without the possibility to write and run malware, an attacker would not be able to operate an attack

and achieve persistency. Armed with vulnerabilities and new ways to write and conceal malware,

advanced malicious actors could gain access and stay persistent in industrial environments.

The complete lack of resource isolation (such as a permission system) within the programming and

execution environments for control process automation means that there are no stopgap measures that

prevent attacks from happening.

Legacy Programming Languages

Industrial automation programs, scripts, or task programs rely on a legacy technology that drives current

and future smart factories. They are the routines that govern the automatic movements of industrial

robots and similar programmable machines. They are written by field experts using vendor-specific

programming languages, which we refer to as “industrial robot programming languages” (“IRPLs”), or

simply “legacy languages.”

3.1.1

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 27 |

Vulnerable or Malicious Automation Logic

Like any engineering artifact, task programs could contain unsecure code. Vulnerabilities —

programming errors introduced by mistake, leaving a system vulnerable to attack — could be present

in them. Alternatively, they could contain malicious functionalities, which are essentially code written for

malicious purposes (for example, taking over a factory for extortion-based attacks).

The reason it is possible to conceal custom malicious code within automation routines is because legacy

languages provide rich and complex features beyond simple automation instructions (for example,

move a robot arm up, pick up a workpiece, move the robot arm down, and release the workpiece).

These rich and complex features give control process engineers the freedom to write task programs that

could perform actions such as receiving data from the network or writing and reading to and from files.

However, since the platforms do not implement mediated access to these advanced features, they in

turn create ground for new vulnerabilities and allow malicious actors to abuse them to write malware.

A Fragmented, Proprietary Technology

General-purpose and mainstream programming languages such as C, C++, C#, Java, PHP, and Python

have code checkers that can spot unsecure patterns. No such tools exist for legacy languages, making

it difficult to automate security checks.

IRPLs are not based on a common runtime or architecture such as a mainstream operating system.

Each OEM defines its own languages, and it also defines the runtime and the underlying environment

the task programs will run on. Some are based on real-time operating systems (RTOSs), but in general

there is no standardization. The semantics of each IRPL is also unique and can differ significantly from

that of general-purpose programming languages. Some features, such as those for string manipulation

or cryptographic operations in IRPLs, are either absent or not as advanced as in traditional languages.

This is despite the fact that they would make programming less prone to vulnerabilities and provide the

right building blocks for proper security measures.

The Root Cause: Powerful, Unmediated
Access to System Resources
In 2017, we explored the attack surface of a typical industrial robot32 and showed how a chain of

vulnerabilities in the software stack could lead to complete compromise, even allowing an attacker to

fully control the robot. In this research, we add one piece to the (software) attack surface and show

how control process engineers could introduce vulnerabilities as computer programmers sometimes do.

As summarized in Figure 23, attackers could find and exploit vulnerabilities in the operating system or

the firmware of an industrial machine, in the application interface (for example, compilers or interpreters

used to create, build, and execute code), or in the applications (such as the services running on the

machine). Our technical analysis of eight industrial robotic platforms reveals how automation task

programs form another layer of the software stack and how their vulnerabilities could be exploited as in

the lower layers of the software stack.

3.1.2

3.1.3

3.2

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 28 |

This layer is
overlooked.

Vulnerabilities
a�ecting these
layers are regularly
researched on
and fixed.

Automation
task programs

Software stack layer What vulnerabilities could a�ect

A specific automation script and all scripts that import
or include it

Applications
(e.g., services)

A specific product

Application
interface
(e.g., compilers,
interpreters)

All applications built or run with the vulnerable
compiler or interpreter

Operating
system or
firmware

A specific product

Figure 23. The layers of the software stack (including automation task programs) and what their respective

vulnerabilities could affect

The root cause of the issues that we discovered is a combination of powerful functionalities that allow

low-level access to resources (such as networking and file system access) and the lack of isolation (a

permission system). Table 1 (which is taken from our academic paper titled “Detecting Insecure Code

Patterns in Industrial Robot Programs”33) summarizes these functionalities and which among the eight

industrial robotic platforms support them.

Platform
File and configuration

handling

Loading and
executing

code, including
dynamically defined

code, at runtime

Receiving data
from or sending
data to external

systems

Language Vendor
File

system
Directory

listing

Load
module
from file

Call by
name

Communication

AS Kawasaki

Karel Fanuc

KRL Kuka

Melfa Mitsubishi

PacScript Denso

PDL2 Comau Indirect

Rapid ABB

URScript Universal
Robots

Table 1. The functionalities that allow a task program to access low-level system resources and the

industrial robotic platforms that support them

In this section, we focus on the three main functionalities that could lead to vulnerabilities if not used

properly or that could be abused to implement malware.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 29 |

Access to Files and Directories

In Table 1, the languages marked with “File system” and “Directory listing” have low-level functionalities

to open, read, and write to files (access configuration parameters, write log information, store the state

of a program) or directories. While there are obvious legitimate use cases for these functionalities, they

could be abused to exfiltrate data and to load attack vectors (such as an exploit payload).

3.2.1

3.2.2

3.2.3

Example: A vulnerable program that uses these functionalities to read from sensitive files stored on

the robot’s file system could be exploited by an attacker to steal secrets (as described in Section

2.2), including valuable intellectual property. Intellectual property is typically the target of state-level

attackers and is traded at very high prices in underground marketplaces.34

Loading and Running Code From Files at Runtime

The languages in Table 1 that are marked with “Load module from file” or “Call by name” have

functionalities similar to the function pointers of general-purpose languages. They facilitate dynamic

call procedures, allowing control process engineers to write modular programs. These are among the

most powerful, and dangerous, functionalities as they allow changes to the flow of a task program at

runtime.

The legitimate use case of these functionalities is to allow control process engineers to write reusable

programs and elegantly compose them into complex automations. However, they could be abused to

implement dropperlike malware or could be the cause of an RCE vulnerability, as described in Section

2.4.

Example: A task program that loads an automation routine from a file that is never validated with

a cryptographic hash — cryptographic primitives are scarce in these environments — could easily

hide malicious functionalities that would pass undetected, unless there is a file scanner that looks

specifically for such cases. Consequently, an attacker could stay persistent and even upgrade their

malware over time. A practical case is shown in Figure 17 in Section 2.5.

Communication Functionalities

All of the languages listed in Table 1 have communication functionalities, which allow task programs to

facilitate a robot’s interfacing with external systems. Examples of interfacing actions include receiving

real-time position coordinates from an external program, interacting with a vision system, and sending

feedback to external systems for logging.

Explainer: Communication primitives are essential, but the complete lack of strong authentication

and access control at the programming level makes it very difficult for control process engineers to

create secure programs that communicate with the external world.

Industrial robot controllers have authentication and access-control systems, but they are coarse-grained.

This means that they do not consider an attacker that could exploit vulnerabilities in the automation

code or hide malicious code within existing programs. As a result, the security features of industrial

robot controllers either allow or deny a program to run, from beginning to end. There is currently no

built-in way to whitelist or blacklist certain connections based on the exchange of authentication data,

as with modern applications and operating systems.

 30 |

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

Mitigation and Secure
Programming Guidelines
The vast majority of attackers look for the lowest-hanging fruit. There are so many unprotected industrial

targets out there that they do not need to waste time exploiting a target that has security measures in

place.

In most cases, any protection is better than nothing. Minimal countermeasures are a good starting point.

High-profile, valuable targets with well-funded malicious actors after them have to think differently, as we

describe in Section 2. These targets are already well protected, and short of mass malware, ransomware,

or vulnerabilities in traditional IT systems, their attackers are highly likely to resort to exploiting the

custom systems we describe in this paper. For these targets, it is imperative that developers follow

secure software development practices to minimize the vulnerabilities created in their code.

Mitigation Approaches
Our findings are linked to design choices that are difficult to change on current products. Thus, we

foresee different mitigation approaches implemented at different stages, as visualized in Figure 24. We

propose these approaches for the consideration or deployment of OT engineers, system integrators,

and OEMs.

4.1

Existing deployments New deployments Future deployments

Network segmentation

Secure coding practices adoption

Patching

Source code review

Security libraries

Privilege separation

Code signing

Automatic code scanning

Time

En
gi

ne
er

s

Sy
st

em
 in

te
gr

at
or

s

OE
M

s

Figure 24. Our proposed mitigation approaches at various stages and who can consider or deploy them

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 31 |

Trend Micro Research and Politecnico di Milano have been coordinating with ROS-Industrial to

mitigate the security issue we found affecting ROS-Industrial drivers that control industrial robots.

Malicious actors could compromise the communication interface between these drivers and the

motion server program running on the robot controller. The recommended fix is focused on properly

setting up the network; specifically, users should isolate the connection between the ROS PC and

the robot controller. The ROS-Industrial Consortium has released an instructional report to help

users improve their security.35 The Industrial Control Systems Cyber Emergency Response Team

(ICS-CERT) of the US Cybersecurity and Infrastructure Security Agency (CISA) has also released a

report36 confirming the severity of our findings and acknowledging the suggested mitigation strategy.

Short-Term Measures

It should be the responsibility of control process engineers and system integrators to ensure that all

deployments (new and existing) adopt network segmentation to isolate industrial robots that need to

process data coming from other networks. This should be done with a physical cable to make spoofing

possible only to an attacker who is physically on-site.

In addition to must-have safety systems, we recommend network and endpoint protection, so as to

minimize the risk of vulnerability exploitation or malicious code infection.

We also recommend the implementation of proper source code management processes, including

automatic or periodic manual source code reviews.

Medium-Term Measures

It should be the responsibility of system integrators and OEMs to develop security libraries (for example,

cryptographic primitives) for IRPLs. These would allow developers to easily implement input validation

and authentication without having to reinvent the wheel.

System integrators or even OEMs should provide a reference implementation of motion servers to allow

robots to receive sanitized motion data in a high-level manner. With the reference, developers would

not need to implement parsing routines, which usually hide security bugs, for this common functionality.

Mitsubishi’s native motion server and Kuka’s EKI are two notable examples of such an abstraction.

System integrators should also consider proactively patching vulnerable task programs as a remedy for

flaws found in the periodic source code reviews.

Long-Term Measures

It should be the responsibility of OEMs and new players to ensure that future generations of

programmable industrial machines will be secure by design. The main foundation of a secure platform

is that the languages have security features (such as cryptographic functions) built in.

The runtime on robots’ controllers should implement fine-grained privilege separation with a permission

system. The only effective way to reduce the impact of vulnerabilities and malicious code is to constrain

the execution of privileged instructions (such as networking and file system access). Developers should

declare their use upfront, as is the process with mobile applications.

4.1.1

4.1.2

4.1.3

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 32 |

Last but not least, code signing is the only way to ensure that the code running on an industrial

machine has not been tampered with. Although far from easy to implement (Who signs what? Who

is the certification authority? Where is the code signature checked?), it assures users that the code is

exactly how the original developer wrote it. Implementing code signing in industrial environments is a

long journey, but if innovation and market trends keep favoring integration and flexibility, we envision

more dynamic automation code produced in shorter cycles. Of course, faster development leaves less

time for manually checking every single program.

Writing secure task programs contributes to reducing the software attack surface of a programmable

industrial machine since it reduces the chances of vulnerabilities being created. There are a number of

secure coding guidelines for general-purpose and mainstream programming languages. Indeed, the IT

software development industry has been dealing with the consequences of unsecure programming for

many decades.

Because of the IT/OT convergence, we think that the automation engineering industry should now start

embracing and establishing equivalent secure coding practices, because it is very likely to face in 10

years the same challenges that the IT software development industry is facing today.

Secure Programming Checklist in a Nutshell
Like any software application that handles untrusted inputs and outputs, automation task programs

must be designed, implemented, configured, and deployed with appropriate security mechanisms. Our

security guidelines are summarized in Figure 25 and listed in the remainder of this section.

4.2

Network
Files

Buses
...

Input validation Authentication Access control

Automation logic codeOutput sanitization

Untrusted
data

Output
data

Error handling

Secure configuration and deployment

Figure 25. A summary of our security guidelines for industrial automation task programs that handle

untrusted data

When writing a task program, control process engineers and system integrators should keep this

essential checklist in mind:

• Treat industrial machines as computers and task programs as powerful code.

• Authenticate all communication.

• Implement access-control policies.

• Perform input validation where applicable.

• Always perform output sanitization.

• Implement proper error handling without exposing details.

• Have proper configuration and deployment procedures in place.

• Implement a change management process for industrial automation code.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 33 |

Industrial Robots as Computers and
 Task Programs as Powerful Code
Industrial robots are computers, and control process engineers could inadvertently write unsecure code

as computer programmers sometimes do. It is a natural development. Consequently, automation task

programs that process and produce any kind of data require particular attention, as in any computer

system.

In practice, before a task program is commissioned, each of the following questions, which assess the

degree of control that a factory has over its automation code, must have a clear answer:

• Does the task program receive data from outside the robot’s controller (for example, via network,

files transferred to the machine, field protocols, or human-machine interfaces)?

• Does the task program produce data that is processed outside the robot’s controller?

• Is the task program static over time or are there upgrade procedures to change it? Are there

modules loaded while the main program runs?

• Who implemented the task program?

• Who has access to the task program before it is transferred onto the robot’s controller?

• Which system users are given permissions to run, read, or modify the task programs during normal

operation?

Authentication and Access Control
Task programs that communicate with other systems (via network, serial ports, or buses) should

authenticate all messages to ensure that they come from authorized parties, as exemplified in Figure

26. Obviously, there are exceptions to this principle. For one thing, simple data coming from a sensor

that is wired to a robot station can seldom become an attacker-controlled input. However, there have

been cases where an attacker is capable of using the sensor to jump the air gap37 and inject data into

the robot’s automation routine.

4.3

4.4

Funct = “Start cycle”

Funct = “Wait”

Call(“Start cycle”)

Funct = “Start cycle”

Funct = “Wait”

Funct = <any…>

Call(“Start cycle”)

Call(“Wait”)

Call(<any defined function>)

Invalid

Robot will wait

Input validation

No input validation

Exploit for:
• Unintended robot movement
• Control flow hijack
• Denial of service

Figure 26. With access control, unauthorized function calls (for example) are discarded and RCE attacks are

prevented.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 34 |

Example: The Kuka programming language has a set of functions for receiving data from the network.

These functions are under the eki_* family. eki_init and eki_open are used to set up a network socket.

After the network socket is set up, all subsequent calls to eki_* functions should enforce proper

authentication checks and reject unauthenticated data. Similar examples can be made with the ABB

language, which has the family of Socket* functions.

Even if there are network-level security measures (for example, a firewall) that ensure that a robot can

receive data only from designated endpoints, a task program should consider inputs as untrusted. This

is to protect an authorized endpoint from being compromised, in which case an attacker would be able

to communicate with a task program.

Implementing authentication without reliable cryptographic support in the language might result in

inadequate protection. However, simple authentication will raise the bar for an attacker with respect

to the baseline (no authentication). Proper cryptographic support and libraries in IRPLs, on a par with

general-purpose programming languages, are needed to close the gap.

Depending on the logic of a task program, control process engineers and system integrators might

need to prepare an access-control policy to specify, say, whether all authenticated requests should or

should not be treated equally. For instance, if they are implementing a task program that requires file

access (for example, to read or write log data), they must limit the scope to specific directories only.

Input Validation
Task programs that communicate with other systems via network, serial ports, or buses should validate

the content of inbound data to ensure that they conform to the expected format and content, as

exemplified in Figure 27.

4.5

Deg = 20

Deg = 50

MOVE(deg)

Deg = 20

Deg = 50

.

.

.
Deg = “stuff”

MOVE(deg)

Invalid

Unintended movement

Unintended movement

Input validation (0, 20)

No input validation

Exploit for unintended robot
movement

Figure 27. With input validation, unintended data is discarded, thereby preventing any attempts to affect the

robot movements.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 35 |

Example: The programming language for ABB robots can receive raw data through the

SocketReceive function. Technically, this function writes data coming from the network straight into

the task program’s memory. So, if an attacker is on the network and can send data to the robot, they

can write data into the task program memory. Any subsequent parsing routine must be written very

carefully to allow only expected values and, if still needed, disallow any unwanted values.

Implementing proper input sanitization requires only basic string and data manipulation primitives and

comparison operators (for example, an equality test). Regular expression support can be of great help,

but it must be used with care because an attacker could craft specific inputs to cause the regular-

expression engine to crash.

Figure 28 shows the input-validated version of the vulnerable motion server that we found, discussed

in Section 2.3.

Figure 28. The fixed version of the vulnerable motion server that we found

Error Handling
While useful during development and testing, unhandled errors could reveal important internal details

to an attacker who is probing a target or trying to exploit a vulnerability. Therefore, proper error handling

and output sanitization should be done to hide these details and make it more difficult for the attacker

to reverse-engineer the program logic from the outside, as exemplified in Figure 29.

4.6

Network
attacker

Internal host
10.x.x.x

Internal Host
10.x.x.x

Debug log

With error handling
and output sanitization

• Invalid data
• Exploit
• Probling

Network
attacker

Useful
information

Without error handling
and output sanitization

• Invalid data
• Exploit
• Probling “Cannot find file

/path/to/secret/file”

“Host 10.x.x.x has responded
with error code ...”

Figure 29. Through proper error handling and output sanitization, sensitive information, which is useful to an

attacker in the reconnaissance and preparation phases of an attack, can be hidden.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 36 |

Every programming language has proper error-handling and debugging functions that can be tuned to

selectively display or hide sensitive details in a production environment. The functions can also redirect

them to separate files or dedicated logging facilities inaccessible via the same network.

Example: PLD2, the programming language for Comau robots, supports the notion of “error events,”

in a form of “when error_type do [...]”. This allows users to identify specific error events and capture

them for further handling. Similarly, Denso’s PacScript language defines a series of error codes and

allows users to wait for specific error conditions.

As our examples are not meant to be exhaustive, we recommend that users check the manual of the

programming language in use for error handling functions and become familiar with their outputs on

testbed programs (since the manual might not show the full details with sample outputs).

Output and Log Sanitization
Output written on the console, serial ports, logging facilities, or files could contain sensitive details such

as IP addresses, passwords, session tokens, and API keys (as indicated in Figure 29 in Section 4.6).

Given the increasing IT/OT integration in the industry, flawed output sanitization could lead to significant

data leaks.

It is important to ensure that all the code that performs printing operations (for example, to screen

and to file) is removed or left out if unnecessary. It is common practice for programmers to use (or

abuse) printing functions instead of proper debugging or logging facilities. These facilities can easily be

switched off from a single place, as opposed to having to remove each line of code individually.

In addition to leaking data, unsanitized output could create a venue for injection vulnerabilities. If the

output of one program is processed by another program that does not properly validate the inputs, the

unsanitized output of the first program could trigger vulnerabilities in the second program.

Configuration, Dependencies, and
Deployment
Ensuring that a task program runs in the best possible conditions is at the core of secure configuration

and deployment. For example, a perfectly secure task program running on top of an outdated controller

software or operating system opens other exploitation possibilities that cannot be prevented by the

task program itself.

All configuration parameters — including IP addresses, motion variables, and file locations — should

be clearly separated from the actual code of the task program and ideally kept in a safe memory or disk

location if possible.

4.7

4.8

Example: The Kuka programming language separates program files (.src) from data definitions (.dat)

and background tasks (.sub). This by-default separation promotes good configuration handling and

deployment practices. We suggest that users of other languages adopt similar practices.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 37 |

Lastly, since it is possible to write reusable library code in all of the IRPLs, it is important to check what

dependencies are imported. Security incidents have shown the impact of vulnerabilities that propagate

because of the inclusion of unsecure library code and the impact of malware that propagates through

the dependency tree or by infecting project development files.38

Beyond Secure Programming: Change
Management for Control Process Code
We talked to 20 domain experts across different industries: automation engineers, system integrators,

and assembly line operators. In consultation with these experts, we found that the life cycle of control

process code is relatively straightforward. Code is created (mainly by system integrators or ad hoc

programmers), tested, and deployed. Most of today’s automation code is static and is upgraded only

when the assembly line is reengineered. But the market is pushing toward more flexible manufacturing

processes,39 with modular and reconfigurable robot stations that can self-organize, upgrade, and

change their code to meet production deadlines.40

In such scenarios, having complete visibility and control over the code is essential. Keeping track of

code dependencies for security analysis would have sounded unnecessary 10 years ago. Nowadays,

not only are continuous-integration tools factored in the software life cycle (as with GitHub’s security

features41), but dependency tracking is also improved with software bills of materials (SBOMs).42

The industrial automation world should head in a similar direction and start implementing source code

life cycle management.

4.9

 38 |

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

When It Is Too Late:
Automatic Detection of
Malicious or Vulnerable Logic
Checking existing automation logic for unsecure code is sometimes the only effective option because

network and endpoint monitoring is not enough to detect the threats that we demonstrate in this paper.

First, there are legitimate reasons that a robot must receive data from a machine, and blocking that traffic

would render the machine nonfunctional. Second, the automation logic is not compiled in common

executable formats such as Portable Executable (PE) and Executable and Linkable Format (ELF), nor

is it written in general-purpose languages, which have readily available scanners and can point out

vulnerabilities or signs of malicious behavior. Thus, ad hoc solutions offer visibility at the program level.

Trend Micro Research and Politecnico di Milano’s patent-pending technology makes detecting task

programs that contain vulnerable or malicious code automatic. Through program analysis techniques,

it spots vulnerable patterns and enables the creation of malware scanners that look for signs of

malicious behavior in custom, proprietary, legacy programming languages for industrial automation. It

can validate automation logic before deployment, at the system integrator level, or periodically during

normal operation. Figure 30 shows a high-level overview of our technology, described in detail in our

academic paper titled “Detecting Insecure Code Patterns in Industrial Robot Programs.”43

Task program’s
source code

MoveJ point0
WaitTime 4
MoveL point1
WaitTime 5
...

Parsing
1

CFG
generation

2
ICFG

generation

3
Data flow
analysis

4

Rapid parser

KRL parser

. . .

• Unsafe patterns (leading
 to vulnerabilities)
• Malicious patterns

List of potential
vulnerabilities

List of potentially
abused features

Figure 30. A high-level workflow overview of our program analysis system, which can find vulnerable and

malicious patterns in automation code written in proprietary languages

In that paper, after systematizing the technical features of the programming languages of the eight

leading industrial robotic platforms, we discuss the cases of vulnerable and malicious uses summarized

here in Section 3. We also describe the static source code analyzer, focusing on two popular languages,

ABB’s Rapid and Kuka’s KRL. We evaluated it on a set of publicly available programs, showing that

static source code analysis is an effective security screening mechanism. It can be used, for example,

to prevent commissioning unsecure industrial task programs.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 39 |

Early Detection of Vulnerabilities
It is difficult to find production-grade industrial automation code publicly because of intellectual property

restrictions. So, while we looked to collaborate with external parties to check their production-ready

industrial automation code, we tested our analysis approach on 100 public task program files. We

obtained these files by crawling GitHub, looking through some GitLab instances, and scanning online

communities used by automation engineers to exchange information. What we found totaled 15,638

lines of code, as summarized in Table 2.

5.1

Main purpose Projects Files Lines of code

Demonstrator or sample 3 8 418

Web server 1 4 974

Training material 1 1 111

Motion server 12 45 6,168

Palletizer 1 32 7,165

Snippet 3 10 802

Total 21 100 15,638

Table 2. The dataset of industrial automation code that we used to validate our technology

The recurring instances of vulnerabilities that could lead to RCE, arbitrary file access, or unintended

robot movements are summarized in Table 3. We found that the most serious flaws were in programs

that were clearly for educational purposes. While we hope that they will not be used as reference by

developers, recent research has shown that vulnerabilities propagate across software (in open-source

projects and even commercial products) because developers tend to copy and paste code.44, 45

Vulnerability Projects Files Root cause

Network → RCE 2 2 Dynamic code loading

Network → File access 1 4 Unfiltered open file

Network →
arbitrary movement

13 34
Unrestricted move
joint or move to point

Detection error 2 12 Interrupts

A summary of the vulnerability classes that our patent-pending technology discovered on public

industrial automation code

Using a prototype that we created to implement our patent-pending technology, we confirmed the

path traversal vulnerability that we found manually in 2019.46 After we disclosed that vulnerability, ABB

removed the vulnerable application from its online repository.47 Our prototype automatically found the

very same vulnerability. This first experiment showed that the technique could remove the burden of

manual code review.

We also discovered several instances of task programs with unsanitized data flows, which could let

attackers influence the movements of a robot. Notable examples of this case include various ROS-

Industrial adapters, which consist of industrial automation code that interfaces the communication

protocol of major robot vendors with that of ROS-Industrial. An attacker could exploit the vulnerability

in these task programs to influence the movements of a robot’s arm.

Table 3.

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 40 |

There are safety systems in place to limit a robot’s effective movements. Without these safety systems,

an attacker could send incorrect movement commands to the robot, which could result in unintended

movements and even downtime. With safety systems correctly configured and deployed, the attacker

would have a hard time causing movements that would actually generate damage. However, the

attacker would still be able to cause unintended movements or interrupt the production process.

We have responsibly disclosed our findings to ROS-Industrial and have been coordinating with the

consortium on a remediation strategy to raise awareness of the issues raised by our findings. Our

responsible disclosure has resulted in the ROS-Industrial Consortium’s publication of an instructional

report aimed at helping users improve their security, and in the release of an alert from the US CISA’s

ICS-CERT confirming the severity of our findings and acknowledging the suggested mitigation strategy.

In particular, we recommend that industrial robot OEMs and automation engineers be more cognizant

because these issues do not have an “easy fix” in the code. They require fundamental changes in the

security design of industrial robotic platforms.

Detecting Malicious Patterns in
Industrial Automation Code
We also ran our analyzer against the proof-of-concept malware that we implemented, described in

Section 2.6. To the best of our knowledge, there is no public evidence of malware written in IRPLs. The

only way to test our detector was to create a fairly advanced piece of malware with code-loading and

self-spreading capabilities, and show that the detector could recognize the malicious code paths in it.

Our prototype detected the malicious code patterns, showing the importance of implementing code-

vetting systems. It showed that it is generic and configurable enough to go beyond just detecting

vulnerabilities. In this context, malware was found by matching a specific set of instructions chained

together by a data flow.

It should be noted that, unlike with vulnerability detection, knowledge of high-level malicious code

patterns was required in order for us to configure the prototype for malware detection. Enumerating

all potential abuses of language features is an endless game limited only by the creativity of malicious

actors. Table 4 shows how we focused on two examples of classic behavior commonly found in malware,

which were sufficient to detect our proof-of-concept malware.

5.2

Case Feature Source Sink

Information stealer

Exfiltration File Outbound network

Exfiltration Configuration Outbound network

Harvesting Directory listing File

Dropper
Downloading Communication File (code)

Execution File (code) Call by name

Table 4. Examples of the most common malicious code patterns that can be implemented (and detected)

 41 |

Rogue Automation
Vulnerable and Malicious Code in Industrial Programming

Conclusion
We conclude that, while the IT software development industry has been dealing with the consequences

of unsecure programming for many decades, the industrial automation world might be unprepared

to detect and prevent the exploitation of the issues that we found in this research. We believe that,

given the pace of IT/OT convergence, the automation engineering industry should start embracing and

establishing secure coding practices. It is highly likely to face in 10 years the same challenges that the

IT software development industry is facing today.

Without proper data validation, industrial automation programs could exhibit the typical vulnerabilities

that exist in applications written in general-purpose programming languages. For years, input validation

vulnerabilities have been exploited by malicious actors to compromise large and complex systems such

as public web applications, enterprise information systems, and government sites. Our findings now

confirm that automated industrial machinery, even if programmed with nonmainstream languages, are

affected by the same issues. These flaws need to be fixed before malicious actors start exploiting them.

While the side effects of successful exploitation or trojanized control logic could be detected, history

and practice dictate that network-only visibility is insufficient. What we think is needed to secure the

next-generation digital factory is endpoint-level visibility on running software. This is already covered for

traditional software such as Windows or Linux binaries, but there is no visibility on the automation logic

of industrial machines such as robots. After deployment, they are treated as closed, opaque boxes and

observed only from “the outside” (meaning the network).

With our patent-pending technology, we take one step forward in detection and response, helping deter

malicious actors from taking advantage of the attack vectors that we highlight in this paper.

In addition to raising awareness and pursuing research and development on detection technology, we

also emphasize the crucial role that OEMs play. They have the power to shape the next generation of

programming languages and execution environments for industrial automation. For example, some

programming languages make it easy for programmers to access low-level resources in an indirect and

mediated way, thanks to certain powerful functionalities. These features, despite being currently limited

to network communication, show how resource abstraction can help reduce the risk of exploitation.

We therefore advocate for a more forward-looking approach to the smart factory, which goes beyond

 “what to do today.” We encourage players to acknowledge that the industry is undergoing a revolution

and to appreciate the privilege and the responsibility of being able to architect the security of the future

smart factory.*

 * Our in-depth academic paper titled “Detecting Insecure Code Patterns in Industrial Robot Programs” contains the full details of
our research.48

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 42 |

References
1 Trend Micro Research and Politecnico di Milano. (May 3, 2017). Trend Micro Security News. “Rogue Robots:

Testing the Limits of an Industrial Robot's Security.” Accessed on July 12, 2020, at https://www.trendmicro.

com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security.

2 Tommi Unruh et al. (2017). USENIX. “Leveraging Flawed Tutorials for Seeding Large-Scale Web Vulnerability

Discovery.” Accessed on July 12, 2020, at https://www.usenix.org/system/files/conference/woot17/woot17-

paper-unruh.pdf.

3 Ian. (Feb. 18, 2009). Gen-X Design. “Create a REST API with PHP.” Accessed on July 22, 2020, at http://web.

archive.org/web/20130306000116/http://www.gen-x-design.com/archives/create-a-rest-api-with-php/.

4 Naman Govil, Anand Agrawal, and Nils Ole Tippenhauer. (Feb. 17, 2017). Cornell University. “On Ladder Logic

Bombs in Industrial Control Systems.” Accessed on July 13, 2020, at https://arxiv.org/abs/1702.05241.

5 Johannes Klick et al. (August 2015). Blackhat USA. “Internet-facing PLCs - A New Back Orifice.” Accessed on

June 24, 2020, at https://www.blackhat.com/docs/us-15/materials/us-15-Klick-Internet-Facing-PLCs-A-New-

Back-Orifice.pdf.

6 Stephen McLaughlin. (2011). USENIX. “On Dynamic Malware Payloads Aimed at Programmable Logic

Controllers.” Accessed on July 13, 2020, at https://www.usenix.org/conference/hotsec11/dynamic-malware-

payloads-aimed-programmable-logic-controllers.

7 Stephen McLaughlin and Patrick McDaniel. (2012). Pennsylvania State University. “SABOT: Specification-based

Payload Generation for Programmable Logic Controllers.” Accessed on July 13, 2020, at http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.365.3955&rep=rep1&type=pdf.

8 Martin Giles. (March 5, 2019). MIT Technology Review. “Triton is the world’s most murderous malware, and

it’s spreading.” Accessed on June 23, 2020, at https://www.technologyreview.com/2019/03/05/103328/

cybersecurity-critical-infrastructure-triton-malware/.

9 Joseph Slowik. (2019). Dragos. “Evolution of ICS Attacks and the Prospects for Future Disruptive Events.”

Accessed on June 23, 2020, at https://dragos.com/wp-content/uploads/Evolution-of-ICS-Attacks-and-the-

Prospects-for-Future-Disruptive-Events-Joseph-Slowik-1.pdf.

10 Jake Brodsky. (Jan. 22, 2020). S4xEvents. “Secure Coding Practices for PLCs.” Accessed on July 14, 2020, at

https://s4xevents.com/sessions/plc-secure-coding-practices-and-the-consequences-of-not-following-these-

practices/.

11 RobotWorx. (Sept. 20, 2013). Robots. “Modular Robots are Reshaping Factory Production.” Accessed on June

23, 2020, at https://www.robots.com/articles/modular-robots-are-reshaping-factory-production.

12 Siemens. (June 27, 2018). Siemens. “Modular Production – From Modular Engineering to Modular Automation

for Increased Flexibility.” Accessed on July 22, 2020, at https://www.youtube.com/watch?v=WZFhRg1pjUs.

13 US Cybersecurity and Infrastructure Security Agency. (Aug. 4, 2020). CISA. “ICS-CERT Alert.” Accessed on

Aug. 4, 2020, at https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-20-217-01.

14 Marcello Pogliani et al. (2020). “Detecting Unsafe Code Patterns in Industrial Robot Programs. Proceedings

of the 2020 on Asia Conference on Computer and Communications Security.” Accessed on July 29, 2020, at

https://robosec.org/downloads/paper-asiaccs-2020.pdf.

15 The OWASP Foundation. (November 2010). OWASP. “OWASP Secure Coding PracticesQuick Reference

Guide.” Accessed on March 13, 2020, at https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_

Guide_v2.pdf.

16 CERT Secure Coding. (Feb. 5, 2019). Carnegie Mellon University. “SEI CERT Coding Standards.” Accessed on

March 13, 2020, at https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards.

17 US Cybersecurity and Infrastructure Security Agency. (2013). CISA. “Build Security In - Coding Practices.”

Accessed on March 5, 2020, at https://www.us-cert.gov/bsi/articles/knowledge/coding-practices.

18 Jake Brodsky. (Jan. 22, 2020). S4xEvents. “Secure Coding Practices for PLCs.” Accessed on July 14, 2020,

at https://s4xevents.com/sessions/plc-secure-coding-practices-and-the-consequences-of-not-following-

thesepractices/.

19 ABB-RobotApps. (2016). ABB-RobotApps. “RobotStudio Latest Apps.” Accessed on June 23, 2020, at https://

robotapps.robotstudio.com.

https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security
https://www.usenix.org/system/files/conference/woot17/woot17-paper-unruh.pdf
https://www.usenix.org/system/files/conference/woot17/woot17-paper-unruh.pdf
http://web.archive.org/web/20130306000116/http://www.gen-x-design.com/archives/create-a-rest-api-with-php/
http://web.archive.org/web/20130306000116/http://www.gen-x-design.com/archives/create-a-rest-api-with-php/
https://arxiv.org/abs/1702.05241
https://www.blackhat.com/docs/us-15/materials/us-15-Klick-Internet-Facing-PLCs-A-New-Back-Orifice.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Klick-Internet-Facing-PLCs-A-New-Back-Orifice.pdf
https://www.usenix.org/conference/hotsec11/dynamic-malware-payloads-aimed-programmable-logic-controllers
https://www.usenix.org/conference/hotsec11/dynamic-malware-payloads-aimed-programmable-logic-controllers
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.3955&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.3955&rep=rep1&type=pdf
https://www.technologyreview.com/2019/03/05/103328/cybersecurity-critical-infrastructure-triton-malware/
https://www.technologyreview.com/2019/03/05/103328/cybersecurity-critical-infrastructure-triton-malware/
https://dragos.com/wp-content/uploads/Evolution-of-ICS-Attacks-and-the-Prospects-for-Future-Disruptive-Events-Joseph-Slowik-1.pdf
https://dragos.com/wp-content/uploads/Evolution-of-ICS-Attacks-and-the-Prospects-for-Future-Disruptive-Events-Joseph-Slowik-1.pdf
https://s4xevents.com/sessions/plc-secure-coding-practices-and-the-consequences-of-not-following-these-practices/
https://s4xevents.com/sessions/plc-secure-coding-practices-and-the-consequences-of-not-following-these-practices/
https://www.robots.com/articles/modular-robots-are-reshaping-factory-production
https://www.youtube.com/watch?v=WZFhRg1pjUs
https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-20-217-01
https://robosec.org/downloads/paper-asiaccs-2020.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices
https://s4xevents.com/sessions/plc-secure-coding-practices-and-the-consequences-of-not-following-thesepractices/
https://s4xevents.com/sessions/plc-secure-coding-practices-and-the-consequences-of-not-following-thesepractices/
https://robotapps.robotstudio.com
https://robotapps.robotstudio.com

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 43 |

20 Marcello Pogliani et al. (Sept. 1, 2019). Journal of Computer Virology and Hacking Techniques, vol. 15, no. 3,

pp. 161-175, 01. “Security of controlled manufacturing systems in the connected factory: The case of industrial

robots.”

21 Tommi Unruh et al. (2017). USENIX. “Leveraging Flawed Tutorials for Seeding Large-Scale Web Vulnerability

Discovery.” Accessed on July 12, 2020, at https://www.usenix.org/system/files/conference/woot17/woot17-

paper-unruh.pdf.

22 Martin Giles. (March 5, 2019). MIT Technology Review. “Triton is the world’s most murderous malware, and

it’s spreading.” Accessed on June 23, 2020, at https://www.technologyreview.com/2019/03/05/103328/

cybersecurity-critical-infrastructure-triton-malware/.

23 Joseph Slowik. (2019). Dragos. “Evolution of ICS Attacks and the Prospects for Future Disruptive Events.”

Accessed on June 23, 2020, at https://dragos.com/wp-content/uploads/Evolution-of-ICS-Attacks-and-the-

Prospects-for-Future-Disruptive-Events-Joseph-Slowik-1.pdf.

24 Trend Micro Research and Politecnico di Milano. (2020). Trend Micro Secrity News. “Attacks on Smart

Manufacturing: A Forward-looking Security Analysis.” Accessed on July 13, 2020, at https://documents.

trendmicro.com/assets/white_papers/wp-attacks-on-smart-manufacturing-systems.pdf.

25 ABB-RobotApps. (2016). ABB-RobotApps. “RobotStudio Latest Apps.” Accessed on June 23, 2020, at https://

robotapps.robotstudio.com.

26 Marcello Pogliani et al. (Sept. 1, 2019). Journal of Computer Virology and Hacking Techniques, vol. 15, no. 3,

pp. 161-175, 01. “Security of controlled manufacturing systems in the connected factory: The case of industrial

robots.”

27 Mayra Rosario Fuentes. (May 26, 2020). Trend Micro Security News. “Trading in the Dark: An Investigation into

the Current Condition of Underground Markets and Cybercriminal Forums.” Accessed on July 28, 2020, at

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/trading-in-the-dark.

28 Marcello Pogliani et al. (2020). “Detecting Unsafe Code Patterns in Industrial Robot Programs. Proceedings

of the 2020 on Asia Conference on Computer and Communications Security.” Accessed on July 29, 2020, at

https://robosec.org/downloads/paper-asiaccs-2020.pdf.

29 Marcello Pogliani et al. (Sept. 1, 2019). Journal of Computer Virology and Hacking Techniques, vol. 15, no. 3,

pp. 161-175, 01. “Security of controlled manufacturing systems in the connected factory: The case of industrial

robots.”

30 Trend Micro Research and Politecnico di Milano. (May 3, 2017). Trend Micro Security News. “Rogue Robots:

Testing the Limits of an Industrial Robot's Security.” Accessed on July 12, 2020, at https://www.trendmicro.

com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security.

31 Federico Maggi and Marcello Pogliani. (2020). Trend Micro. “Attacks on Smart Manufacturing: A Forward-

looking Security Analysis.” Accessed on July 13, 2020, at https://documents.trendmicro.com/assets/white_

papers/wp-attacks-on-smart-manufacturing-systems.pdf.

32 Trend Micro Research and Politecnico di Milano. (May 3, 2017). Trend Micro Security News. “Rogue Robots:

Testing the Limits of an Industrial Robot's Security.” Accessed on July 12, 2020, at https://www.trendmicro.

com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security.

33 Marcello Pogliani et al. (2020). “Detecting Unsafe Code Patterns in Industrial Robot Programs. Proceedings

of the 2020 on Asia Conference on Computer and Communications Security.” Accessed on July 29, 2020, at

https://robosec.org/downloads/paper-asiaccs-2020.pdf.

34 Mayra Rosario Fuentes. (May 26, 2020). Trend Micro Security News. “Trading in the Dark: An Investigation into

the Current Condition of Underground Markets and Cybercriminal Forums.” Accessed on July 28, 2020, at

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/trading-in-the-dark.

35 ROS-Industrial. (July 13, 2020). ROS-Industrial. “How to Securely Control your Robot with ROS-Industrial.”

Accessed on July 22, 2020, at https://rosindustrial.org/news/2020/6/23/how-to-securely-control-your-robot-

with-ros-industrial.

36 US Cybersecurity and Infrastructure Security Agency. (Aug. 4, 2020). CISA. “ICS-CERT Alert.” Accessed on

Aug. 4, 2020, at https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-20-217-01.

37 Andy Greenberg. (July 2, 2018). Wired. “Mind the Gap: This Researcher Steals Data With Noise, Light, and

Magnets.” Accessed on June 23, 2020, at https://www.wired.com/story/air-gap-researcher-mordechai-guri/.

https://www.usenix.org/system/files/conference/woot17/woot17-paper-unruh.pdf
https://www.usenix.org/system/files/conference/woot17/woot17-paper-unruh.pdf
https://www.technologyreview.com/2019/03/05/103328/cybersecurity-critical-infrastructure-triton-malware/
https://www.technologyreview.com/2019/03/05/103328/cybersecurity-critical-infrastructure-triton-malware/
https://dragos.com/wp-content/uploads/Evolution-of-ICS-Attacks-and-the-Prospects-for-Future-Disruptive-Events-Joseph-Slowik-1.pdf
https://dragos.com/wp-content/uploads/Evolution-of-ICS-Attacks-and-the-Prospects-for-Future-Disruptive-Events-Joseph-Slowik-1.pdf
https://documents.trendmicro.com/assets/white_papers/wp-attacks-on-smart-manufacturing-systems.pdf
https://documents.trendmicro.com/assets/white_papers/wp-attacks-on-smart-manufacturing-systems.pdf
https://robotapps.robotstudio.com
https://robotapps.robotstudio.com
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/trading-in-the-dark
https://robosec.org/downloads/paper-asiaccs-2020.pdf
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security
https://documents.trendmicro.com/assets/white_papers/wp-attacks-on-smart-manufacturing-systems.pdf
https://documents.trendmicro.com/assets/white_papers/wp-attacks-on-smart-manufacturing-systems.pdf
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security
https://robosec.org/downloads/paper-asiaccs-2020.pdf
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/trading-in-the-dark
https://rosindustrial.org/news/2020/6/23/how-to-securely-control-your-robot-with-ros-industrial
https://rosindustrial.org/news/2020/6/23/how-to-securely-control-your-robot-with-ros-industrial
https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-20-217-01
https://www.wired.com/story/air-gap-researcher-mordechai-guri/

| Rogue Automation: Vulnerable and Malicious Code in Industrial Programming 44 |

38 Alvaro Muñoz. (May 28, 2020). Security Lab GitHub. “The Octopus Scanner Malware: Attacking the open

source supply chain.” Accessed on June 23, 2020, at https://securitylab.github.com/research/octopus-scanner-

malware-open-source-supply-chain.

39 RobotWorx. (Sept. 20, 2013). Robots. “Modular Robots are Reshaping Factory Production.” Accessed on June

23, 2020, at https://www.robots.com/articles/modular-robots-are-reshaping-factory-production.

40 Siemens. (June 27, 2018). Siemens. “Modular Production – From Modular Engineering to Modular Automation

for Increased Flexibility.” Accessed on July 22, 2020, at https://www.youtube.com/watch?v=WZFhRg1pjUs.

41 GitHub. (n.d.). GitHub. “Security at GitHub.” Accessed on July 29, 2020, at https://github.com/security.

42 United States Department of Commerce. (2019). National Telecommunications and Information Administration.

“Community-Drafted Documents on Software Bill of Materials.” Accessed on July 13, 2020, at https://www.ntia.

gov/SBOM.

43 Marcello Pogliani et al. (2020). “Detecting Unsafe Code Patterns in Industrial Robot Programs. Proceedings

of the 2020 on Asia Conference on Computer and Communications Security.” Accessed on July 29, 2020, at

https://robosec.org/downloads/paper-asiaccs-2020.pdf.

44 Tommi Unruh et al. (2017). USENIX. “Leveraging Flawed Tutorials for Seeding Large-Scale Web Vulnerability

Discovery.” Accessed on July 12, 2020, at https://www.usenix.org/system/files/conference/woot17/woot17-

paper-unruh.pdf.

45 Ryan Donovan. (Nov. 26, 2019). The Overflow. “Copying code from Stack Overflow? You might paste security

vulnerabilities, too.” Accessed on June 13, 2020, at https://stackoverflow.blog/2019/11/26/copying-code-from-

stack-overflow-you-might-be-spreading-security-vulnerabilities/.

46 Marcello Pogliani et al. (Sept. 1, 2019). Journal of Computer Virology and Hacking Techniques, vol. 15, no. 3,

pp. 161-175, 01. “Security of controlled manufacturing systems in the connected factory: The case of industrial

robots.”

47 ABB-RobotApps. (2016). ABB-RobotApps. “RobotStudio Latest Apps.” Accessed on June 23, 2020, at https://

robotapps.robotstudio.com.

48 Marcello Pogliani et al. (2020). “Detecting Unsafe Code Patterns in Industrial Robot Programs. Proceedings

of the 2020 on Asia Conference on Computer and Communications Security.” Accessed on July 29, 2020, at

https://robosec.org/downloads/paper-asiaccs-2020.pdf.

https://securitylab.github.com/research/octopus-scanner-malware-open-source-supply-chain
https://securitylab.github.com/research/octopus-scanner-malware-open-source-supply-chain
https://www.robots.com/articles/modular-robots-are-reshaping-factory-production
https://www.youtube.com/watch?v=WZFhRg1pjUs
https://github.com/security
https://www.ntia.gov/SBOM
https://www.ntia.gov/SBOM
https://robosec.org/downloads/paper-asiaccs-2020.pdf
https://www.usenix.org/system/files/conference/woot17/woot17-paper-unruh.pdf
https://www.usenix.org/system/files/conference/woot17/woot17-paper-unruh.pdf
https://stackoverflow.blog/2019/11/26/copying-code-from-stack-overflow-you-might-be-spreading-security-vulnerabilities/
https://stackoverflow.blog/2019/11/26/copying-code-from-stack-overflow-you-might-be-spreading-security-vulnerabilities/
https://robotapps.robotstudio.com
https://robotapps.robotstudio.com
https://robosec.org/downloads/paper-asiaccs-2020.pdf

TREND MICROTM RESEARCH
Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key
insights, and supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily,
leads the industry in vulnerability disclosures, and publishes innovative research on new threat techniques. We
continually work to anticipate new threats and deliver thought-provoking research.

www.trendmicro.com

© 2020 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are
trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be
trademarks or registered trademarks of their owners.

	1 Introduction

