
Securing Weak Points in
Serverless Architectures

Alfredo de Oliveira

Risks and Recommendations

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information and educational purposes only.

It is not intended and should not be construed to constitute legal advice. The information

contained herein may not be applicable to all situations and may not reflect the most current

situation. Nothing contained herein should be relied on or acted upon without the benefit of

legal advice based on the particular facts and circumstances presented and nothing herein

should be construed otherwise. Trend Micro reserves the right to modify the contents of this

document at any time without prior notice.

Translations of any material into other languages are intended solely as a convenience.

Translation accuracy is not guaranteed nor implied. If any questions arise related to the

accuracy of a translation, please refer to the original language official version of the

document. Any discrepancies or differences created in the translation are not binding and

have no legal effect for compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate and up-to-date

information herein, Trend Micro makes no warranties or representations of any kind as to

its accuracy, currency, or completeness. You agree that access to and use of and reliance

on this document and the content thereof is at your own risk. Trend Micro disclaims all

warranties of any kind, express or implied. Neither Trend Micro nor any party involved in

creating, producing, or delivering this document shall be liable for any consequence, loss,

or damage, including direct, indirect, special, consequential, loss of business profits, or

special damages, whatsoever arising out of access to, use of, or inability to use, or in

connection with the use of this document, or any errors or omissions in the content thereof.

Use of this information constitutes acceptance for use in an “as is” condition.

Published by

Trend Micro Research

Written by

Alfredo de Oliveira
Senior Threat Researcher

Stock image used under license from

Shutterstock.com

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

Serverless Architectures 5

Connected Services in a
Serverless Architecture

7

Misconfigurations and
Unsecure Coding Practices

10

Other Security
Considerations in
Serverless Deployments

20

Security Measures for
Serverless Services

23

Serverless Technology and
Shared Responsibility

27

Possible Compromise and
Attack Scenarios

18

Contents

| Securing Weak Points in Serverless Architectures: Risks and Recommendations 4 |

T he public cloud has empowered enterprises to reach new digital heights,

allowing them to create dynamic and scalable operations. For their

varying dynamic and flexible needs, there are different compute options

available for enterprises to choose from.1 One of those is the serverless model.

Serverless computing is a kind of cloud computing execution model that enables

enterprises to use the computational power of a cloud service provider (CSP),

such as Amazon Web Services (AWS). It allows enterprises to take advantage

of a further reduction in overhead expenses pertaining to server operations and

maintenance and to associated processes such as patch management, scaling,

and availability. With serverless computing, enterprises can focus on building

apps and core products, rather than using manpower to maintain and secure

server infrastructure. This means that enterprises that choose to go serverless

benefit from increased flexibility, automation, cost-effectiveness, and agility.

From powering and scaling websites and applications in a matter of

minutes2 without requiring adopters to worry about infrastructure, to allowing

organizations to iterate software faster using the continuous integration and

continuous deployment (CI/CD) methodology, serverless technology is enabling

organizations to have the speed and the efficiency that they need to drive

innovation and improve business.

The serverless model is regarded as relatively more secure than other cloud

models because, for example, in the case of AWS Lambda, AWS takes care

of the underlying infrastructure, the operating system, and the application

platform. But this does not mean that securing the serverless model falls solely

under AWS’ responsibility. AWS Lambda users are responsible for securing

their code, the storage and the accessibility of sensitive data, and the identity

and access management (IAM) in relation to the AWS Lambda service and

within their function. In short, the services that users choose to use dictate

what they are responsible for. The serverless model also requires customers to

understand their responsibility in maintaining proper IAM, critical data storage

and accessibility, and code quality. CloudOps and DevOps professionals need

to be responsible in properly configuring elements such as IAM and critical

data storage as they set up cloud services as well as ensuring that they are

deploying secure code.

This research paper aims to shed light on the security considerations in

serverless environments and provide recommendations that can help ensure

that serverless deployments are kept as secure as possible.

 5 |

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

Serverless Architectures
Serverless computing refers to the technology that supports back-end services and allows

enterprises to take advantage of shifting certain responsibilities to CSPs such as AWS,

including capacity management, patching, and availability. With serverless computing,

enterprises can build back-end applications without being directly involved in availability and

scalability. Aside from the relative affordability of serverless computing, its architecture also

allows enterprises to write and deploy code without worrying about the management and the

security of the underlying infrastructure — hence the term “serverless.”

Because the infrastructural computing components of serverless technology — including

the management of the hardware, the operating system, and the pieces of software — are

handled by the CSPs themselves, these serverless components are also protected by their

security. But although CSPs have a bigger slice of the responsibility pie for security with

regard to serverless computing, the shared responsibility model3 also applies to serverless

services. For example, in the case of a service categorized as infrastructure as a service

(IaaS), the user has to implement all of the security measures to protect the operating system

and the application software. When exposing any service to the internet, the user also has

to manage their own firewall policy rules. The user is also responsible for its application

and data.

In a serverless architecture, which is also referred to in terms of abstracted services, major

CSPs like AWS ensure a secure infrastructure for its users so that they can focus on managing

and securing their own data — including application code and binary data as well as asset

classification and permission provision.

 6 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Customer data

Software

Hardware/AWS global infrastructure

Platform, applications, identity and access management

Operating system, network, and firewall configuration

CUSTOMER

AWS

Responsibility for
security “in” the cloud

Responsibility for
security “of” the cloud

Compute

Client-side data,
encryption and data

integrity, authentication

Networking traffic
protection (Encryption,

integrity, identity)
Server-side encryption

(File system and/or data)

Regions Edge locationsAvailability zones

Storage Database Networking

Figure 1. The classic shared responsibility model (top) and the shared responsibility model for
AWS Lambda (bottom)

Image credits: AWS4, 5

CSPs have two core design principles: least privilege6 and default deny. Least privilege

provides a layer of security as most serverless applications are built on a heterogeneous set

of services, while default deny allows for the purposeful interaction of the microservices that

applications are built on. For their part in the shared responsibility model, administrators and

users should follow these principles in designing and enforcing policies and permissions for

the services used in their serverless applications.

Figure 2. An example of a serverless web application pipeline

Image credit: AWS Compute Blog7

 7 |

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

Connected Services in a
Serverless Architecture
Understanding how a serverless architecture operates entails understanding the different

services involved in it. The scope of this paper includes services offered by AWS, which

is the top provider of serverless solutions.8 (According to a recent survey, more than 80%

of developers are aware of AWS Lambda solutions while 51% use these solutions in their

serverless deployments.9)

Web browser

Static content Amazon S3
Object storage and

website storage

Amazon API Gateway
RESTful API

AWS IAM
Identities and permissions

AWS Lambda
Serverless compute

Back end

Figure 3. An example of interconnected services in a serverless architecture

Amazon S3
Amazon Simple Storage Service (Amazon S3)10 is an object storage service for a scalable

amount of data that supports a variety of use cases, such as mobile applications, big data

analytics, and internet-of-things (IoT) devices. Amazon S3 enables enterprises to manage

objects, which are then stored in buckets via APIs.

 8 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

When creating Amazon S3 buckets, a user is given the option of applying least privilege for

their objects and buckets. An administrator with Amazon S3 permissions sets the policies

for users, and users can be granted enough permissions to manage additional permissions

or permissions can be locked down so that a bucket can be used only in certain ways. A

user with permissions can manage a specific bucket in that region through the web console

or the remote API. For both scenarios, the user has to be authenticated to be given access.

However, if needed or desired, the user also has the option to make an object or a bucket

available, depending on the policy set by the administrator. It can be made available to the

public or to other internal services or users.

Block all public access

Block public access to buckets and objects granted through new access control lists (ACLs)
On

Block public access to buckets and objects granted through any access control lists (ACLs)
On

Block public access to buckets and objects granted through new public bucket or access point policies
On

Block public and cross-account access to buckets and objects through any public bucket or access point policies
On

On

Figure 4. The default Amazon S3 bucket public access configuration

AWS Lambda
One of the most popular serverless services today,11 AWS Lambda allows enterprises to run

code without the hassle of server provisioning and maintenance. With it, developers can run

code and pay only for the number of instances when the code is triggered. With a selected

set of programming languages, AWS Lambda enables them to focus on their tasks without

having to manage hardware or ensuring that the operating system and all of the installed

applications are up to date. If an enterprise uses AWS Lambda solely, it can just focus on

writing secure code. If AWS Lambda is used alongside another service, an enterprise has to

be mindful of the permissions being granted. The user who defined the permissions must

enforce the least-privilege approach for this service, which means that if AWS Lambda is

going to work with other services, permissions must be granted manually.

Photo is taken Photo is resized into
web, mobile, and

tablet sizes

Lambda is
triggered

Amazon S3
Photo is uploaded
to an S3 bucket

AWS Lambda
Lambda runs

image-resizing code

Figure 5. A use case for AWS Lambda

 9 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Amazon API Gateway
Amazon API Gateway is a service that enables easy and efficient creation, publishing,

maintenance, monitoring, and securing of APIs.12 As its name implies, it acts as a portal for

applications, allowing them to access back-end service functionalities or data using RESTful

APIs and WebSocket APIs. As with AWS Lambda’s payment model, Amazon API Gateway

allows enterprises to pay only for the API calls received and the amount of data transferred

out. It can also act as a bridge that connects a deployment to other Amazon services.

Connected users
and streaming
dashboards

API gateway
cache

Web and mobile
applications

IoT devices

Private applications:
VPC and on-premises

Private applications:
VPC and on-premises

Data center

Amazon
Cloudwatch

AWS Lambda

Amazon EC2

Amazon Kinesis

Amazon
DynamoDB

Other AWS
services

Publicly accessible
endpointsAWS API Gateway

Create, publish, maintain,
monitor, and secure APIs

at any scale

Figure 6. A use case for Amazon API Gateway

AWS IAM
AWS Identity and Access Management (AWS IAM) enables developers to create security

credentials and permissions, and assign them to users. Using AWS IAM, an enterprise can

also allow identity federation to enable existing identities within the enterprise to gain access

to the AWS Management Console, call APIs, and access resources even without the creation

of unique AWS IAM users. The user who creates the AWS IAM policies must define and

enforce the least-privilege approach to make sure that services are not accessible unless

access is explicitly granted by the user. IAM roles can also be used as a best practice. An IAM

role is not uniquely linked to a single person and long-term credentials. Instead, it provides

temporary credentials for a roles session.13

 10 |

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

Misconfigurations and
Unsecure Coding Practices
Users of the aforementioned services should define policies to use the least-privilege approach

as a best practice, and should diligently assign and check privileges for a better security

posture. However, a complex mix of services might prove difficult for users to manually

address. In this section, we discuss and demonstrate misconfigurations and risks users

might introduce or overlook when securing specific AWS serverless services. To help avoid

these misconfigurations and risks, AWS provides its users with the AWS Well-Architected

Framework,14 a set of architectural best practices for designing and running secure and

efficient cloud systems.

Amazon S3
Amazon offers a comprehensive guide to keeping Amazon S3 buckets secure,15 including

recommendations on enabling multi-factor authentication delete to avoid accidental deletions

of buckets and individual objects within buckets. However, even with such guidance, users

could still encounter security pitfalls such as the following.

Leaving a Bucket Open and/or Publicly Accessible

Malicious actors could abuse an open or publicly accessible bucket to look for sensitive

data. There have been cases in which critical and sensitive data has been left open because

of misconfigurations, such as when a database containing more than 500,00 sensitive

and private legal and financial documents was exposed.16 In February 2020, an exposed

repository associated with a cloud-based application called JailCore was discovered leaking

over 36,000 inmate records from various correctional facilities in the US.17 This has since

been addressed by JailCore and the repository has been properly secured.

Unfortunately, many Amazon S3 buckets are left unsecured and open to the public despite

recommended best practices. During our research, we were able to find open buckets that

had sensitive data and buckets that were not completely open but were observed to be

indexing accessible data.

 11 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Figure 7. An e-commerce bucket found via a Shodan search that shows order details,
including customer information

Creating Bad or Exposed Code

Amazon S3 buckets are used not only as cloud storage but also as simple static web servers

that can interact with other services such as AWS Lambda, Amazon API Gateway, Amazon

CloudFront, and DynamoDB.

Amazon S3 Amazon S3 bucket Website

Figure 8. An Amazon S3 bucket hosting a static website

 12 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

AWS has always been clear on what Amazon S3 buckets are meant to host: static content.

Amazon S3 should not be used to host dynamic content.18 Thus, server-side scripts should

not be used. However, many users are not following the recommended use for Amazon S3

buckets and are opening themselves up to greater risks. It is not difficult to find websites

hosted on Amazon S3 buckets that implement server-side script languages such as PHP,

JSP, or ASP.NET. As it is not interpreted by the web server, the code is going to be exposed

when the website’s source code is accessed.

During our research, we found a webpage, hosted on an Amazon S3 bucket, that contains

PHP code that is not being interpreted since it is not static. As a result, when the source

code of this page is queried, anyone can see that the page uses command-line tools like curl

or wget. This could expose sensitive data, such as credentials, or code parts that are not

meant to be seen by the public, such as resource paths and programming logic. This could

also make it easier for malicious actors to find and exploit vulnerabilities in the code by using

techniques such as cross-site scripting (XSS) and SQL injection (SQLi).19, 20

Figure 9. A webpage, hosted on an Amazon S3 bucket, that we found in the wild showing
exposed PHP code

AWS Lambda
Aside from AWS security recommendations that tackle data protection, configuration, and

compliance,21 users can also benefit from certain AWS Lambda functions that are aimed at

protecting users’ data as well as making sure costs do not get out of hand. However, users

could still encounter security incidents because of unsecure practices such as the following.

 13 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Creating Bad or Vulnerable Code

Since AWS Lambda functions are meant to be triggered to run code and deliver output, there

are multiple scenarios where bad coding of an AWS Lambda function could allow a malicious

actor to use common code injection techniques, such as when a function deals with user

input data. In addition, the input data might not be coming from a regular browsing or HTTP

API call. AWS Lambda functions could be deployed in a number of different scenarios, and

malicious injections could be sent from different triggers, such as those from Amazon Simple

Notification Service (SNS),22 email, and even the IoT. In such cases, a regular web application

firewall (WAF) on the API level is not capable of protecting AWS Lambda functions against

malicious injections.23

Leaving Sensitive Data Exposed

When running AWS Lambda functions, there are a few environment variables that are created

to pass environment-specific settings, such as authorizations, the size of resources, and the

container host that is running the code. To authorize or manage other services or layers, users

can create their own variables with users, passwords, authorization tokens, and application

parameters. Since the container is going to expire after execution, data is not kept.

However, if the AWS Lambda function code is configured to return variables and is accessible

from outside services, or if a malicious actor succeeds in injecting commands in the function,

data coud leak.

Figure 10. Variables shown from an AWS Lambda function output

Saving Credentials as Variables

In checking where AWS Lambda functions run inside a virtual machine, it is striking that the

credentials and the secrets — the tokens and the keys used by functions for authentication —

are being stored inside as variables. In a hypothetical malicious activity, if the actor manages

to compromise a container and downloads, executes, and runs the AWS Command Line

Interface (AWS CLI) tool,24 they could gain access to a user’s account without requesting any

further credentials since the AWS CLI tool facilitates a one-time login.

 14 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Using Vulnerable Libraries

When developing a function with a preferred programming language, the user must keep in

mind that the imported libraries as well as the code itself have to be secure. Using components

with known vulnerabilities is one of the top 10 risks of web applications, according to the

Open Web Application Security Project (OWASP).25

Copying Bad Code Examples From Online Repositories

Developing an AWS Lambda function might be different from developing an application that

would run inside an environment that the user has full control over. AWS provides essential

documentation and basic starter codes to help users familiarize themselves with the service.26

However, users who are looking for more complex or elaborate codes on online code sharing

platforms should exercise caution prior to promoting such codes to production as these

might have been developed using bad practices or could contain vulnerable components.

Research has pointed to how shared code in online programming Q&A sites could be of poor

quality and harbor vulnerabilities.27

Figure 11. Sample code from GitHub

 15 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

File Persistence

Files can be written in the /tmp folder inside an AWS Lambda execution environment.

Files written there can have execution permission, which means that if a malicious actor

successfully exploits a bad code, they could save their tools and scripts in this folder and

execute them from there. Based on our tests, unless the code is changed on AWS Lambda’s

console, the files written there could last for as long as 12 minutes. A side “problem” is that

if a container has access to the internet (through a fast internet connection, just for metrics’

sake), a function configured with a 45-second timeout could download a 334-megabyte file.

If an attacker is using the function as a pivoting point, this would allow the attacker to more

easily download hacking tools for further use.

Figure 12. An example of a large file written in the /tmp folder inside an AWS Lambda function
that is persistent for 12 minutes

Amazon API Gateway
AWS has created security features for Amazon API Gateway users to take advantage of

when developing and implementing their security policies. AWS also provides helpful

considerations for different types of enterprise environments.28 Despite these, users could

still unsafely expose Amazon API Gateway endpoints. One possible cause for this is users’

reliance on default security.

 16 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Amazon API Gateway is a service that adds another layer that helps filter requests and

prevent direct exposure of serverless services. Although it performs initial input filtering, its

default configuration can benefit from improved security capabilities that could and should be

implemented from the start, such as authentication. It should be noted, however, that while

Amazon API Gateway provides additional protection, it should by no means be viewed as a

replacement for a WAF.

An open and exposed Amazon API Gateway endpoint could be abused as the point of entry

in an attack that seeks to compromise the service behind it, be triggered to cause a denial-

of-service (DoS) attack,29 or even raise an enterprise’s bill if an AWS Lambda function is made

to be queried frequently or incessantly.

AWS IAM
AWS provides guidelines on how to help better secure AWS resources that can be accessed

via AWS IAM. However, users could still run into security holes because of the following

unsecure practices.

Modifying a Service Using Credentials Saved as
Variables and the AWS CLI Tool

As previously noted, credentials are stored inside the AWS Lambda infrastructure as variables.

If a malicious actor succeeds in exploiting a function and uploads the AWS CLI tool, the AWS

CLI tool could use the saved credentials to manage AWS services, including AWS Lambda

itself.

Using Inadequate or Very Permissive Configurations

We often find projects on online code sharing platforms in which the developers use policies

that are at the opposite end of the spectrum of the least-privilege policy — policies that are

very permissive, thereby making sure that the whole system communicates and all services

are responsive to one another. Since AWS IAM confirms the access to AWS services and

resources, and thus dictates what services AWS Lambda can talk to, this example also falls

under the considerations for AWS Lambda security — the copying of bad code examples

from online repositories represents a security hole.

 17 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Figure 13. A code example found in the wild with a well-written policy implementing least
privilege (left) and a code example found in the wild with a very permissive policy (right)

Depending on the size of a project, handling all of the policies and the permissions manually

is almost humanly impossible as it can become too complicated and confusing. For this

reason, enterprises with complex AWS workloads and applications should have a centralized

auditing tool for IAM and for managing access keys, security credentials, and permission

levels.30 AWS IAM functionalities such as the access advisor31 and the Access Analyzer32 can

also help in monitoring policies and permissions.

 18 |

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

Possible Compromise and
Attack Scenarios
AWS provides security mechanisms used in serverless services for users to set up and

configure. However, malicious actors look for various ways to take advantage of common

user errors, misconfigurations, and even one of the serverless model’s own strengths — its

distributed nature — so as to proceed with their activities.

Attacker Injects shell command
on AWS Lambda

function with
high permissions

Downloads,
unpacks, and

installs AWS CLI tool

Checks roles
and policies

Modifies function
timeout from 2 minutes

to 15 minutes

Figure 14. An attack chain involving an AWS Lambda function with high permissions

Credential and Account Theft
Functions, when accessing secure resources, need secrets. When a malicious actor gets

ahold of a compromised application within a serverless system, they could take and use

secrets containing secure credentials to gain access to critical resources or take control of

the entire account — especially since secrets are converted into plain text when not in use.

Sensitive Data and Code Theft
When Amazon S3 buckets are made to host dynamic content for a web application, it could

be easy for malicious actors to see sensitive data and critical parts of code by merely querying

the site. This could allow them to use sensitive data, such as usernames and passwords,

and command-line tools in performing reconnaissance or looking for vulnerabilities that they

could exploit. When sensitive user data is exposed publicly, it could also cause reputational

and financial harm to enterprises.

 19 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Privilege Escalation
When users do not properly define and configure permissions attached to a service, privilege

escalation could happen. This could allow a compromised low-privileged user to change the

password of a high-privileged user. The same goes for improperly configured role permission

policies, which could allow a malicious user to create a new policy version that could in

turn allow the changing of permissions in a policy. If role permissions are not securely set,

the malicious user could be granted full administrator privileges. It is important to note that

although it takes time to create a comprehensive list of roles that states which users and

services in the architecture are allowed to pass, such a list helps ensure a more secure,

misconfiguration-free system.

Misuse of Resources That Generates
Cost for the Account Owner
Because serverless services such as AWS Lambda can provide resource elasticity and

automated scalability, malicious actors who are looking to cause financial cost to enterprises

for whatever reason could introduce code that would, for example, incessantly query AWS

Lambda functions, thereby causing costs to go up. Malicious actors could basically change

everything that is manageable through the AWS CLI tool, including the memory allocation of

an AWS Lambda function, which could make costs balloon even more.

Persistence
Serverless functions have associated configuration information (name, description, entry

point, and resource requirements) and are ephemeral, that is, they are given only a few seconds

or minutes of life. They are also designed to be stateless, allowing for the quick launching

of as many copies of a function as necessary to scale to the rate of incoming events. With

each function call, a new instance of the function is created. The first time a function is called,

known as a “cold start,” is expected to have a bit of latency. To avoid latency, functions need

to remain cached — also known as a “warm start” — wherein the same function sandbox or

container for different invocations are reused. Warm starts might be taken advantage of by

malicious actors who have already compromised an AWS Lambda instance to periodically

send requests so as to prevent the instance from being taken down.

 20 |

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

Other Security
Considerations in
Serverless Deployments
Amazon provides security features for their services and guidance for users to consider in

order to secure their respective environments. But it is safe to say that there will always be

room for better security for serverless services. In this section, we discuss opportunities for

improving security in the connected services of a serverless architecture. (We recommend

best practices and other security measures that address these issues in the next section.)

Amazon S3
To keep Amazon S3 buckets secure, new Amazon S3 buckets are generated with public access

blocked by default.33 AWS documentation also points to strong security recommendations

that users can apply to ensure that their Amazon S3 buckets are protected using AWS

configurations.34 These include making sure buckets are private, implementing authentication

protocols, and adding more layers of protection to buckets to further restrict who can access

them from every point of entry.

With regard to troubleshooting Amazon S3 bucket abuse, something that makes the process

more challenging is the lack of a feature for easy logging. The available default logging option

supports basic storage consumption and usage, but it does not allow users to see who is

accessing their Amazon S3 buckets. What users can do is to turn on object-level logging,

which logs Amazon S3 object-level API operations such as GetObject, DeleteObject, and

PutObject to AWS CloudTrail.35

In addition, if a user is hosting a website on an Amazon S3 bucket, there is an option to log

user access and send all logs to a dedicated folder inside an Amazon S3 bucket. This is a

good option that can address the troubleshooting difficulty, but it can also create a large

number of files that contain fragmented process logs. For better visibility, users can use a

serverless interactive query service for analyzing data (like Amazon Athena36) and a cloud

security posture management service with extensive reporting capabilities.

 21 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Amazon S3 buckets also leave footprints or signatures on HTTP headers when used, making

it easy to identify that a user is interacting with Amazon S3. This also makes querying for

open or exposed Amazon S3 buckets in the wild possible. In April 2020, we reported on

how malicious actors took advantage of world-writable Amazon S3 buckets; based on

our telemetry, most of their activities in 2019 involved malicious code injection and data

exfiltration.37

Figure 15. An HTTP header showing a request to a page hosted on an Amazon S3 bucket

AWS Lambda
Processing unfiltered input data from multiple sources can be considered one of the points

for security improvement when using AWS Lambda. It is important to note, though, that the

users of this service, and not the CSPs, are responsible for ensuring that the code they use is

compliant with good coding practices. Securing AWS Lambda functions can be challenging

when input data is not sanitized well or uses vulnerable libraries, precisely because input data

can come from various sources.

Amazon API Gateway
In creating an Amazon API Gateway endpoint, the default configuration does not include the

use of any kind of authentication or security keys, which could lead to the malicious use or

abuse of APIs.

 22 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

Figure 16. An HTTP header showing an Amazon S3 bucket’s x-amzn-RequestId and

x-amz-apigw-id information

AWS IAM
As a user’s environment grows, the policies and the roles also increase in complexity. Tracking

and managing these could prove challenging without the aid of an external auditing tool.

 23 |

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

Security Measures for
Serverless Services
Serverless services have become essential business tools, and keeping them secure

should be of utmost priority not just for enterprises that use them but for the people and the

organizations relying on these enterprises’ applications as well. The following are some best

practices and security solutions that can help keep serverless services secure.

Amazon S3
It is safe to say that AWS does its part on the shared responsibility model. It also helps users

fulfill their part of the model by making it more difficult for administrators to expose their

buckets without knowing what they are doing. Thus, administrators need to constantly check

whether configurations are properly set by using services such as AWS Config and AWS

CloudTrail, or by querying the Amazon S3 APIs. They can also use third-party tools that scan

the contents of Amazon S3 buckets and their policies to check access and configurations

for both security and compliance38 — such as DNS (Domain Name System) compliance of

Amazon S3 bucket names, public read/write access, and encryption of data via TLS (Transport

Layer Security) during transport.

AWS Lambda
AWS makes sure that the execution environments used in AWS Lambda functions are

ephemeral. This means that execution environments are constantly being fully replaced by

brand-new ones. Because of this, saved data inside a container will remain there only for a

short period, making it more difficult for malicious actors to perform privilege escalation or

lateral movement.

Another noteworthy AWS Lambda feature is the function timeout.39 It is aimed at protecting

users from malicious activities that cause unintentionally high billing. Each programming

language has its own default function timeouts, which are usually set quite low. For example,

when creating an app using Python, a user is given 6 seconds before an instance expires.

This is cost-effective and serves as a security feature: The less time an instance has, the less

 24 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

time an attacker has to carry out an attack. However, building an application with a number of

features, using nonoptimized code, and adding layers such as security features to the code

require increasing the function timeouts, which could give a malicious actor more time to

work and compromise an application.

While it is far from being an all-in-one cybersecurity solution, as in the case of malicious

injection attacks, a WAF can still provide additional filtering for data that is being passed

through AWS Lambda functions as an extra security measure. In general, a WAF can provide

good security based on a list of disallowed web request conditions, such as the presence of

SQL code or a script that is likely to be malicious, and a list that allows the entry of data from

trusted sources.

Users can also benefit from solutions that closely monitor AWS Lambda functions to ensure

that functions do not run with administrator privileges and are not exposed to the public, and

that tracing is enabled for functions.40

Amazon API Gateway
Although IT environments vary in size and needs, Amazon provides the following security

recommendations for Amazon API Gateway users:41

• Implement the least-privilege policy when creating, reading, updating, or deleting APIs.

• Monitor REST APIs and log API requests using Amazon CloudWatch42 and Amazon

Kinesis Data Firehose.43

• Enable AWS CloudTrail, an AWS service that keeps a detailed record of the actions taken

by a user, a role, or another AWS service in Amazon API Gateway for better monitoring.44

• Enable AWS Config, which enables users to see the configuration of all AWS resources in

their systems and check how the resources are connected, and to see the configuration

history.45

On top of these, users can turn on AWS WAF,46 which integrates with Amazon API Gateway,

or use third-party solutions to protect Amazon API Gateway APIs from common web exploits.

Audit tools can help ensure that best practices for Amazon API Gateway are followed (for

example, that APIs have content encoding enabled).47

 25 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

AWS IAM
Amazon provides a detailed list of security best practices for AWS IAM that discusses various

topics that can help protect AWS resources.48 These are only a few:

• Locking away the AWS account root user access key. Because permissions cannot

be reduced for the user access key, whoever has access to it has access to all AWS

services.

• Creating individual AWS IAM users. An administrator can create individual users for

accessing the AWS account so as to avoid giving away the AWS account root user

credentials to anyone else.

• Using groups to assign permissions to AWS IAM users. User groups can be created

according to job functions, with each group having its own level of access or set of

relevant permissions.

• Using roles to delegate permissions. Instead of sharing security credentials between

accounts, administrators should create IAM roles with already defined permissions and

designate the roles only to AWS accounts with users who need to assume those roles.

• Granting least privilege. Administrators should grant only the permissions required for

a task to be completed. They should map out what tasks certain users and roles need to

do and design policies that allow these users and roles to do only those specific tasks.

Stronger security for AWS IAM also entails a solution that can ensure that AWS IAM access

keys are rotated periodically, detect any and all configuration changes, and delete any unused

users and groups.49

Recommendations for Creating Secure
Serverless Applications
CSPs such as AWS handle the security and the upkeep of the infrastructure of serverless

services, and provide users with ephemeral and stateless functions. But the applications that

users build and run still need to be made as secure as possible — especially since serverless

applications can be made up of a large number of functions. The following are a few security

recommendations that developers can consider when building serverless applications:

• Establish a good code review process. The creation of secure code falls under the

responsibility of users, not CSPs. A solid code review process is critical in ensuring that

applications are kept secure from the design stage to deployment.

 26 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

• Create better permissions compliance procedures. Managing all of the policies and

the permissions in a large-scale project can be overwhelming, especially when it is being

done manually. For users to better manage complex permissions compliance procedures,

they need to have a tool that runs checks against security best practices and industry

compliance standards in an automated manner.

• Avoid leaving footprints. Most attacks, targeted or otherwise, start with a reconnaissance

step. This is why it is a good security measure to minimize the number of footprints left

by the services being used. For example, instead of deploying applications that directly

expose Amazon API Gateway endpoints, users of Amazon API Gateway can opt for a

native or third-party load balancer, a content delivery network (CDN), or a proxy.

• Use application security solutions that protect web applications against application

layer attacks. Under the serverless computing model, traditional security that normally

applies to data centers or workloads cannot be deployed in the operating system. To

further strengthen security, users can take advantage of application security solutions that

can automatically detect exploit attempts to prevent hacks and identify vulnerabilities,

and protect the system against code vulnerabilities and data exfiltration on the server

level, and other vulnerability attacks at the application level.50

 27 |

Securing Weak Points in Serverless Architectures:
Risks and Recommendations

Serverless Technology and
Shared Responsibility
In the serverless model, CSPs are in charge of securing critical software and hardware

infrastructures. In the shared responsibility model, this is known as “security of the cloud.”

CSPs also handle the security of other critical components, such as server-side encryption,

the operating system, and network and firewall configuration. These are components

that are part of “security in the cloud,” which in other cloud models falls under the users’

responsibility. CSPs also implement the least-privilege policy and the default-deny approach

to service communications. In the case of AWS Lambda, AWS takes care of the underlying

infrastructure, the operating system, and the application platform, while the users themselves

are responsible for the security of their code, the storage and the accessibility of sensitive

data, and the IAM in relation to AWS Lambda and within their function.

But all this should not make adopters of serverless services complacent about security.

Maintaining proper configurations and code quality is imperative in keeping serverless

services as secure as possible. We have shown in this research paper how malicious actors

could take advantage of misconfigurations and errors to launch attacks on serverless

deployments. Because of common user mistakes, malicious actors would not even need

to do much to carry out attacks. In some cases, they could simply query an Amazon S3

bucket that hosts dynamic (rather than static) content to see sensitive data and critical parts

of code. Misconfigurations and permissive policies could also allow privilege escalation

to occur, enabling malicious actors to change permissions in policies or even take hold of

administrator privileges.

Aside from security loopholes that arise from neglect or oversight, malicious actors could also

take advantage of the features of serverless services. For instance, warm starts in function

calls, which are meant to reduce latency, could be abused by malicious actors to launch

stealthy and persistent attacks. Malicious actors could also abuse the elastic and automated

scalability offered by serverless services by introducing code that could continuously query

AWS Lambda functions, thereby depleting enterprises’ financial resources.

 28 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

The security of serverless services can be further enhanced through the implementation

of certain measures. Connected serverless services can benefit from security features

such as an improved default logging option for Amazon S3 and a default authentication

configuration for Amazon API Gateway endpoints. Users would do well to follow our security

recommendations to defend serverless deployments from threats and risks. Developers of

security solutions, for their part, should consider our guidance on vital features that security

solutions should have in order to properly protect serverless deployments from vulnerabilities,

hacks, misconfigurations, and other threats.

While it is true that the infrastructural computing components of serverless services are

covered by CSPs, this does not mean that the users of the services are immune to making

misconfigurations, whether due to negligence or lack of awareness. Users need to understand

that the shared responsibility model also applies to serverless technology. Adopters of

serverless services are responsible for keeping the critical components of serverless services

as secure as possible by following secure coding practices, keeping secrets safe, monitoring

and logging functions, configuring policies properly, and implementing the principles of

least privilege and default deny. By detailing the possible compromise and attack scenarios

among the connected services in a serverless architecture, we aim to highlight how important

diligence in applying security practices is in thwarting threats and mitigating risks.

 29 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

References
1 Trend Micro. (Oct.24, 2019). Trend Micro Security News. “The Cloud: What it is and what it’s for.” Accessed on May 25, 2020, at

https://www.trendmicro.com/vinfo/us/security/news/security-technology/the-cloud-what-it-is-and-what-it-s-for.

2 Amazon Web Services. (March 22, 2019). YouTube. “Build a Serverless Startup in Just 30 Minutes!” Accessed on May 25, 2020, at

https://www.youtube.com/watch?v=qBNYmYRlTpU.

3 Mark Nunnikhoven. (Oct. 22, 2019). Trend Micro Simply Security. “The Shared Responsibility Model.” Accessed on May 25, 2020, at

https://blog.trendmicro.com/the-shared-responsibility-model/.

4 AWS. (n.d.). AWS. “Shared Responsibility Model.” Accessed on May 25, 2020, at https://aws.amazon.com/compliance/shared-

responsibility-model/.

5 AWS. (n.d.). AWS. “The Shared Responsibility Model.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/whitepapers/

latest/security-overview-aws-lambda/the-shared-responsibility-model.html.

6 Security Best Practices in IAM. (n.d.). AWS. “Security Best Practices in IAM.” Accessed on May 25, 2020, at

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege.

7 Chris Munns. (July 23, 2018). AWS Compute Blog. “Powering HIPAA-compliant workloads using AWS Serverless technologies.”

Accessed on June 8, 2020, at https://aws.amazon.com/blogs/compute/powering-hipaa-compliant-workloads-using-aws-serverless-

technologies/.

8 Ihor Lobastov. (March 8, 2019). DZone. “Comparing Serverless Architecture Providers: AWS, Azure, Google, IBM, and Other FaaS

Vendors.” Accessed on June 3, 2020, at https://dzone.com/articles/comparing-serverless-architecture-providers-aws-az.

9 David Ramel. (May 8, 2020). Virtualization and Cloud Review. “Cloud-Native Development Survey Details Kubernetes, Serverless Data.”

Accessed on May 25, 2020, at https://virtualizationreview.com/articles/2020/05/08/cloud-native-dev-survey.aspx.

10 AWS. (n.d.). AWS. “Amazon S3.” Accessed on May 25, 2020, at https://aws.amazon.com/s3/.

11 AWS. (n.d.). AWS. “Amazon Lambda.” Accessed on May 25, 2020, at https://aws.amazon.com/lambda/.

12 Amazon API Gateway. (n.d.). AWS. “Amazon API Gateway.” Accessed on May 25, 2020, at https://aws.amazon.com/api-gateway/.

13 AWS (n.d.). AWS. “IAM Roles.” Accessed on Aug. 11, 2020, at https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

14 Derek Belt. (May 15, 2018). AWS Partner Network (APN) Blog. “The 5 Pillars of the AWS Well-Architected Framework.” Accessed on

July 23, 2020, at https://aws.amazon.com/blogs/apn/the-5-pillars-of-the-aws-well-architected-framework/#:~:text=The%20AWS%20

Well%2DArchitected%20Framework%20provides%20architectural%20best%20practices%20across,an%20existing%20or%20

proposed%20architecture.

15 AWS. (n.d.). AWS. “Security Best Practices for Amazon S3.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/AmazonS3/

latest/dev/security-best-practices.html.

16 VPNMentor. (March 19, 2020). VPNMentor. “Report: Two Corporate Finance Companies Leak Half a Million Legal and Financial

Documents Online.” Accessed on May 25, 2020, at https://www.vpnmentor.com/blog/report-mca-wizard-leak/.

17 Trend Micro. (Feb. 12, 2020). Trend Micro Security News. “Misconfigured AWS S3 Bucket Leaks 36,000 Inmate Records.” Accessed on

May 25, 2020 at https://www.trendmicro.com/vinfo/ph/security/news/cybercrime-and-digital-threats/misconfigured-aws-s3-bucket-

leaks-36-000-inmate-records.

18 AWS. (n.d.). AWS. “Hosting a static website on Amazon S3.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/AmazonS3/

latest/dev/WebsiteHosting.html.

19 Trend Micro. (n.d.). Trend Micro. “Cross-site scripting (XSS).” Accessed on May 25, 2020, at https://www.trendmicro.com/vinfo/us/

security/definition/cross-site-scripting-(xss).

20 Trend Micro. (n.d.). Trend Micro. “SQL injection.” Accessed on May 25, 2020, at https://www.trendmicro.com/vinfo/us/security/

definition/sql-injection.

21 AWS. (n.d.). AWS. “Security in AWS Lambda.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/lambda/latest/dg/lambda-

security.html.

22 AWS. (n.d.). AWS. “Amazon Simple Notification Service.” Accessed on May 25, 2020, at https://aws.amazon.com/sns/?whats-new-

cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc.

23 OWASP. (n.d.). OWASP. “Web Application Firewall.” Accessed on May 25, 2020, at https://owasp.org/www-community/Web_

Application_Firewall.

24 AWS. (n.d.). AWS. “AWS Command Line Interface.” Accessed on May 25, 2020, at https://aws.amazon.com/cli/.

https://www.trendmicro.com/vinfo/us/security/news/security-technology/the-cloud-what-it-is-and-what-it-s-for
https://www.youtube.com/watch?v=qBNYmYRlTpU
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/the-shared-responsibility-model.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/the-shared-responsibility-model.html
https://aws.amazon.com/blogs/compute/powering-hipaa-compliant-workloads-using-aws-serverless-technologies/
https://aws.amazon.com/blogs/compute/powering-hipaa-compliant-workloads-using-aws-serverless-technologies/
https://dzone.com/articles/comparing-serverless-architecture-providers-aws-az
https://virtualizationreview.com/articles/2020/05/08/cloud-native-dev-survey.aspx
https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/blogs/apn/the-5-pillars-of-the-aws-well-architected-framework/#:~:text=The%20AWS%20Well%2DArchitected%20Framework%20provides%20architectural%20best%20practices%20across,an%20existing%20or%20proposed%20architecture
https://aws.amazon.com/blogs/apn/the-5-pillars-of-the-aws-well-architected-framework/#:~:text=The%20AWS%20Well%2DArchitected%20Framework%20provides%20architectural%20best%20practices%20across,an%20existing%20or%20proposed%20architecture
https://aws.amazon.com/blogs/apn/the-5-pillars-of-the-aws-well-architected-framework/#:~:text=The%20AWS%20Well%2DArchitected%20Framework%20provides%20architectural%20best%20practices%20across,an%20existing%20or%20proposed%20architecture
https://docs.aws.amazon.com/AmazonS3/latest/dev/security-best-practices.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/security-best-practices.html
https://www.vpnmentor.com/blog/report-mca-wizard-leak/
https://www.trendmicro.com/vinfo/ph/security/news/cybercrime-and-digital-threats/misconfigured-aws-s3-bucket-leaks-36-000-inmate-records
https://www.trendmicro.com/vinfo/ph/security/news/cybercrime-and-digital-threats/misconfigured-aws-s3-bucket-leaks-36-000-inmate-records
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://www.trendmicro.com/vinfo/us/security/definition/cross-site-scripting-(xss)
https://www.trendmicro.com/vinfo/us/security/definition/cross-site-scripting-(xss)
https://www.trendmicro.com/vinfo/us/security/definition/sql-injection
https://www.trendmicro.com/vinfo/us/security/definition/sql-injection
https://docs.aws.amazon.com/lambda/latest/dg/lambda-security.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-security.html
https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://owasp.org/www-community/Web_Application_Firewall
https://owasp.org/www-community/Web_Application_Firewall
https://aws.amazon.com/cli/

 30 || Securing Weak Points in Serverless Architectures: Risks and Recommendations

25 OWASP. (n.d.). OWASP. “OWASP Top Ten.” Accessed on June 3, 2020, at https://owasp.org/www-project-top-ten/.

26 AWS. (n.d.). AWS. “AWS Lambda Documentation.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/lambda/?id=docs_

gateway.

27 Morteza Verdi et al. (n.d.). Arxiv.org. “An Empirical Study of C++ Vulnerabilities in Crowd-Sourced Code Examples.” Accessed on

May 25, 2020, at https://arxiv.org/pdf/1910.01321.pdf.

28 AWS. (n.d.). AWS. “Security Best Practices in Amazon API Gateway.” Accessed on June 4, 2020, at https://docs.aws.amazon.com/

apigateway/latest/developerguide/security-best-practices.html.

29 Trend Micro. (n.d.). Trend Micro. “Denial of Service (DOS).” Accessed on May 25, 2020, at https://www.trendmicro.com/vinfo/us/

security/definition/denial-of-service-dos.

30 Trend Micro Cloud Conformity. (n.d.). Trend Micro Cloud Conformity. “AWS IAM Best Practices.” Accessed on May 25, 2020, at

https://www.cloudconformity.com/knowledge-base/aws/IAM/.

31 AWS. (Dec. 7, 2018). AWS. “Automate AWS IAM Permissions Analysis Using the New IAM Access Advisor APIs.” Accessed on Aug.

11, 2020, at https://aws.amazon.com/about-aws/whats-new/2018/12/iam_access_advisor_apis/.

32 AWS. (n.d.). AWS. “What Is AWS IAM Access Analyzer?” Accessed on Aug. 11, 2020, at https://docs.aws.amazon.com/IAM/latest/

UserGuide/what-is-access-analyzer.html.

33 AWS. (n.d.). AWS. “Using Amazon S3 block public access.” Accessed on July 23, 2020, at https://docs.aws.amazon.com/AmazonS3/

latest/dev/access-control-block-public-access.html.

34 AWS. (n.d.). AWS. “Security Best Practices for Amazon S3.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/AmazonS3/

latest/dev/security-best-practices.html.

35 AWS. (n.d.). AWS. “How do I enable object-level logging for an S3 bucket with AWS CloudTrail data events?” Accessed on July 30,

2020, at https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html.

36 AWS. (n.d.). AWS. “Amazon Athena.” Accessed on June 8, 2020, at https://aws.amazon.com/athena/?whats-new-cards.sort-by=item.

additionalFields.postDateTime&whats-new-cards.sort-order=desc.

37 Morton Swimmer et al. (April 8, 2020). Trend Micro Security News. “Exploring Common Threats to Cloud Security.” Accessed on May

25, 2020, at https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/exploring-common-threats-to-cloud-security.

38 Trend Micro Cloud Conformity. (n.d.). Trend Micro Cloud Conformity. “AWS S3 Best Practices.” Accessed on May 25, 2020, at

https://www.cloudconformity.com/knowledge-base/aws/S3/.

39 AWS. (n.d.). AWS. “AWS Lambda Limits.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/lambda/latest/dg/

gettingstarted-limits.html.

40 Trend Micro Cloud Conformity. (n.d.). Trend Micro Cloud Conformity. “Cloud Conformity Lambda.” Accessed on May 25, 2020, at

https://www.cloudconformity.com/knowledge-base/aws/Lambda/.

41 AWS. (n.d.). AWS. “Security best practices in Amazon API Gateway.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/

apigateway/latest/developerguide/security-best-practices.html.

42 AWS. (n.d.). AWS. “Amazon Cloudwatch.” Accessed on May 25, 2020, at https://aws.amazon.com/cloudwatch/.

43 AWS. (n.d.). AWS. “Amazon Kinesis Data Firehose.” Accessed on May 25, 2020, at https://aws.amazon.com/kinesis/data-firehose/.

44 AWS. (n.d.). AWS. “AWS CloudTrail.” Accessed on May 25, 2020, at https://aws.amazon.com/cloudtrail/.

45 AWS. (n.d.). AWS. “AWS Config.” Accessed on May 25, 2020, at https://aws.amazon.com/config/.

46 AWS. (n.d.). AWS. “AWS WAF - Web Application Firewall.” Accessed on Aug. 11, 2020, at https://aws.amazon.com/waf/.

47 Trend Micro Cloud Conformity. (n.d.). Trend Micro Cloud Conformity. “Amazon API Gateway Best Practices.” Accessed on May 25,

2020, at https://www.cloudconformity.com/knowledge-base/aws/APIGateway/.

48 AWS. (n.d.). AWS. “Security Best Practices in IAM.” Accessed on May 25, 2020, at https://docs.aws.amazon.com/IAM/latest/

UserGuide/best-practices.html.

49 Trend Micro Cloud Conformity. (n.d.). Trend Micro Cloud Conformity. “AWS IAM Best Practices.” Accessed on May 25, 2020, at

https://www.cloudconformity.com/knowledge-base/aws/IAM/.

50 Trend Micro. (n.d.). Trend Micro. “Trend Micro Cloud One Application Security.” Accessed on May 25, 2020, at

https://www.trendmicro.com/en_ph/business/products/hybrid-cloud/cloud-one-application-security.html.

https://owasp.org/www-project-top-ten/
https://docs.aws.amazon.com/lambda/?id=docs_gateway
https://docs.aws.amazon.com/lambda/?id=docs_gateway
https://arxiv.org/pdf/1910.01321.pdf
https://docs.aws.amazon.com/apigateway/latest/developerguide/security-best-practices.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/security-best-practices.html
https://www.trendmicro.com/vinfo/us/security/definition/denial-of-service-dos
https://www.trendmicro.com/vinfo/us/security/definition/denial-of-service-dos
https://www.cloudconformity.com/knowledge-base/aws/IAM/
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/security-best-practices.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/security-best-practices.html
https://aws.amazon.com/athena/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://aws.amazon.com/athena/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/exploring-common-threats-to-cloud-security
https://www.cloudconformity.com/knowledge-base/aws/S3/
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://www.cloudconformity.com/knowledge-base/aws/Lambda/
https://docs.aws.amazon.com/apigateway/latest/developerguide/security-best-practices.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/security-best-practices.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/config/
https://www.cloudconformity.com/knowledge-base/aws/APIGateway/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://www.cloudconformity.com/knowledge-base/aws/IAM/
https://www.trendmicro.com/en_ph/business/products/hybrid-cloud/cloud-one-application-security.html

TREND MICROTM RESEARCH

Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information.

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key
insights, and supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily,
leads the industry in vulnerability disclosures, and publishes innovative research on new threat techniques. We
continually work to anticipate new threats and deliver thought-provoking research.

www.trendmicro.com

© 2020 Trend Micro Incorporated and/or its affiliates. All rights reserved. Trend Micro and the t-ball logo are
trademarks or registered trademarks of Trend Micro and/or its affiliates in the US and other countries. Third-party
trademarks mentioned are the property of their respective owners.

