Trend Micro >
Research < TREND:

The State of Serverless
Security on Microsoft

Azure

David Fiser an d Alfredo Oliveira

%
I8
B

|

Published by
Trend Micro Research

Written by

David Fiser

Alfredo Oliveira
Trend Micro Research

Page 2 of 56

Contents

R e resever s serssensssrssessnsenssnes 04
CSP and User Responsibilities......................... 015)
Analyzing Serverless Security ... 08
Technical ANalySiS ..o, 09

App Service on Windows-Based
Environments ..., 15

Azure Functions in Linux-Based
Environments ..o 17

Azure Functions on Windows-Based
Environments ..o 29

Comparing Azure Services on Linux- and
Windows-Based Environments ... 30

Improving Standard Security Using
Custom IMages ... 31

How to Improve the Overall State of

Serverless SeCurity ..., 40
Message from Microsoft................cc. 52
CONCIUSION ..o, 53
Security Recommendations 54

Serverless computing has swiftly become a popular service among cloud service providers (CSPs)

becauseit enables organizations torunservices without needing to manage the underlying infrastructure.
This means that with serverless technology, developers can upload code to a specific service without

worrying about infrastructure maintenance, scalability, and availability.

In a serverless architecture, the CSP is responsible for infrastructure management. However, because
this architecture allows user input, uploading untrusted code into multitenant environments poses

several security challenges.

For this study, we performed exploitation simulations of user-provided code vulnerabilities among
serverless services provided by major CSPs in the market. Based on our evaluation of each infected
serverless environment, we found that most of the security concerns were in Microsoft Azure. Therefore,

we have chosen to devote our research to this serverless environment.

In our investigation, we identified sensitive environmental variables inside the Microsoft Azure
environment. When these variables are leaked, malicious actors can fully compromise the entire
serverless environment. We also found a default runtime image using a master password that allows
privilege escalation in most Azure App Service deployments. Based on our observations in this study, we
can confirm that Microsoft Azure's default security measures would need to be supplemented by proper

token management to keep Microsoft Azure serverless deployments secure.

At a glance, some of our findings might seem overrated. However, recent publicly disclosed breaches
have shown that a critical cybersecurity issue could start with just a single-service compromise. To
address these security gaps, organizations should use custom images or tweak CSP-provided i \

which are not entirely secure by default. This can be done via the Distroless approach b N

distributed, immutable, and ephemeral (DIE) paradigm. Finally, we discuss how increased D \
DIE paradigm in cloud environments can enhance serverless security. \ \ :

@ TREND:

Introduction

Serverless or serverless computing is a popular service that allows developers to deploy code on systems and applications

without needing to worry about the underlying infrastructure or needing high-scalability options.

Serverless functions can be used for APIs and back-end and front-end applications in various programming languages and
frameworks, such as Node.js, Python, Java, PHP, .NET, and Go. Because serverless functions can have different uses and
require different suitable environments, these functions might pose architectural challenges on the side of the CSPs — an
aspect of the service that users have no visibility over. Serverless function execution code is often driven by an event trigger,

such as HTTP access, message queues, and storage events.

These serverless functions' architectural challenges can introduce security risks and provide attackers with different scenarios
where they can access the serverless environment by exploiting user input code vulnerabilities. In this research paper, we
aim to shed light on the security implications of the architectural challenges posed by serverless functions. It is important
to note that these implications do not serve as attack entry points. Rather, these implications provide an opportunity for
attackers to move laterally within the serverless environment after an initial compromise. It is crucial for users to be aware of
these implications and take responsibility for addressing any code vulnerabilities in their input, in order to minimize the risk
of abuse. This report delves into uncovering hidden environmental features that could potentially have security implications.
After analyzing multiple CSPs in our study, we have decided to focus on Microsoft Azure — specifically Azure App Service and

Azure Functions — by virtue of our investigation's initial findings.

Page 4 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

CSP and User Responsibilities

As serverless computing can be difficult to imagine at first, one might begin by thinking of it as code executed on third-party

infrastructure. The CSP is responsible for the execution process of the serverless service, which is usually multitenant in nature and

should be isolated.

Meanwhile, the user is responsible for deploying code into the serverless system, which has a zero-trust architecture for user-
provided input. However, when the user-provided input is an actual source code that will be executed into the system, this becomes
a security concern. This is why it is critical to design serverless environments for executing user-provided input or code that provides

a certain level of isolation, such as a sandbox for executing or running untrusted applications.

If a serverless platform is not flawless in its design, breaking these isolations could have tremendous negative consequences for the
CSP platform, such as CSPs being able to see customers' private data or users having unauthorized access to the cloud infrastructure

itself.

Fortunately, there are several isolation techniques, such as standalone containers and micro virtual machines (micro VMs), that allow

users to isolate applications. However, these isolation techniques come with performance costs.

The way isolation techniques are implemented differs depending on the CSP, the chosen service, and its runtime. Serverless services
depend on a container that runs inside a VM instance on a physical server. Physical servers usually run multiple VMs and each VM

can run multiple containers.

o8

Physical hardware
Hypervisor

Containers

<
s
<
B
<
=

Container security boundary === VM security boundary

Figure 1. Container security and VM security boundaries

When it comes to security boundaries, the actual serverless code is executed inside "the lowest leaves." These are then surrounded

by container isolation techniques, which are separated by VM security boundaries.

Page 5 of 56 The State of Serverless Security on Microsoft Azure

To escape these security boundaries, a malicious actor needs to exploit vulnerabilities within the container engine, kernel, or

hypervisor.

CSPs are responsible for keeping these boundaries secure by ensuring that they cannot be escaped from. To mitigate this risk, CSPs
can use a customized form of a kernel, such as one that does not have unnecessary modules or drivers, or does not require more
security-oriented hardening. CSPs can also choose to implement an architectural design that has an additional security boundary

that usually involves a trade-off between performance and costs.

An example of this second option is the use of micro VMs such as Kata Containers, which allow CSPs to use common container
control interfaces. These micro VMs are lightweight in nature and can be used for additional resource isolation. This means that the
code executed within the container is executed inside the hypervisor, which provides an additional sandbox between the host kernel
and the container. But while micro VMs can directly run on a physical hardware host as well as inside the VM itself, this also comes

with some performance cost.

Container isolation

| |

| |

1 |

| |
- I Kernel
| | 03 r——-—--"=-=-=-=-= == = = = a
S [— I
T Kernel |-
1] | |
! I N I
B . !
i .. | |
[1 . : VM hypervisor .
] : : C 71 I
] S (1 I -

| m m | : A A : i

| |

| Container1 Container2 | |

| | I Container1 Container2 |

I I b e e e e e e e e e e e e e -4

L e e e e e e e e — - — A Container isolation

Figure 2. A comparison of standard containers and micro VM-based containers

The implementation details vary for each CSP. When the host platform is Linux, the containers used are either standalone or UVM-
based. A Windows-hosted platform that has a container platform similar to that of the UVM architecture has a Host Compute System

(HCS) that acts as an additional layer between the host kernel and the container.

Page 6 of 56 The State of Serverless Security on Microsoft Azure

Docker Client Docker PowerShell Docker Swarm Docker Registry

Platform

Independent
l REST Interface

Lo [oo [o [o

Compute Services

Control Groups Namespaces Uhaﬂkc;;’ﬂ'iﬁa Other 05

cgroups Pid, net,ipe, mAt uts |y s, 2fs*, DeviceMapper

Figure 3. Host platform implementation details of Windows and Linux

Source: Microsoft Documentation'

Due to the high scalability of serverless environments, their containers should be executed by one of the following orchestrators:
Kubernetes
Docker Compose
Service Fabric
Custom service orchestration services
Different serverless services use different orchestrators that users do not have visibility over. Although certain serverless services
can allow users to override default settings and use an orchestrator of their choice, doing so requires using alternate cloud services

and advanced settings, which are beyond the scope of this paper. From a security perspective, it should be emphasized that the

serverless function itself can communicate with the orchestrator or even exploit a misconfiguration.

Page 7 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

Analyzing Serverless Security

When it comes to analyzing serverless security, the entry point that triggers the serverless function execution must first be identified.
This entry point can be either a direct HTTP, an HTTPS endpoint trigger that is being called, or an indirect action, such as a certain

event that provides user data that the serverless function will process.

Securing endpoints and writing secure code is the user's responsibility. This involves making sure that misconfiguration issues are

not introduced into the system and that user-provided code is free of flaws or vulnerabilities.

Misconfiguration problems in cloud platforms are rampant, which is why malicious actors have started to shift their focus to abusing

cloud-oriented services. It is only a matter of time before they fully set their sights on serverless environments.

In succeeding sections, we will focus on misconfiguration issues and exploring what malicious actors can do inside serverless

environments once a user-provided vulnerability is exploited.

Another important aspect that needs to be identified is an organization's cloud architecture, such as what cloud services are being
used and how they are being accessed. It is also critical to know if an organization will fully migrate to a public CSP or adopt a hybrid

form of cloud service that will access serverless functions from private networks.

Regardless of a company's cloud architecture, the zero-trust model? and the Assume Breach paradigm?® should be followed to
maximize cloud security. This requires following the principle of least privilege by applying role-based access control (RBAC). Doing
so would limit not only network and storage access available from the function execution context but also the execution time via
timeouts. It is worth reiterating that it is the role of the CSP to provide users with sufficient tools that will allow them to create a
secure configuration. And since most of the services have a default container image for the user's programming language of choice,

the CSP should therefore also provide a secure default container image.

Page 8 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

Technical Analysis

We evaluated several CSPs' serverless environments by simulating a user code vulnerability exploitation to attempt remote code

execution (RCE) on the infected environment using a reverse shell that connects to our own server.

After establishing a successful connection, we ran several commands to analyze the environment, similar to what an attacker would

do. We looked for specific security gaps that we could abuse once we entered the environment.

Our server

Code interpreter l

VAN

Analyze serverless
function

Spawn reverse shell

Figure 4. Attack simulation of a serverless function

Our analysis focused on gathering environmental information such as internal architecture hints, including the orchestrator or
container engine used, timeouts that applied to serverless environments, execution rights and capabilities, networks, and disk

access. Most importantly, we looked for secrets management tools and methods, including storage and transfer of information.

Azure App Service

According to Microsoft, the Azure App Service is used to create "enterprise-ready” web and mobile apps for any platform or device,
as well as to deploy them on a scalable and reliable cloud infrastructure.” App Service provides ready-to-use infrastructure for
applications, and from a technical perspective, it is essentially a Docker container with prepared images and language interpreters

for listed runtime stacks such as Python, Node js, Java, .NET, and Ruby.

The presence of the ".dockerenv" file inside the file system root and the "docker run" command found inside the App Service log

stream confirms that a Docker container engine is used to run the service.

Page 9 of 56 The State of Serverless Security on Microsoft Azure

2022-03-23T14:26:35.970Z INFO - docker run -d -p 8000:8000 --n
EBSITE ROLE INSTANCE ID=0 -e WEBSITE HOSTNAME=nebula-test5.azu

appsvc/python:3.9 20220104.1 python3 /home/site/wwwroot/app.py

Figure 5. Azure log that confirms the use of a Docker container engine
Together with modern standards, the user is able to bind App Service with continuous integration and continuous delivery (CI/CD)

pipelines, such as GitHub repositories and commit triggers.

.NET Java JavaScript PHP Python Ruby

.NET 6 (LTS) Java 8 Node 16 (LTS) | PHP 8.0 | Python 3.9 Ruby 2.7

.NET 5 Java 1l Node 15 (LTS) | PHP 7.4 Python 3.8 Ruby 2.6

.NET Core 3.1 Node 12 (LTS) Python 3.7

ASP.NET V4.8

ASP.NET V3.5

Table 1. Available languages and versions for Azure App Service

Because the service is intended to be a publicly accessible web service, no default access limitation has been set. It is the user’s full

responsibility to limit access if needed.

Azure Cloud

e
. . |
|
U Access |
|

m 3 - — Spawns
Customers
Endpoint
with HTTPS website

Repository

|

S,

-1 L

Developer’s code

&——

Figure 6. Azure App Service with CI/CD integration

Source: Trend Micro Security New?

Page 10 of 56 The State of Serverless Security on Microsoft Azure

Meanwhile, there are different timeouts for web requests and spawned processes.

Timeout for web request Timeout for spawned process

240 seconds Up to 10 minutes

Application and User Permissions

We also discovered that in Linux environments, the application and user permissions within an App Service application run with
root privileges within the security boundary of the container. However, the container root user is mapped to a less-privileged user
inside the Docker host using the user namespace remap feature,® which effectively lowers malicious actors' attack options upon

compromise.

Figure 7. User permission within the App Service environment where the container is running code written in Python

A low-privileged user, such as "www-data,” can be used to run an App Service application. "Www-data" is the default user that web
servers on Ubuntu and Apache use, and which we used as a PHP container image in our investigation. However, malicious actors
can still easily escalate privileges to run it under root within the security boundary of the running container. This is possible when

malicious actors abuse the shortcomings of a security-oriented application design.

Dockerfile

Install OpenSSt [0}
apk add openssh \
&& "root:Docker!" | chpasswd
) 1e sshd nfig fil
sshd_config /etc/ssh/

and conftigu
-p /tmp
ssh_setup.sh /tmp
chmod +x /tmp/ssh_setup.sh \
&& (sleep 1;/tmp/ssh_setup.sh 2>&1 > /dev/null)

80 2222
(D

@ Note

The root password must be exactly Docker! as it is used by App Service to let you access the SSH session with
the container. This configuration doesn't allow external connections to the container. Port 2222 of the
container is accessible only within the bridge network of a private virtual network and is not accessible to an
attacker on the internet.

Figure 8. Screenshot of a custom container tutorial from Azure

Source: Microsoft’

Page 11 of 56 The State of Serverless Security on Microsoft Azure

Malicious actors can perform privilege escalation by entering the hard-coded master password, "Docker!”. This password is typically

used to access the container through WebSSH,® as it cannot be generated as an asymmetric keypair upon first execution.

ubuntu@ip-172-26-1-174:~% nc -1 0.0

6~18.04.1-Ubuntu SMP Thu Oct 21 ©9:59:28 UTC 2021 x86_64 GNU/Linux

; 66e8¢ S & P
10:02 p ’ @.35, 0.42, 0.45
USER i JCPL PCPU WHAT

whoar
root

Figure 9. Example of privilege escalation on a container running within the Azure App Service application

However, it should be noted that the root user does not have all the capabilities of the host machine and is, in fact, limited within
container isolation schemes. Simply put, the container is not running in privileged mode.”
The following are the available capabilities within containers implemented on Linux:™©

CAP_CHOWN

CAP_DAC_OVERRIDE

CAP_FOWNER

CAP_FSETID

CAP_KILL

CAP_SETGID

CAP_SETUID

CAP_SETPCAP

CAP_NET_BIND_SERVICE

CAP_NET_RAW

CAP_SYS_CHROOT

CAP_SYS_PTRACE

CAP_MKNOD

CAP_AUDIT_WRITE

CAP_SETFCAP

Page 12 of 56 The State of Serverless Security on Microsoft Azure

Network

Among the previously mentioned list of root user capabilities, CAP_NET_RAW allows the creation of raw sockets that give access
to lower layer protocols and can be abused by malicious actors to launch low-level network attacks. The running container exposes
two ports: a publicly accessible port for incoming connections that are handled by the application itself, and a port hidden behind

the Azure authentication gateway for remote secure shell (SSH) access that only authenticated Azure App Service users can initiate.

Outbound network connections are enabled by default, which initiate remote connections to internet-available servers. Attackers

can abuse these connections to initiate reverse shell connection attacks.

By default, a local area network (LAN) consists of a minimum of three IP addresses: one for the container network interface itself,

another as the default gateway for accessing the internet, and the third for incoming SSH connections from WebSSH.

Internet

169.254.129.0/24

\
|
I— |
| |
! |
|
I [\ 77/ 0 :
|
I 169.254.129.1 :
: Gateway |
|
|
| 169.254.129.2 164.254.129.3 :
: Container SSH tunneling interface |
|
|
)

Figure 10. Default network scheme

Source: Trend Micro Security News"

These default LAN settings can be altered by modifying the App Service networking settings? on a premium subscription using
virtual networks (VNETs) and hybrid connections. Because there are multiple variations and use cases for different organizational
needs, we would like to emphasize applying the principle of least privilege. From the network perspective, this means denying all
other traffic that is unnecessary for the application to work, especially if an organization's network consists of multiple endpoints
within one VNET.

Disk Access

The source code is deployed inside the “/tmp/{build directory}" folder when a container is executed and CI/CD is configured. Because
containers are mainly designed to be stateless, there is an interesting Server Message Block 3.0 (SMB3) network mount on the "/
home" directory. This volume serves as a persistent storage that hosts website files when CI/CD is not configured. It should be noted
that SMB servers are known for having multiple vulnerabilities in the past. One very popular example of an attack that abused an

SMB vulnerability is the WannaCry ransomware.”

Page 13 of 56 The State of Serverless Security on Microsoft Azure

Secrets and Available Environmental Variables

Secrets are critical items that users need to secure, such as passwords, API keys, and certificates. As for Azure secrets for the Cl/
CD pipeline, these are not located within the container, which is good for security. However, the container is architecturally designed
to include environmental variables that the user does not have visibility and control over. From a security perspective, users should

focus on the following variables:
WEBSITE_AUTH_ENCRYPTION_KEY
WEBSITE_AUTH_SIGNING_KEY

On Azure App Services, users can also customize application settings and connection strings. However, storing secrets in these

locations is highly discouraged as they are exposed as environmental variables that the application or service can access at runtime.

Application settings

Application settings are encrypted at rest and transmitted over an encrypted channel. You can choose to display them in plain text in your browser by using the controls below. Application Settings are exposed as environment variables for

access by your application at runtime. Learn more

{ New application setting < Show values ¢ Advanced edit
/ Filter application setting
Name Value Source Deployment slot setting Delete Edit
SCM_DO_BUILD_DURING_DEPLOYMENT W Ve
Connection strings
Connection strings are encrypted at rest and transmitted over an encrypted channel
= New connection string @ Show values Advanced edit
” Filter connection str
Name Value Source Type Deploym... Delete Edit
i Vi

Figure 11. Screenshot of Azure App Service's application settings and connection strings

Additionally, users should not expose any secrets inside the container’s persistent storage, which can happen when CI/CD is not
configured, as well as when users clone a private repository using an access token. This access token can be found in plain text inside

the " git/config"” file.

root@aa564cdS5cc32:/home/site/wwwroot# cat .git/config
[core]

repositoryformatversion = 0
filemode = false

bare = false
logallrefupdates = true
ignorecase = true

[remote "origin"]
url = @ R R TR TR B
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "main"]
remote = origin
merge = refs/heads/main
root@aa564cd5cc32: /home/site/wwwroot#

Figure 12. Access token information in plain text inside the ".git/config” file

Page 14 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

App Service on Windows-Based
Environments

The Windows environment is not available for all stacks, and malicious actors have limited attack options in this environment

because the Azure Web App sandbox® restricts access to all resources. This restriction also applies to network limitations because

the creation of raw sockets effectively disables ping network tests.

<

Figure 13. Example of limited functionality via the Azure Web App sandbox

However, despite these restrictions, sensitive environmental variables remain present in Windows-based App Service instances.

Figure 14. Environmental variables inside a Windows-based App Service instance

The State of Serverless Security on Microsoft Azure

Page 15 of 56

Page 16 of 56

PowerShell
Core

.NET Java JavaScript

NET 6 Java 8 Node 16 (LTS) | 7.0

.NET 3.1 Java 11 Node 15 (LTS) | 7.2 (preview)

Node 12 (LTS)

Table 2.

Available serverless stacks on Windows-based environments

The State of Serverless Security on Microsoft Azure

@ TREND:

Azure Functions in Linux-Based
Environments

Azure Functions is a purely code-oriented serverless service primarily designed to run a small block of code with any of the following

runtime stacks:

.NET NEV') JavaScript PowerShell Core Python Custom
NET 6 Java 8 Node 16 (LTS) | 7.0 Python 3.9 | Docker image
NET 3.1 | Java 1l Node 15 (LTS) | 7.2 (preview) Python 3.8

Node 12 (LTS) Python 3.7

Table 3. Available serverless stacks on the Linux platform

Azure Functions needs an Azure storage account to create a serverless function. The Azure storage account is where the actual
code is stored in the form of a blob storage.’® The stored blob has a .zip extension, but it is technically a compressed read-only file

system for Linux called "squashfs.”

Once an HTTP-triggered function is publicly deployed, by default, the uniform resource identifier (URI) endpoint requires an access
token to execute the serverless function, unless an anonymous authorization level is set. The token is entered via the "code”

parameter of the URL. This pre-generated token has two types:
A function scope token: A token used for executing serverless code
An application-scope token (host key): The default token that also acts as the master key
An application-scope token authorizes for all endpoint functions. In contrast, a function-scope token works only for defined endpoint

functions. An application-scope token acts as a master key that allows administrator access to the API for environment management

of the serverless function. These keys are stored inside the linked Azure storage account in encrypted form.

i nebula-test.azurewebsites.net

[{"name":"Demol","script_root path_href":"https://nebula-test.azurewebsites.net/admin/vfs/home/site/wwwroot/Demol/","script_href":"https://nebula-
test.azurewebsites.net/admin/vfs/home/site/wwwroot/Demol/ _init__ .py","config href":"https://nebula-
test.azurewebsites.net/admin/vfs/home/site/wwwroot/Demol/function.json","test_data_href":"https://nebula-
test.azurewebsites.net/admin/vfs/tmp/FunctionsData/Demol.dat","href":"https://nebula-

Wona won W wow

test.azurewebsites.net/admin/functions/Demol","invoke url template":"https://nebula-test.azurewebsites.net/api/demol","language": "python","config":
{"scriptFile":"_ init_ .py","bindings":[{"authLevel":"function", "type":"httpTrigger","direction":"in","name":"req", "methods":["get", "post"]},
{"type":"http","direction":"out", "name":"$return"}]},"files":null, "test_data":"", "isDisabled":false,"isDirect":false, "isProxy":£false},

{"name": "Demo2", "script_root_path_href":"https://nebula-test.azurewebsites.net/admin/vfs/home/site/wwwroot/Demo2/","script_href":"https://nebula-
test,azurewebsites.net/admin/vfs/home/site/wwwroot/Demo2/_ _init__ .py","config href":"https://nebula-
test.azurewebsites.net/admin/vfs/home/site/wwwroot/Demo2/function.json","test_data_href":"https://nebula-

test.azurewebsites.net/admin/vfs/tmp/FunctionsData/Demo2.dat", "href":"https://nebula-

test.azurewebsites.net/admin/functions/Demo2","invoke url_ template":"https://nebula-test.azurewebsites.net/api/demo2","language": "python","config":
{"scriptFile":"_init .py","bindings":[{"authLevel":"admin","type":"httpTrigger","direction":"in", "name":"req","methods":["get","post"]},

{"type":"http","direction":"out", "name":"$return"}]},"files":null, "test_data":"","isDisabled":false,"isDirect":false, "isProxy":£false}]

Figure 15. An example of an “/admin/" endpoint authorized by an application-scope token that acts as a master key

Page 17 of 56 The State of Serverless Security on Microsoft Azure

By default, endpoints can be accessed by either HTTP or HTTPS, which is why it is highly recommended for users to enforce SSL. The
function access keys are a security concern when accessing endpoints from public environments. To counter this, Azure supports

third-party identity providers and allows the configuration of APl management authentication policies that users can set."”

Another available form of authentication is public key cryptography, in which either a public key or a client certificate is sent as an
HTTP header. Since the validation of this authentication approach is implemented within serverless function code, the developer is

fully responsible for it. Meanwhile, Azure Key Vault can be used to securely store associated secrets.”®

Client function

Azure

» [

HTTPS endpoint Azure
function Key Vault

—o—
&

Serverless workflow

Figure 16. Azure authentication approaches

The following is how authentication is performed within the Microsoft Azure serverless environment :
1. Thefunction client sends an authentication request. An authentication secret is sent as a header to the HTTPS endpoint function.

2. The serverless function authenticator contacts Azure Key Vault to verify if a secret can be used, such as if a fingerprint is

present within the store.
3. The secret undergoes checking to determine if it is verified and valid.
4. If the validation is successful, the remaining serverless workflow is executed.
The difference between public key cryptography and shared access signature (SAS) is that with the former, multiple secrets can be

used and authorized for a single app using multiple certificates. Public key cryptography is more difficult to guess, can be revoked

on either the Azure Key Vault or the certificate authority (CA) level, and has a longer secret length than SAS.

Azure Functions uses its own distributed platform called Azure Service Fabric'® as an orchestrator, which spawns an azure-functions-
host container.?® In turn, this container executes specific azure-functions-worker functions based on the chosen application stack

where the actual source code is being interpreted.

Page 18 of 56 The State of Serverless Security on Microsoft Azure

Azure Service Fabric
aka orchestrator

l Spawns

azure-functions-host
(Container)

azureOfunctions-python/java/node-worker

Actual code of serverless function

Figure 17. Azure Service Fabric's function as an orchestrator

Azure also allows developers to use Kubernetes as an orchestrator for serverless environments using Azure Kubernetes Services

(AKS) and virtual nodes. However, this service is beyond the scope of this research.

Timeouts

The default maximum timeout for Azure Functionsis set to five minutes. Regardless of the function app timeout setting, 230 seconds
is the maximum amount of time that an HTTP-triggered function can take to respond to a request. This is because of Azure Load
Balancer's default idle timeout. For longer processing times, users can consider using the Azure Durable Functions asynchronous
HTTP API pattern or defer the actual work and return an immediate response. A user can specify a lower timeout to reduce the

amount of time in which a potentially vulnerable service will be available to process malicious actions.

Page 19 of 56 The State of Serverless Security on Microsoft Azure

Function app timeout duration

The timeout durati i ; functionTimeout property in the

wing table shows

Plan Runtime Version Maximum
Consumption X 5 10
Consumption 2.x 5 10
10
Premium X nlimited Unlimited
Premium 2% Unlimited
Premium Unlimited
Unlimited Unlimited
Unlimited

Unlimited

Figure 18. A comparison of Azure applications' timeout plans

Rights and Capabilities

Default user permissions are limited and non-root. The "superuser do" or "sudo" utility is available within the environment, while
write permission is only available inside the “/tmp/" folder. The content of the folder can be stateful if a cache is hit and a previous

environment is used.
No capabilities are available for the running user.

The serverless container is running the main Azure Functions serverless service on TCP port 9091. Other internal services can also
be present inside the container, such as managed identities that listen to TCP port 8081 and allow security tokens to be obtained

within the Azure infrastructure.

Definition

80 Nginx

6060 Mesh and reverse proxy

8081 Managed identities (used to obtain tokens)

9091 Azure Functions endpoints

Page 20 of 56 The State of Serverless Security on Microsoft Azure

Outgoing Connections

By default, there are no outgoing connection limitations. However, advanced subscription plans allow users to configure outgoing

connections.

Matrix of networking features

Feature Consumption Premium Dedicated plan 5 Kubernetes
plan plan

W ves W ves Yes Yes W ves

v gional and Yes & ves

Figure 19. A comparison of Azure networking features per available plan

Source: Microsoft?!

Another important aspect of the serverless environment that needs to be analyzed is secrets management. This is especially true
when the application needs to be authenticated in other services. Such services could be either user- or CSP-provided, and the
application would usually use a form of secret for it to be authenticated.
Proper secret storage mitigates the risk of exposure and compromise. The following are key factors when evaluating secrets storage:
Secret form of storage (whether it is plain or encrypted)
Communication channel used for transfer
Validity (how long secrets are valid and how often they are rotated)
Availability (how long secrets are available in memory)
Azure stores secrets in an encrypted form by default and transfers them using a secure channel. However, users should note that

they are responsible for a secret's validity and rotation. In terms of availability, there is a significant margin for improvement, as we

have observed that some crucial secrets for serverless environments are stored inside environmental variables.

Environmental variables are present within every process and are inherited by default. This means that every child process spawned
within a serverless execution will automatically contain environmental variables of the parent process. Thus, if parent processes
contain secrets, every new process will contain them as well. This significantly increases the chance of exposure since a single

vulnerability in any of these processes could lead to security concerns.

Technically, environmental variables are stored in the stack during the application execution process and are not deleted even after

they are not needed anymore.

Page 21 of 56 The State of Serverless Security on Microsoft Azure

In the course of our investigation, we identified the following environmental variables as having security implications:
. APPSETTING_SCM_RUN_FROM_PACKAGE

° This allows source code leakage when public access to the storage account is enabled.

© To mitigate this security issue, users should disable public access to the storage account.
+ APPSETTING_AzureWebJobsStorage

© This allows read/write permission to the linked storage account.

© This can also lead to a full RCE within the serverless environment.

© To mitigate this security issue, users should disable storage account key access. However, it is important to note that doing

this will disable Virtual Studio Code extensions and impair users' ability to upload to the storage account.
. CONTAINER_ENCRYPTION_KEY
© This allows context decryption, which can be leaked from CONTAINER_START_CONTEXT_SAS_URL.
. CONTAINER_START_CONTEXT_SAS_URI

° This allows encrypted container context with an initialization vector (IV) and SHA-256 of an Advanced Encryption Standard-
encrypted payload.
© This can be decrypted using CONTAINER_ENCRYPTION_KEY.The decrypted container context includes function and host

keys and "MSISpecializationPayload"”, which has client certificate information for identity provider (IDP) services and allows

the authentication of linked services that are beyond the score of Microsoft Azure.

{" “Lk8nHZ/. o/ u.zuﬂqovrazaumszcuz: 1u/027gOWJT y! 7alL iedjL 1TR1 L1
Fly i L4b1TB271cTTLE/TPOIF078 4dUmiNm2yusw] fkwa6dImPCTp! P7B19QKUELOK 33zdsbkX1X07p
L6;p)unwbodmpcrsg1:vm4nanfmyymuanun.xndn;xza.mw)nxmcosapzxunumqnnmx j JKKRT7cAIgvNRg ’l'IHkCGJ#M.X;C:xNASHLIx.HquD.GkSAy‘!r(/hWrCHxPO79$dN7!‘!ﬁ.20P9deKN(LXKdSlASqSAxBlﬂXD/me
igMC4OSHEK3C21VQ1z21 DEC3Ix 1xt 1a D72DBbSM: ¥ iFLE ADtrep! jvéiBCL JARGLVPJIV/tPSDudl
77/pga6Sur: 3minjSYREL2M8U: 35eA4A105PWBFVJIihP94Z 1GDHCVQTVL jzzhMuAj 1 1 bn8mjLr2i 13 yP£+ingAkj7G)jwaLesTIPZ
SpOyk. AMPIBALU+ 9GwIQO. bsBTF: 7Y1 7m0S8QL3 2/3RddDGV1HGorLiwl 7uRARny 3BzugR1H+VxGwDRnw/qrdMvS 6vOn30gAvAS77a1X6 /DDGRICNLV2 X EMEXO0S
JP5//1JUbLC oM 71PDIR6O! ;poczyqxu.:xﬂ:du.mnkucazwxnsxuq;uundbysombnmxxnm;xslauuommx i2E42a5RL l"NLluZn.Dn/SXJIxlunlxKxSthqODdBv] i
AlQHlxDr;sOIqusczwxvz,\fﬂpnbstrDlUEGIxmn!leLJJLUhsPLJPqu7zzSLxxLthdtx/n!zOlunkzn//d]aACDvatYUOXJJ! / y NO: i¥nIOFy
8L269KTEIPKBXCITm/GCAUIGX /8 JBUBE 181 y 1C2+31Y5, 3023VSE7+QKIDL. 1y DpZCt7n4d 3+4FGIXNAADS! 1 pc
OdHOJkJPpthqU/ i5PRg. 2RWb9 i 3EaoDITNQa9 15T It rugCQeRBE1SSP20r IH2qrrdtjip8TemIhYXIWR 784talj i3xaMcL y QnhPDBF
T3ODTSX7EYGh11uFUAYv3haMh. JnPh J2GYbo//yoq. J9bgzvxL. JhL JQJdr+BIYIGYZCL0nEa9SnIdsQIFSO 38rLd2GS51 3mA
Mc!uiwx‘rklsr:L!xxioSo'nllRVoulal QGg 1eKS3572¢88XOTKy. 1Wp+LEPGIUUq iieske rUlaBhe IR8FI2wV/Ueulz ivisPzsIBl 18416 310m/Ko7cH1G+StqoeT
LLIPr6ttALvwPIhSALaIDFLEOL THADMPTgU3RCZOWe i JoumJRZyna/loUﬂCLJlkUUnSZuxb?dhkﬂkavPPxCp9DGHW)GCLS:lDYh!zd2C7 x/mM7GIMqEby NJVHCS/LFén
rmkM6EAIdXuLNe+2VLBUSiVDjIol 3P£c161LhL: J16RALT bgn1KoG1Xa/pVu/KVv. y1Idc67ecEgi 9 4a7ouxfoua;xmcnc~xbo)n/nv.uos“n:xoxcsson:wrvxmnnnr:ocm
klSCNZAlvvxgnkl’nelb’rrBAdSSJP97rL4Yxp7!.9WH/Jqsﬂhplpku69rcsc17PHHHVO)DCACHDLNHA 7sc: QyS+PRRBL1CHLEed i+ixe q i/vk3IE 31 JrygeTH
UnY3bhvONZpjrsebd+QIp+yZiNibl390t8jgSHXAMH / j xunnsnu_x:.nzyu.-mnnsanmzw.uzvs;uqmummuszqus/qu-r-nssuvszxnm.m_qu7snzqu.aucnyxnwnuqyxsuuuuucnexmzzmucnsr.zzunvz
iGPXC1KyLUBSEDa7 Ul 1hHdhbL B TVIp23TIIREDSmI 14 mbzny:lzumnups1mzup:nn7nm/up5nmux JoONzsdF13kJzLecul IVP181Y
reSKImOXi. 3VpFiBH/EA 177 ¥8036wTm/U1nSEVET JY’rbyulOXrLbquéNthCgTSx-M‘}nlBHxlZvR)lUBnc/ZS(YxLOKSHuPhRJhx7c/pYthDql
GVquAJU!GnkBIloqn:ql10chE!TNJpSXR’VDXXpIthTPX/jJX(RszchbuklMBiZDxC.LquQYnquanUCLhGSva!zSFooLFSRV/dvunlvrdPl‘pqnyok’hlgxlllxcgqulIkathH!‘loJl bQ! 6vT1famyi c p+3BAQMYCB+UDXLSt 1036
BCys11ikuSj230bXiNwBHAqLrbT Fpodg. VR j8VP/ jmg4nPT3SeBstqS1MDhqIXRBEHWP/aMSG1RHAX /kdglg BLiZgClrelhwRf. vkq:qzu.nun«nmaosex;nzxuswupnzooc/«zunanqu
Yg3spOX0 e+edpzs20tT2Eq’ is2i \rmvxsb.cxusmzxuyumsmznnpxuosmx«quJur;anxn/pmzmumnar.ounvﬂ uF 31 AmxR£ QWL
1nSXT9ixnOYef 11NG25KHZ1ATIS/aX EXh9AGn1JE4rBOy 1XMows 3bA/95L! 3u936i 1Ri€UEUQ/L32TvV: 0§ JbRDOXe ITIALX jazWQIRIFFMs09 XdnbVVEGRCY
PKSHA3BS FKxqm’ rSOM72CH eB/ uhnvyxuxx.suzvbns;:»onlgnvx1.vxxoanonacl>spnonch)krnpnulmjvvoocjssgurzns;:n £ 33T2a8A7BXCY. Qrs58 M4/ JHARZIJENQGDT
PIWe9IZOHIQU+5tBv/0i4XELIPY1CqIGT7F41RAVE Ib. 103rATkmmdaCLhNECP 420828 Y01PqDOOK] a7 Sust P ThmhTPSCRCVE suSCuMib15aILaD25 5 Inkspe/P1yED19A) ¢/ 1 TVEG/ 1e00000apH2YVddnr TXWBKVGLE Xu
quqluzIJH7-uubranlKlleszrMqulKJSx]V/JqquDwaSXTHNLTlmNqusa yupDg zszonmhw;soqovz:omm;onbnxuuyuuxz-dnzynﬂ Ju9BviuQ
J1CWD6BRL BIR £0dEq11LgbIST: 1aLZTR3IpZ+4£95LCLIBXC/ 732 1pBYPSPTIW+GPNYL 10D+FBi sV2HBJY: YShSPSNhn)U‘Hb‘ilPABB]GRqOlctKPdtOfPou!ubaZlucn‘;LVlPle
J2xXejle6i LYRRLVQ: Lo est yg! Qs /00Kge33Qfa) 7Su7n5/Y!xobrlw!.’uﬂa’rlq]milzn/Xoltot.SIVsl‘GuuLythx/lOGbrClleJAonlevVglnnl(iLQBbShv.vngl(cxév.lknuIHHJayC/u)UHelqdolePll!lAle:JJ!DEqGIpl.uOK)IALqN
nl JySpbLekIEronDQ /pqevxuSubPDSYPSV'VruPy‘ZlDZ(BGthKcSVTK!nHHXBHIIl#soUbZGmokrsm?ADleLbB!UZ7uNK.'60ylanJl.cH0)vhvoleytH rrPéblul 124 3£vk6iQKLIZMICVEGGRTC/ 4W
©0£neg3ITdGCRsVZXBk7kUJIX jGUek+LGn/ JuEMCI 3hITOmQEZOVIV/hUSHpHa/5127A1Ub2bwze+1 1N Jo0sLfarON6CTRK7hj4+yNNWt1se4EuVpE + /GIDhbDP3 'veTInr! 7H1bo7‘2qzyobq
uynuhouzdlunsuxzfnpohm/xuwyluoznulmlovlvca;u1nnssﬂpvauauu-r.cumus)qxnxngwrso:1ukuodnoxpunnwmkuaunuxcx-nu';\Nn.mxmxuuxhs~ BEbT 13kppAyS
PKVFT3b8nVYOR4GIMVPLVEhR Q) 7cOWSRIVDGFPRY2RAILPCLF/ LB6PZh14Qd/ /4TT@1FOFOiqL Taz+upt ID+RAGOOTFPPBYyJGOkBpA7P /u+ iChqVHE Ise2 XavEL1EAS PYGTI {HGSh1JTmoPCLIZ1PLDS
A2mydsxé T£78CuBXzv1 »6up5m:xnztn.umcsslkvﬂxzhxp;zsuxzmnsvxnn- We. ERTXVIBYVKb4H/ g qdBj/GhFgxxrLPd8IVVHOBE ynpt8TohgXiAMBafp
20/3C7x26t9118aTDOWry1GL79201AX8TkaRF2Vn2 11 yN+IPHOP+F KSPQE: PXHIHL:JEMSQxb+ 1VuImeC, nYvT yeEAq
/ xczy).uu 12H2090PNqV. 15SrH7YAg7pPHIY2cSTRGLGChW1 5aqF32GU. jveUces/ IUSXPEX
1h1rsb/BDQ mxxs)nw/umxxx/ 79B/KNE00XLIyXg 1Bwxrk1+283pQq2S 1T 1UEAHRTT 1bbsE p MGBIK F91GD! ¢ Qqdkz£28LUNWCOLKY
17/Gm zCX9vIN¥J1mUlD27rchxp2lstlx 312k/n9P 72wl 3 qOW. g1EYwFkz4B
YLANTHQw2c/ 1of]vc01N01V01h060q8l’2!h4072‘17)(4155/-2)(210 QzFYEDZhQbT iLlrGtdy HM3 5OLF LuHRXTt 1 3MeJ 7pAyeI1a0iqug2nd2 iFwmp6P6pAg
B7bnEPwW] 3 6LutTy /6/41 3ust Y0iHo32Y4s/q08QBr iq/ 1jeAqocqTUiud5001Z4 LEqHqPGK 7D!!95qky5 IhNj g
246Ivemis2asd0Pi £847 i 1fab+EO/ Ix1 2reCd7ALLIPtKMSGLUKJIFZ1YU3HhG62T+XbeM+ JWVL J22QIgA I 31073k
ES09/31133vEyx£HnDQoxKiAITY¢OKIPLqsbyA3tectLDIRXXgTIpEE /udWr: Jnzioiwolpa IPTrp4Fv3IKKCI1qvQDTUACN40/H11904116wwTINOWSZu6B1XBS Lx3hNIs8D4J] YWU42e 4 JWSbUEZV
34xwiol 1¥YBCPTkqWs 3 Umgo+z 24rHN 3 70GCOtPSSNLS zLkIWUIr44F6xq7DNGIL i 1 JWgdbDI+
RTKJuiJrg: 1UXiqRK1T x DsiM=.WjvZEIUNrtyhjkeFVyYFSnIRRXgTnZBWGINFL20Mito=")

Figure 20. Encrypted container context

Page 22 of 56 The State of Serverless Security on Microsoft Azure

Recipe ol a

From Base64
Alphabet
A-Za-z0-9+/=

Remove non-alphabet chars

AES Decrypt

Key
aXOvBRs4jvnYKSghsOIbt07B5+leYmnTd1BhM. ~ BASEG4~

v

Lk8nHZ/2m+6TGUKApFhtNA== BASEGA ~
Mode Input Output

CBC Raw Raw

length: 9196 =
Input lines: 1 + O3 8=

/cYdg+Anphj ICTECMSDgTSSsgFPGgmbouZIL2DHgQVF92aun+32Guz79neYZQNaC6Zq4htv2WPL1u/@Z790WIIDreYyLVME7alLzST
WNd4cAzWL/bBHZSH81edjLUVasRO8UBqYoN1TR1Y5mgCPesCHFDMDOqUozQUHYmco290YqnpGFL1Ft1Y7UzQUXvdELIEKDsDSQreIAZ
NoeFRcIvnEZ/Hkaadyeyg214b1TBz71cT7Lf/TFG3F@783HzpwgvEe Lbu+HWAWY fd8WK9MOeOy8qd4eHKvqWa9ugXBTSfLbNr2oUmsL
GSWPFWQTZPYcL4dUmiNm2yuswlfkwabdImPC7pXcSh5e4CDec8/RCVizmWNQuTkglYp7B190KUTBK4noQR233zdsbkX1X07pLb]jpj8
4hWDO0dmipcFet1cVbMTf4BTPZYyyD1HdYtHLalndF7jxrlsu+QwjBXm7G888p2KILbWromnM3QOI+VgKSOYRMsoL j XoUK9wfMvcsBK
XjKKRT7cAjgvNRgB6YKGNyhDa21+IHkC61+bTaXiGirWABWL1zaHbUe9aGk5Ay9rr/hVW rGWiP079SdN7Ff8a2+P9zVdKNrLXKd5 1AS
q54x8BmX@/zHmn 1gMC+@SHEK3C2IVQ1z1Pydp9p2ziDEc3IrzsZ86bMEIWxaKdF fHrQ8 LXt7TEOFMD/H269IalQXHEZbFBKuZfay2jr
RYRMhU435SehAeAdID72DBbSM10/v4ggkLY0zCFy4MVQhj@erDWhvU+iFLtfoQQ7ptQ4Z@4M rxrCADt repbva4HY/ jv6iBCLN5@UMeSG
0A5FJARglvplV/tPSDudLINgrRAqBugcCT77/pgZ6SuT34Dor9zdNxDXg93minj SYnELZMBUzZc3Zxv+DevBI3SeA4ALoSPwBFvIihP
94Z1gDHCvQ7vLUWyNqOuQw3TAUOEuaT4mUmIjzzhMuAjBUDUOEYmrH1ldxuTESYEMhsK1tBGYPbdYzgDYMbENeou+0Gibn8mjLr2zi7
nD4x6ATtdDO9CwE+TfIjAQqRskuazEQyyPT+ingAk]j7Gj jwal85TIFZSp0ykINGt+BoQQALavdTVetnQwyd8xBQUIdp56iMPIBALU+I
BNYXKYBLIGwIQB3AEDGq4@d2gacSndXsagIUELbsB7FfUqIc@6D7Y LnQxVOUCcQ7m@S8QL31] yHKWQEZszqIN6gAKoQGr2/3RddDgV L
HGo rLHw17uRARNny3BzugRLH+VxGwDRnw/qrdMvS6vQn3ogAvn877aIX6/DDGm1cNtYV2x fMBX0sWNFb+X4a8tNHhE4CvSR2agy LMsPw
t5bwVIP5//1JUbfCjoHIqmX0K4axPIE6ZzH27 LFDIR603VpabOKIx@tuSPLU]jpoefyqiulIFEAUIBDkwCB2bmAXLSKEfgsutTDdDy8Q
LAJb1PBM1xH3H31518+JuoQ1mmI2CfFZwDHDs@i2EiZ2a5RLiko@aZVhweE LPNLIwZmDm/5XJ41iZun1xKi8xLtqODdBvjjCA19WTXDr
t5+I39ibczwxv3ibYpa+YSXrOKIEGIXEwB3v1BL3ILUhSPL3FbKq72Z6LixL6nhd+1i/nI2+fKAak2m//djBACDRv4fYUBX3115CatR
NMdyLsaKeo9UW7Ef+6s6BeFv2EhA0K/VipGPX+DyPwb1VvQaH@Sgk/oKzPo4@CoRBD1i0yoN4WanvLNON7 SwgzDzvXfiYnI@FyuGTHY
ysQcXXKs1CBNynm7@vVIH1vECY2B5UpvEfbknFarwlPX/Q4eqvkRt8L26gKT8IpkBXCITm/GGalIgX/ajBUbQzlal+YAB2Cy9cVXUK

start: [T 3ms on
Output i g et B0 @ O
{"SiteId":7670864730,"SiteName": "nebula-test","EncryptedEnvironment":"3 | VizDzTy30ag/PHD1E7gwhg==
VizDzTy30ag/PHD1E7gwWghXzQpeguHXICV7FYHwuYGqVIF2pJliekzHg75e9pFMSsM3HNtx4Suy499UIqF8Fe9AhoiIMbE3aD2+3b0
Nm5tK4ogMk8fgGtilQgELuSugTYq8HoQaG5p+CGGFNIbwhhQbj2kVy fewd LAESgXADXUPWE+criRgdJgqvjF6/66kxGIqL3UoQEGKL
MedtHbB3J8+0KXFqlWs55NB]j pc@rwgRHToIBd1WF rrA09G1AF im3EgHUxB5euM1B81bn9CfKuRSnw2Cdt8WpktoEWLa7vPwbEG2EFp
1m69PZIC3L686INO+nFT1wMqPOUraBeQo+/0WQTrfjUeTDEBIjbKArLAOS/1yBfY fWDXIg5PGmWoidHedSYnbobScX5n1iwp99BiPr
+MPiUBkm35FWWRp/qqujeChHQPXC91i/ ICPOGWg4UXXhQbD M twkE 15dH1s0CMXTknuLSLAW/96WOQNSyhxqjtLQVgh4NzLmwwrhjg
UwPaknHWHBoTYSXW7@Vww88UDgYcqncIIjPwl3d75awBXV093 tOL+EdQDSVMTKLpFr+h/xukK3s9304L+An70R6WUSeI7KYOV fwPG2Zm
1Zm4tzBIxzSn1TbaYTm7NkukKH6elZIeAZhatY4XF f55d+yzSIMBRO3ThSSojwmBOwCEBOgLhEApNLKPY4FNygU/Z0VvdegfNDpc/Z1
ZaBuTUMu1Zk/kEwCEIyKmQf0Bwef2t4ApOM1pC8DWNG I2pGUSB3iMf2meVUMEYxj pEZh2xdj JiHNOdjvSj xpS40+ANT2GAN1E imPXSG
BXhJBUWSxZEsD8jASXd7TI3muZ5ss inNcT2KIQKEGjgEQ75nYs1hMMP2AuQSzs17e9ePuRt@dwlazT j6uHmmASEIL1ESVaRZL/dF31
cVhTWL576L1iKq6CX17Lhc/t1lar0oYwATN+HBOKkgXPFABIfI8npFZzumvQTH4UK@4xmXbkskNUI69JAiBooQiezSzxatWIPRVL1edV
MmN6YPelXdiv0ITGwgkgmgjleBMnZZv fgaBo3GvCMar0ykXdzKmuRFSWLMHW] cFSNV765pgN81FNz9ur2eNvH768sMalp9BXlaz27Ye
AZLC28IqTL60ZQq@eILglFGoDjotTNho/DtT3tQhF1SEMgVS/IAMBvow+T/VArfincjGwp@45udB8X]jTeksVRQuyGHIVX7BQowKYWr
2WjimLMOK7YuxAV fvxi@Qej IDwWP1FsBxauyMP4c1jGNCnY1LvQIHPeQoV2XzjtTQDZpiBm702X6 1cESQK18 LB+vG7e5+0UWZWIDG)t6
dePnYgbZekgEhj Tggp0rPJaC8Gtl/D7y4drEquvsBSPPTKRK1Xd90IRM2 YHp6odY LcSLPYVUBSZD rFAGAIYOj FWwxTLG3YNCiLcFeC

Figure 21. Decrypted container context

"Secrets": {
"Host": {

"Function": {
"default":
"System": {}
bt
"Function": [
{
"Name": "'Ht
"Secrets": {
"default":

"Gay LOrF | racisXaodzFabs ImrhS15C0OFz

Figure 22. Leaked secrets from decrypted context

When configured, Azure can provide an IDP service that is accessible to serverless applications, which can allow Azure resources to

obtain access tokens. Azure can distinguish between two types of managed identities:

Page 23 of 56

The State of Serverless Security on Microsoft Azure

System-assigned

User-assigned
A system-assigned managed identity is limited to a single resource and tied to the life cycle of this resource. Permissions can be
granted to system-assigned IDPs via the Azure RBAC. Because Azure Active Directory (AD) authenticates managed identities, users
do not need to store credentials in code.
The following is a list of system-assigned Azure resources that can be accessed using AD authentication via the IDP service:

Azure Resource Manager

Azure Data Lake

Azure Cosmos DB

Azure SQL

Azure Data Explorer

Azure Event Hubs

Azure Service Bus

Azure Storage blobs and queues

Azure Analysis Services

Azure Communication Services

Serverless function

Authorizes Jl Gets
l Uses token

-
-] ey

127.0.0.1:8080/msi/token Cloud service

Figure 23. An example of how a system-assigned managed identity is used

Users who would need to access a specific resource in a serverless function need to configure the resource in such a way that it

grants access to the function. This can be checked inside the Identity and Access Management (IAM) section of the resource.

Page 24 of 56 The State of Serverless Security on Microsoft Azure

After the resource is configured, a serverless function can obtain a token from a managed identity endpoint, which is an HTTP

service running inside the container.

Figure 24. An example of getting a token from an IDP inside a serverless function

When the accessed resource is properly configured, it can be accessed using a token that was obtained via the IDP.

Figure 25. An example of an interaction with other cloud services using an IDP token for authentication

From a security perspective, it is important to discuss two access token properties: time validity and validity scope.

The time validity property is straightforward in its definition. This property simply means that when a token expires, it can no longer
be used for accessing a resource. Meanwhile, the scope validity property defines whether a token can be used, as well as whether
it can still be considered valid outside of the CSP boundary. For instance, the scope validity property can determine that a token is
invalid in case token information is leaked. This property can invalidate a token and prevent further damage done by a malicious

actors.

Based on our experiments, we discovered that the token time validity is one day, and that the access token remains valid even when

it is used outside the serverless environment.

Page 25 of 56 The State of Serverless Security on Microsoft Azure

At this point, we would like to strongly emphasize the importance of implementing the principle of least privilege when
configuring RBAC and IAM. There is no need to have an owner or administrator role when serverless functions only require

read-only permissions.

In order for the IDP localhost service to work, it needs to contact an external service to request for an authentication token. The
configuration for the external service is present inside an encrypted container context. However, this container context can be
leaked and decrypted if environmental variables are accessed. Using decrypted content, a malicious user can authenticate a request
to an external IDP service using a leaked client certificates. This means that when variable leakage occurs, malicious actors will be
able to obtain a valid token for linked IDP-authenticated services with permission restrictions defined inside Azure. This also means

that a request can be sent outside of Azure or from internet-connected devices.

Serverless environment

Managed Service Identity
(MS]) token service

Function [. Token provider

Service to be authenticated

Figure 26. The architecture of a serverless IDP service

1. Aserverless function sends a request to the MSI token service (127.0.0.1:8081/msi/token).

2. The MSI token service proxies a request to an external token provider and authenticates itself via a client certificate that has

been generated for the environment.
3. The MSI token provider sends a response to the internal token service.
4. Theinternal token service sends a response to the serverless function.

5. The serverless function uses the token to authenticate itself into the desired resource.

Page 26 of 56 The State of Serverless Security on Microsoft Azure

The X509 client certificate is present within the encrypted context of the container and is unique per application ID (subject in

certificate) with enabled managed identities. The certificate is valid for 180 days.

) . Certificate X
General Details Certification Path General Details Certification Path
Show: | <All> v Show: | <All> v
Field Value A Field Value A
|j Issuer Microsoft.ManagedIdentity [Issuer Microsoft.ManagedIdentity
=] valid from Wednesday, April 20, 2022 8:... =] valid from Thursday, March 31, 2022 12:...
|;__| valid to Monday, October 17, 2022 8:... ‘;-—‘ Valid to Tuesday, September 27, 2022...
=) subject 004a4bc9-86d9-44b4-8e73-b6. ..)| subject 7a480c9c-120-4872-9123c8...
|- |Public key RSA (2048 Bits) =) Public key RSA (2048 Bits)
I*\ Public key parameters 0500 Lj Public key parameters 0500
'LiLl Enhanced Key Usage Client Authentication (1.3.6.1.... @L‘ Enhanced Key Usage Client Authentication (1.3.6.1....
55 8utharity Kev Tdentifier KeuTN == 25dfrd 7ardh2arNAdh Y, 55l avtharity Kev Tdentifier KeuTN =a36Afrd 7a-2h 2arNAdh v

CN = Microsoft.ManagedIdentity

CN = Microsoft.ManagedIdentity

m
o

Copy to File...

n
2
1

erties... Copy to File...

oK

Figure 27. Details of managed identity certificates

User-defined identities are bound to a specific resource. For instance, one can bind an Azure Key Vault to a serverless function and
assign read permissions to the Vault's secrets. Once this is done, the user-defined identity can then be used to retrieve secrets from

the vault. The identity is identified by its “client_id" property, which is used to retrieve access tokens from the service.

The same MSI token service is used to obtain tokens for user-assigned identities and to minimize security risks. When using this
service, users should employ the principle of least privilege, which prohibits the authorization of a service or an application with
more rights than it needs. Users can also benefit from limiting the availability of the linked service, or from avoiding leaving the
service publicly available to limit the possibility of token leakage. Notably, token leakage can be abused for authentication outside of

the serverless environment's scope.

Another example of an environmental variable that poses a security risk is the linked storage account connection string. When this
secret is leaked, which can happen when the "AzureWebStorage” environmental variable is leaked, it could lead to a full RCE within
the serverless context. This threat scenario requires a vulnerability that would leak environmental variable content, which could be
caused either by a vulnerability inside the deployed user function or the environment itself. Because the environmental variable
contains a connection string, when a storage account key access is enabled, a tool such as the Azure Storage Explorer?” can be used

to manipulate the storage account.

The State of Serverless Security on Microsoft Azure

Page 27 of 56

Connect to Azure Storage

Enter Connection Info

Enter Connection Info Summary

Display name:

Connection string:

Figure 28. The Azure Storage Explorer connection string dialog where the "AzureWebStorage" variable can be entered

When connected, a user can simply delete and upload a new version of the serverless function, which can alter the serverless

function itself.

N scm-releases ‘m X N arure-webjobs-hosts X s Fslease Notes: 1.22.1
v - dk
Upioad | Downioa 8 o 1 one ot Manage
&} Quick Access
v ¢ Local & Altached Active blobs (defautt)
v [Siorage Accounts
> 4 (Aftached Containers)
B (Emulator - Default Ports) (Key)
*/ B4 storageaccountdefauaBs3 (Key)
* jm Blob Containers
i azure-webjobs-hosts
M azure-webjobs-secrets

D scm-latest-nebula-test.zip 11.02.2022 11:55 BlockBlob application/zip

@ scm-eleases
-m File Shares
m Queues
~ @ Tables
= $MetricsCapacityBlob
$MetricsHourPrimaryTransa
¢ $MetricsHourPrimaryTransa
$MetricsHourPrimaryTransa
g $MetricsHourPrimaryTransa
> [Data Lake Storage Gen1 (Preview)
> & Cosmos DB Accounts (Retired)

Figure 29. Altering a serverless function using the Azure Storage Explorer

This can allow the execution of an attacker-provided code within the serverless function execution context.

Not Secure — nebula-test.azurewebsites.net

YOU HAVE BEEN HACKED!!!

Figure 30. Execution of an altered serverless function

Page 28 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

Azure Functions on Windows-Based
Environments

Similar to the Azure App Service, the Windows-based Azure Functions environment only supports selected stacks and versions, such

as .NET-powered applications, and those running on Java and Ruby. Like the Azure App Service sandbox, the Windows-based Azure

Functions service also has limited capabilities.

During our investigation, we observed sensitive environmental variables in this environment. However, compared to Linux-hosted
serverless applications, we did not see CONTAINER_START_CONTEXT_SAS_URI, which is the container-encrypted context linkage.
What we found instead was the connection string to Azure storage, which unfortunately leads to the same threats that we have

discussed regarding the Linux environment.

Figure 31. Windows-hosted environmental variables on Azure Functions

Version 1.24.1 of Storage Explorer is available.

P Search for resources Y T~ & o + B~
Upload Download = Open New Folder SelectAll Copy
¢ Quick Access
V' @ Local & Atached & = v 1 Cumentv win-nebulab8ca
v B4 Storage Accounts
> 4 (Attached Containers) Name
> B (Emulator - Default Ports) (Key) & ssh
v B4 nebulagroupb2b2 (Key) @ ASPNET
V @ Blob Containers
i azure-webjobs-hosts il cata
i azure-webjobs-secrets Ml LogFies
\/ .m File Shares i stte
.M win-nebulab8ca
> mm Queues
> m Tables

B host.json

“encrypted": true

"functionKeys": [

"hostName"
"instancell

“source": "runt
"decryptionKeyI

Figure 32. Connection to Azure Storage using an environmental variable connection string

Page 29 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

Comparing Azure Services on Linux-
and Windows-Based Environments

After investigating the Azure App Service and Azure Functions serverless services, we have discovered several security gaps that are
mostly related to environmental variables that are used to store confidential information. We believe that environmental variables
are one of the worst places to store secrets because using them for secrets storage provides malicious actors with an additional
attack surface copied within every child process that can be seen in case of compromise, or when memory access vulnerabilities

are abused.

Another security issue that we have identified is related to users' unwise architectural decisions. An example of this is the use of the
master key for SSH access, which would then allow privilege escalation inside a container with a known password. It is therefore

imperative that users choose a public key cryptography for authentication to the SSH service to keep the system secure.

Some of the sensitive environmental variables also contained publicly accessible URL endpoints together with valid tokens, which
upon exposure can grant malicious actors access to other pieces of sensitive information. Such sensitive information could then be

used for further attacks on cloud environments.

It is also imperative to determine whether these URL endpoints should be inherently publicly accessible. If the URL endpoints
are publicly accessible, they are not limited to the cloud environment alone, meaning that tokens should be inside environmental

variables.

Serverless environments are designed in such a way that the user is responsible for implementing security best practices and
policies to keep them secure. Indeed, some of these settings are not enabled by default, nor are they included in all available Azure
serverless packages. The application code security deployed by users is crucial because without proper security, it can serve as an

entry point for attackers.

According to our analysis, applications running on Windows are more secure than those that are running on Linux. In the Windows
environment, an application sandbox prevents access to all resources. Meanwhile, the Linux environment only uses Docker isolation.
Even though the Docker container engine is used for running containers inside the Linux environment, it is not the only isolation
mechanism; the tenants are also separated at the hypervisor level. We also observed that some sensitive environmental variables

that are found in the Linux environments are not present inside Windows environments.

Page 30 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

Improving Standard Security Using
Custom Images

Both Azure App Service and Azure Functions give users the option to create their own Docker images to run serverless code in Linux

environments. Because our investigation showed that sensitive information can be found inside environmental variables, we tried to
enhance the official image and harden overall security while retaining maximum functionality. Overall, we were mostly successful in

our efforts, except for the SSH access on Azure App Service, which would require enhancements on the side of the CSP.

Azure Functions includes the App Service plan, which guarantees physical hardware allocation that we can imagine as a VM. Inside
that, we found a Docker container engine installed. This engine executes a container image that is built with the Azure-functions-
host runtime. Azure-functions-host effectively manages the Azure Functions runtime, making it responsible for communication with

Azure back ends.

The Azure-functions-host executes the Azure-functions-worker when the serverless function execution is triggered, which then

executes the actual serverless application that has function app code provided.

Serverless
application code

Figure 33. Azure App Service plan inclusions

The actual Docker container image could be replaced by a custom image that must contain the azure-functions-host so that it can
work with Azure Functions. It is important to note that the custom container option is only available for creating function apps on

the Linux platform. A premium subscription plan is also required.

Page 310f 56 The State of Serverless Security on Microsoft Azure

Create Function App

Basics Hosting MNetworking Monitoring Tags Review + create

Create a function app, which lets you group functions as a logical unit for easier management, deployment and sharing
of resources. Functions lets you execute your code in a serverless environment without having to first create a VM or
publish a web application.

Project Details

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

Subseription * (0

Resource Group * (D) (New) Resource group e
Create new

Instance Details

Function App name * | Function App name

.azurewebsites.net
Publish * (:) Code '@] Docker Container
Region * | Central US v

ﬂ Not finding your App Service Plan? Try a different region or select your App
Service Environment.

Operating system

Linux is the only supported Operating System for your selection of runtime stack.
.) .
Operating System * (®) Linux

Figure 34. Creating an Azure Function app with a custom Docker container

We followed Azure documentation for creating a custom container using Python as our code interpreter.?® However, we made a

slight modification and chose a private container registry inside Azure for deployment.

Registry * | researchdemoregistry W
Image * | azl W
Tag* | latest v

Figure 35. Setting a private registry for a custom container serverless deployment on Azure

After building the container image locally, we pushed it into a private reqgistry, which we then configured to be linked with serverless

functions.

Page 32 of 56 The State of Serverless Security on Microsoft Azure

Docker build

[. AR
U‘ Pushes image) m
Local Docker Azure private

container repository

Retrieves T

Serverless application

Figure 36. Deployment diagram

Building a Custom Image

We have chosen mcr.microsoft.com/azure-functions/python:4-python3.9 as our base image from the Azure Functions base list*

available via the Microsoft Artifact Registry.2®

First, we must acknowledge that some environmental variables will most likely be required to have the function-host running for
Azure Functions to work. However, we also wanted to ensure that our serverless application would not have access to sensitive

variables.

It is also important to compare the container image differences of the chosen Python stack when creating an Azure function via

azure-functions/mesh:3.7.1-python3.9 and the Azure Functions base Python image.

The first difference is that the mesh container image executes an initialization wrapper script under the root user. The app user
would then execute the WebHost.dll binary using the "sudo” command, wherein all the environmental variables would be passed. The
azure-functions/base images would execute WebHost.dll binaries under root user by default. The WebHost.dll would then execute

the python-worker, the process that will execute the serverless code itself.

Page 33 of 56 The State of Serverless Security on Microsoft Azure

Azure Functions)] Azure Functions

mesh container image ; Base-Python image
SH Lo DLL
launch.sh) . WebHost.dll
SH
run.shrun.sh 3 3 python-worker
DLL
WebHost.dll

python-worker

Figure 37. Comparison of container images

Custom Image Goals

Based on our investigation, we have decided to set the following goals:
To get rid of sensitive environmental variables inside serverless applications' executing context
To minimize required permissions and needed container images for our serverless application

To have a minimal impact on Azure Functions' functionality

Getting Rid of Sensitive Environmental Variables

WebHost.dll needs sensitive environmental variables to run. However, because of the nature of the selected application design, they
are inherited by the python-worker process, wherein serverless code is also executed. Since environmental variables are part of the

process memory, our options are limited.

Another thing to consider is that other processes’ environmental variables running under the same user can be printed just by using

read permissions. This is because of the nature of the "/proc/" file system.

Page 34 of 56 The State of Serverless Security on Microsoft Azure

Figure 38. Accessing other processes' environmental variables

Because of this feature, our best bet was to modify the WebHost.dll binary or its configuration to execute the language-worker under

a different user and without accessing sensitive environmental variables.

By analyzing the container image build process, we were able to investigate the best injection point to alter the execution behavior.
Because our interpreter was Python, we determined that the easiest way to inject code was to alter the Python binary within the

container and to replace it with a custom shell script.

S5 TTY STAT TIME COMMAND
41996 pts/e 6 Jazure-functions-host/Microsoft.Azure.WebJobs.Script.WebHost
python /azure-functions-host/workers/python/3.9/LINUX/X64/worker.py --host 127.0.0.1 --port 46793 --workerId 62bc13
692 pts/1 2:46 /bin/sh
3108 pts/1 0:00 ps ux

which pythen
fusr/local/bin/python
python -V

Pythen 3.9.9

Figure 39. Environmental analysis of the container

Our custom shell script was simple. It executed the Python worker as a different user using the "sudo -u www-data” command
without passing environmental variables. To pass environmental variables, sensitive ones can be suppressed by using the unset

command and the -E parameter of "sudo.”

Page 35 of 56 The State of Serverless Security on Microsoft Azure

sudo www-data python-int

Figure 40. Executing the Python worker via the user "www-data" command passing all other parameters

We were able to get rid of environmental variables and limit access to sensitive variables when needed.

Figure 41. A running Python worker without additional environmental variables

Figure 42. Denying access to sensitive environmental variables

We also tested if the changes we made would still allow us to run our serverless function within the Azure environment successfully.

Page 36 of 56 The State of Serverless Security on Microsoft Azure

& nebula-custom.azurewebsites.net

Microsoft Azure

Your Functions 4.0 app
is up and running

Azure Functions is an event-based serverless ‘
compute experience to accelerate your
development.

Learn more @

Figure 43. A custom container running on Azure without environmental variables

Minimizing Container Binaries and Permissions

The second goal was to minimize container binaries and their respective sizes to the bare minimum, which means minimizing it to
include only the application and its dependencies. This is referred to as the Distroless approach.?® The base image for our custom
container would be minimized by removing binaries that are not essential for it to run. Due to the removal of inessential binaries that

could also be abused by attackers upon exploitation, the container image itself will become smaller.

The binaries that we removed from the container image were all binaries from the "/bin" directory. Our custom shell was also in
this directory, which is why we needed to update our environmental tweak. We also removed the “curl,” "wget,” and "perl" binaries

located in the “/usr/bin" directory in our investigation.

Page 37 of 56 The State of Serverless Security on Microsoft Azure

FROM mcr.microsoft.comfazure-functions/python:4.0-python3.9

zurekebJobsscrip Jhome [s WWroot
Lle__IsEnabled=true

COPY reguirements
RUM pip install -

RUN rm

RUN rm -T

RUM rm - fusr/fbin/p
RUN rm Jbinf*

EXPOSE

Figure 44. An example of a Distroless container Docker file

Our custom script no longer worked because we removed the shell interpreter. To counter this, we replaced our custom script with a
custom compiled binary that does the same job but uses the "execve" system function instead of a shell interpreter.?” This function
also allows the setting of environmental variables for the new process, allowing users to specify which non-sensitive environmental

variables would be needed in their application. Users can also dynamically obtain variables via the “getenv” function.?®

**argv) {

k = (argc + 5) * (Sl
*dargs = (*I)malloc(k);
memset(dargs,0,k);

¥ c = **)dargs;
c[e] "Jusr/bin/sudo”;
c[1] = "-u";
c[2] data";
c[3] =
c[4] "fusr/local/bin/python-int";

for(i =0; i< arge-1;i++){
c[5+i] = argv[1+i];
}

ret = 6;
* environment[] = {"myENV=VALUE",
ret = execve("/usr/bin/sudo",c, environment);

free(dargs);
ret;

Figure 45. Custom binary proof of concept

Page 38 of 56 The State of Serverless Security on Microsoft Azure

"myENV": "VALUE",

"PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"LOGMAME" : "www-data",

"USER": "www-data",

"SHELL": "/usr/sbin/noleogin”,

"TERM" : "unknown",
"SUDO_COMMAND": "/usr/local/bin/python-int fazure-functions-host/workers/python/3.9/LINUX/X64/worker.py --host

127.0.0.1 --port 3B053 --workerId 45cHBdfel-cc78-40f6-b366-cabl09f478ed4 --requestId fli4dblba-lc60-4866-ba3i-

4062acBf6611 --grpcMaxMessagelLength 2147483647",
"SUDO_USER": "root",
"suDo_UID": "Q",
"SUDO_GID": "a",
"LC_CTYPE": "C.UTF-8"
}

Figure 46. A successfully deployed custom image inside the Azure serverless environment where printing environmental variables
are available to the executed serverless code

Based on our analysis, we can produce a custom image on Azure App Service, have a low-privileged user execute code, get rid of

sensitive environmental variables, and harden the "Docker!” root password with minimal distribution.

The State of Serverless Security on Microsoft Azure

Page 39 of 56

@ TREND:

How to Improve the Overall
State of Serverless Security

For as long as we have been studying and working in cybersecurity, we have understood that the concept of one-hundred-percent
security is a myth. As cybersecurity defenders, we can only mitigate risks and impose difficulties on malicious actors, but at the end

of the day, there is no such thing as an impenetrable system.

There are many security models to help achieve a good level of security. One of the more popular and widely adopted models is the
confidentiality, integrity, and availability (CIA) triad,?? a well-researched and experimented model that most industry standard guides

use as their base for security development, implementation, and validation.

After we performed a deep dive into the CIA model, it became clear to us that the model weighs security against the usability of
the handled data. In this model, confidentiality guarantees that the data is only accessible to those who have the right to access it.
Integrity protects the data against outsiders being able to read, change, or cause damage. Meanwhile, availability requires that the

data be available when it is needed and when a user passes all security checks.

©

INTEGRITY

A

INFORMATION
SECURITY

CONFIDENTIALITY

Figure 47. The CIA triad model

For example, if a developer applies the CIA model for a web application with an e-commerce component, the model would help the

developer find the best solutions for the following business and security concerns:

Confidentiality: Before making a purchase, the customer needs to create a user account with a unique user ID. The user

account also needs to be protected by a password. The web application should also offer multifactor authentication (MFA).

Integrity: At the time of the purchase, the list of items or data that the customer sees must be the same as the list on the

merchant side.

Availability: The application's website or portal needs to be available for customers at all times so that customers can access

it at their convenience and without interruption.

Page 40 of 56 The State of Serverless Security on Microsoft Azure

Although the DIE model, which is not as widely known as the CIA model, is sometimes viewed as a good competition, it is also seen

as an unachievable model to use.

If we think about securing regular infrastructure, the DIE model might work. However, it might prove to be really difficult, if not
impossible, to implement such a restrictive model on a physical server that runs a full operating system with several applications
installed that need to communicate with each other. The DIE model can be seen as perfect in theory, but it might prove to be difficult

to implement in real life.

Although DIE is not as popular as CIA, it is possible that DIE might be a good model to use with more modern forms of computing

infrastructures.

The growing adoption of cloud infrastructure, containers, or a combination of both, raises the possibility of implementing the DIE
model. Because of the manner of orchestration, it is easier than ever to distribute a system without needing Open Virtualization

Formats (OVFs) or snapshots.

Containers that are properly developed and are only running one process can be easily immutable. All modifications needed can be
done during the development of the container at runtime. There is no real need to change the system, and for better security, there

might not be a need for a read/write system at all.

Once a container, a pod, or a cloud instance runs without needing to be online anymore, by its design, it can be taken off without any
prejudice when needed and without delay, in order to power it back again or to use it to retrieve network configuration. Ephemerality

can thus be achieved without losing anything important.

Achieving the DIE Model

The use of this particular infrastructure does not automatically mean that DIE is achieved. Based on our assessment of real-life
scenarios, it was not rare to find improper implementations of DIE. These scenarios included companies that moved their whole
infrastructure to a CSP but kept the same model as if they were still using a local data center and using only workload servers but on
the cloud. Another example involved companies using a single container to run everything, similar to how a regular physical server

would run, except without orchestration or service isolation.

These scenarios undermine not only the purpose of leveraging these more modern infrastructures but also their security
implementations. Sadly, some users think that using cloud environments or containers is more secure and that there is no need to
hire cybersecurity personnel or use security products or tools. This is far from true — even if users follow security best practices, it
is still highly recommended that they also rely on security solutions to help keep their cloud and container environments protected

against threats.

Page 410f 56 The State of Serverless Security on Microsoft Azure

§ @ 0 0----0

y 3 1 1

. r 1 1

. :] 1

] 0----0 . 0=-=-=--0

. 1 1 .
1 1 1 Shared Shared operating
! : . infrastructure system kernel
' 1
0o----0 i

Physical

infrastructure 1 1 Q 1 f'

: : : : : 11
3 vs Virtual vs . Container-as-a-service
| - machine-as-a-service .]

Operating system and . . 1 ———

] app libraries |] Q

Operating system and

: Application 1and libraries

app libraries 3 -------------------- :
--------------------- :] —_—— :
Network 1 1 |
e Q i] X
@) . Application 2 and libraries
Virtual network ;
S T T T S AR
—— User responsibility] Q

CSP responsibility ﬁ

Figure 48. The shared responsibility shift over different infrastructures

Cloud platforms and containers began as a kind of a technological revolution that brought about many monetary, resource, and
security advantages. As previously mentioned, applying the DIE model on cloud infrastructures would be easier than less modern
infrastructures. However, a new revolution in the form of serverless technology has started gaining more ground in the last few

years. Indeed, already some young companies are being born and developed using such technology.
Up until this point, we have discussed and presented what serverless technology is, how it should work ideally, as well as how it works
realistically. And although it is far from being perfectly secure, in a nutshell, it works with each principle of the DIE security model:

Distributed: Serverlessis distributed by nature. It only runs when it is called, and a user can determine the default configuration

for when, where, and how triggers are called.

Immutable: Most of the serverless services we presented in our research have their file systems fully or partially read-only by
default.

Ephemeral: Most of the serverless services we presented in our study are also fully or semi-ephemeral by default, with a small

cache being implemented for spare resources.

Page 42 of 56 The State of Serverless Security on Microsoft Azure

The Full Operating System and Native Tools

In our analysis, the framework we created relied heavily on native tools for acquiring enough information on the systems, as we
would expect an attacker would do. We observed the availability of native tools without access restrictions on most of the services

we checked.

In some cases, the whole operating system was present and available as a container. With such tools, it was relatively easy to map

out crucial information about the environment and plan the next test phase.

Tools such as "ping,” "ip,"3° "ifconfig,"*' "netstat,"*? and "ss"3* helped us understand the environment better by giving us information
on whether it had internet access, what kind of network configuration it had, and if there was any other host alive on the same

network in some cases.

For services which had internet access, "wget" and "curl” made it possible to download other tools for further exploration of the
environment. Another very handy network tool that can be dangerous to have around is called "netcat”, which allows the creation

of a low-effort backdoor.

In certain cases, user promotion tools such as "sudo” or "su" were also observed. This does not necessarily mean that these tools

could be directly used by the user, but these can be targets for exploitation.

As mentioned in the beginning of this section, there's no such thing as one-hundred-percent security. However, it is helpful for
organizations to remove unnecessary tools — ones that malicious actors can abuse. The removal of such tools can impose a bigger
challenge for malicious actors in the sense that they would need to develop their own arsenal, find a way to drop them in the
system, and find an alternative way to execute them. Also, on top of developing custom tools, users would also need to consider

dependencies since there is also an option not only to remove unused executables but also libraries.

Function Container

In most serverless services, the container that runs the code has all the resources of a full Debian-based operating system. Malicious

actors who gain access to this environment also gain access to a great number of native tools.

Figure 49. A list of all available default commands inside the "/bin" of the function container

Page 43 of 56 The State of Serverless Security on Microsoft Azure

/bin | eolunn

Figure 50. A list of all available default commands inside the "/usr/bin" of the function container

In case the tools are not enough, malicious actors can use “curl” and "wget" to add more tools to their arsenal for the next phase of
their attack. Aside from this, an attacker can abuse native tools to get enough information about the operating system, the kernel,
and the container runtime. If any of these are vulnerable, a malicious actor can download, compile, and deploy an exploit into the

system. This is because of the presence of compilation tools that have execution permissions.

Figure 51. An example of available tools inside serverless environments that are commonly used in cloud attacks

Container Cache Removal and Lifetime

The original idea behind the use of serverless functions and containers as they pertain to runtime and data is to be able to recycle
the serverless host or container as much as possible. This means that ideally, the serverless host or container should not hold any

considerable amount of information.

Page 44 of 56 The State of Serverless Security on Microsoft Azure

In an ideal scenario, a container would run as a single process. If the purpose of the container does not involve storing information

such as logs, or if it is not meant to serve as a database, everything inside it should be disposable.

In the serverless world, the delineation is more defined. The container or host of the function runs the code and exits, effectively
killing the container or micro VM. If the container or host processes any data that must be retained, it gets forwarded to another
service dedicated for that sole purpose. However, most CSPs implement a kind of a cache so that the user does not get a “cold" start

every time a function is called.

That is where the line between security and usability should be drawn. Although not having a cache could impact initial performance,
having it can give an attacker the opportunity to access the environment and drop different pieces of their arsenal to further expand

the attack surface.

EE) noo $cd /TMP
(— ooo $wget arsenal
_EL Time out
Attacker Web application First exploitation

$ make Kernel.xpl
$ make OS.xpl
Time out
Second exploitation
XPL
Third exploitation $./0S.xpl
#

Figure 52. An example of an exploitation wherein an attacker breaks as a non-root user and downloads its arsenal under “/tmp";
the attacker then uses native building tools to compile exploits for further exploitation

Token Management

CSPs commonly use tokens to provide a secure method of communication between the user and the server or between services.
Token authentication basically works by making sure that every request to a service is accompanied by verification data that checks
the authenticity of the request. Since tokens are not necessarily encrypted or hashed, the following are basic recommendations to

keep their implementations secure:
Keep tokens secure and protected.
Rotate tokens.

Use different tokens per application.

Page 45 of 56 The State of Serverless Security on Microsoft Azure

Consider configuring token expiration.

Do not use tokens out of context.

During our research, we noticed that tokens are used in two different phases of the serverless implementation. First, tokens are
used on the user side. Most CSPs offer command-line interface (CLI) tools and develop application extensions®*! to manage all cloud
services, including serverless ones. To start using the token in this serverless phase, the user needs to input credentials at first login
or configuration. For the purpose of not having to provide it at every request, the client creates access tokens to authorize future

requests.

? Credential

Credentials @ Client e Access token
Access token Access token
® ®
< U
@ Authorization @ Resource
server server
End service

1 3 Client transfer user’s
User accesses resource . . credentials with OAuth keys

© @

v

Client request authorization 3) Authorization server gives .
usually with a login page 1 X access token . Authorization -

L ¢ 2) .) ¢ @—Z server

User inputs credentials ! . Transfer access token
— - ,)

1_@ ’ Client .—@
Resource - ! .

owner 1 User can access the Gi toth
1 lication ive access to the resource
applicatio Resource

) ¢ @—I) ¢ @—I server

v

Figure 53. An ideal token management service

Page 46 of 56 The State of Serverless Security on Microsoft Azure

In some of these implementations, the tokens are stored in a plain-text format on environment variables that are meant to last
for as long as the computer session lasts. The tokens can also be stored in text files with the same permissions as that of the user
who initially logged in. Because tokens are easily accessible and can be used in a different context, they have become a target for

cybercriminals who want to hijack cloud accounts.

Immutable Environment

Another effective security implementation — one with a high impact on threats but also a large impact on usability — is restricting
changes within the environment. Once you build your system with a kernel, an operating system, and applications, nothing can be
changed anymore. For a long time, having an immutable environment was very hard to achieve, because servers can have more

than one purpose, or because the files inside the server cannot be static at all times and can change according to use.

Although it is hard to achieve a completely immutable system, users have plenty of options to harden their systems and achieve
partial immutability on Unix-based operating systems to granulate access rights on determined directories and file systems. Based
on our investigation of serverless implementations of different CSPs, users can achieve partial immutability by restricting certain

mount points’ writing access.

Given significant advancements in technology and assuming that containers and micro VMs have better restriction implementations,

we can be more aggressive in our approach toward immutability.

The container can be configured to have read-only permissions on every mount point, and if a write permission is needed, it can be

granularly given to a specific mount point, which in most cases is “/tmp,” without giving it an execution permission.

During our exploration of serverless scenarios, much like ordinary infrastructures, after an attacker exploits the application and
gains access to the file system, the attacker would also look for any native tool that would be available for further enumeration and

exploitation. They would then download these native tools or their source code for compilation.

Given this scenario, an attacker who eventually breaks in and gets file system access would not be able to download any tool if the file

system has read-only permissions. Even if they get lucky and succeed in downloading their arsenal, they would not be able to run it.

These restrictions are, again, neither new nor revolutionary and are a headache to implement. They have also been restricted to a
very specific infrastructure scenario, such as embedded systems. In contrast, with containers and micro VMs, permissions can be

implemented like any other security requirement.

Page 47 of 56 The State of Serverless Security on Microsoft Azure

$ docker run --rm -it -v ${PWD}/test/noexec:/tmp ubuntu
root@a8d686f8c35d:/# cd /tmp

root@a8do86f8c35d: /tmp#

root@a8d686f8c35d: /tmp# ./1s -1

total 140

-rwxr-xr-x 1 root root 142144 Jul 13 14:30 1s
root@a8do86f8c35d: /tmp#

root@a8d686f8c35d: /tmp# exit

$ docker run --rm -it -v ${PWD}/test/noexec:/tmp ubuntu
root@369a@la738df: /#
root@369a01a738df: /#
root@369a@1a738df:/# cd /tmp
root@369a@l1a738df: /tmp#
root@369a@1a738df : /tmp#
root®369a@1a738df:/tmp# ./1s -1
bash: ./ls: Permission denied
root@369a@1a738df: /tmp#
root@369a@1a738df: /tmp#
root@369a@1a738df : /tmp# I

Figure 54. Comparing a container before and after removing execution permissions from a specific folder,
which is a security best practice

Restricting Shell Access

In computing terms, a shell is essentially a program that takes an input from a user and forwards it to the operating system to
process. Nowadays, even the most classic Unix systems have graphical interfaces. But for system administrators, the shell is still the
main way to interact with the system. Not surprisingly for threat actors who target Unix systems, a shell has an important role in

attacks. This is because although restricting access to it is vital for security, it can be hard to implement at times.

It has become more apparent that security implementations are becoming increasingly restrictive. Almost all the attack scenarios
that we have described up to this point grant access to the file system. It is, after all, ideal for an attacker to have valid shell access
to have the ability to map out the environment, use native or downloaded tools, move laterally to other services, or simply hijack

sensitive data from inside the container.

Restricting the shell can also mitigate a security issue that is caused by a malicious script, as it would be applied to whatever is
running inside the environment — and not only if an attacker gets access to it. Although it is not the ultimate, foolproof technigue, it
adds a layer of security and is easy to implement. The benefits also extend beyond a micro VM or a container environment to include

any Unix system.

A restricted shell can be implemented as the default shell for any user (even specific ones) in case the environment has valid users.

It should be noted, however, that this is not the best practice for serverless environments.

Page 48 of 56 The State of Serverless Security on Microsoft Azure

Figure 55. A video, a GIF, and a link for implementation of a restricted shell where only specific commands are allowed to run

Network Access

Given that not all of the implementations we have described so far can be implemented at once, attackers can abuse the network

once they get access to the shell.

If the functions are configured in a way that they have internet access, attackers can abuse them to download and dump their own
tools for further exploitation. Attackers will then map out the environment and obtain detailed information about the operating
system, kernel, and running applications so that they can download exploits for specific scenarios using the outbound connection.
In our investigation of different CSPs, we did not find any that block outbound traffic, nor did we find any that had an option for the

user to disable outbound traffic in case their applications do not require it.

In this paper, we discussed a proof of concept in which we discovered that after the initial exploitation, we are able to download a

native tool and use its own permissions to change the settings, as though it was administrative application.

We have seen a mix of internal network access implementations in our study. Some of them were very restrictive and secure,
including containers that ran in an isolated network environment, which hindered attackers from mapping out other servers or

services running on the same provider.

Others, for no apparent reason, implemented a full /24 network where it was possible for an attacker to run network mapping and

attack tools from inside the application container.

Page 49 of 56 The State of Serverless Security on Microsoft Azure

Alibaba Serverless Reconnaissance
>1s -1 /tmp
total @

=id
uid=10001(userl@@0l) gid=10001 groups=100081

>whoami
userl@esl

>ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 20:00:00:00:00:00 brd 00:20:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid 1ft forever preferred_1ft forever
2 eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 14508 qdisc pfifo state UP group default qlen 10080
link/ether ea:56:82:23:22:el brd ff:ff:ff:ff:ff:ff
inet 248/32 scope global eth@
valid 1ft farever areferred_1ft forever
inetb fe8@::e856:82ff:fe20:22e1/64 scope link
valid_1ft forever preferred_1ft forever

Figure 56. Serverless endpoint configuration with a single IP network

As some CSPs implementations show, it is possible to restrict internal network access even without external tools. Doing this would

limit the attack surface. However, it should be noted that this option is either not available by default or is part of an upgraded plan.

M = Lo L

Attacker Injects shell Downloads, Checks roles Modifies function
command on Lambda unpacks, and and policies timeout from two minutes
function with installs CLI tool to 15 minutes

high permissions
Figure 57. An AWS Lambda kill chain for a function with high permissions

Source: Trend Micro*®

In 2020, we created a proof-of-concept video®® that shows how poor coding practices and permissive access policies could give

malicious actors the capability to alter the timeout of an AWS Lambda function.

Page 50 of 56 The State of Serverless Security on Microsoft Azure

Application Timeout

The application timeout, which is configurable for all CSPs, is a setting that users should always check, especially when they are
concerned about monetary resources and security. Some CSPs use the running time of a function as a parameter to bill the customer.
This means that if the running time is high, the billed amount would also be high. Though the impact of a high running time to the

billed amount is not always direct, it is still part of the billing equation.

Security could serve as the extra push customers need to restrict their application’s running time. The shorter the timeout, the
smaller the attack surface, and this serves as another incentive for keeping the application distributed among focused and shorter

functions.

The default application timeout is five minutes or less. This would depend on the CSP and on the purpose of the function. The user
who will use the application and the language that will be used (since different languages need varying period lengths to load and

run) also determine the application timeout.

Page 51 0of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

Message from Microsoft

Microsoft Azure teams (MSRC, Azure App Service, Azure Functions) appreciate Trend Micro's efforts in looking into any possible

security vulnerabilities and issues along with the education of customers about any possible threats/weaknesses.

While it is great that no unauthenticated exploit/vulnerability was identified during this research, being secure is always a moving
target, and Microsoft Azure constantly evaluates best practices and how to factor them into future improvements to further harden

the platform and help customers to build inherently more secure solutions easily with a "secure-by-default” mindset.

Microsoft provides security best practices for Microsoft Azure on their website 3" 38

Page 52 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

Conclusion

Although the idea of going serverless shifts the responsibility over certain aspects to the CSP, giving users a feeling that their
environment will be more secure, now is a good time to shine the spotlight on the security concerns associated with migrating to or

starting a project using serverless services.

Security should never be neglected. Although the surface of attack is smaller in serverless deployments, it does not mean that
threats only exist in the user's code, or worse, that threats no longer exist in these deployments. Planning to make the move to
serverless requires ensuring the security of the application. Users need to determine how their applications will interact with the

resources involved in their projects, and which data might be sensitive and should never be mishandled.

Two key factors of this threat modeling process were understanding how serverless services communicated with each other and
how a user controls serverless resources. In our investigation, we considered it as a big red flag when both the user and the CSPs
do not properly secure secrets and access tokens. Our team also found secrets stored in plain text inside files, or secrets that are
loaded by the operating system via environment variables. This practice is not recommended for users and should be avoided. If
the CSP does not provide a secure way for users to handle secrets, the user should still ensure that secrets are handled as securely
as possible. When our team started investigating and shining a light on serverless security, attacks where threat actors can take
advantage of unsecured tokens were just theoretical. Today, there are now multiple hacker teams that harvest CSP-specific secrets

so that they can take over services and, in some cases, the whole account.®®

There are different ways to use the cloud. Some CSP customers use the cloud in a way similar to how they would use a regular or
a traditional data center: They would use workloads and at the same time, manage all the necessary infrastructure, such as server
resources and networks. Meanwhile, other customers use the cloud for user application-level services, such as serverless computing,
where the CSP takes care of the infrastructure. The leap from using cloud workloads to using serverless on cloud is quite challenging,
as it requires users to adapt to a different manner of implementation for most aspects, including the way users deal with security.
By its very nature and when properly implemented, serverless computing follows a more restrictive security model, or at the very

least, it is easier to implement it in a more secure manner compared to other hard-to-apply security models.

Security features that once would have had a big impact on an application's usability, such as keeping a workload immutable and

enabling safe memory cleaning, are default features of the serverless infrastructure. This makes serverless adoption more secure.

Still, it is important to understand that there is still a great need to strike a balance between security and usability. It is our hope that
this study has exposed some of the blind spots and the seldomly discussed security issues of serverless services hosted on Microsoft

Azure to help users make well-informed security decisions.

Page 53 of 56 The State of Serverless Security on Microsoft Azure

@ TREND:

Security Recommendations

Follow CSPs' recommendations. CSP recommendations for securing environments and projects are usually found in their

respective documentations.

Use vaults to store keys and passwords. This might incur additional costs to the team or organization, but it gives users and

security teams an additional layer of protection for their credentials' storage.

Use custom images. While default services allow for speed and efficiency for deployment and development, custom container

image designs and implementations give developers more room for out-of-the-box solutions and additional security.

Use encrypted channels and pipelines. Locking the values of the variables ensures that sensitive information, such as

passwords and IDs, remains secret in instances of unauthorized access.

Achieve compliance with the Assume Breach paradigm. Under this paradigm, users know that vulnerabilities exist. In the
instance of compromise and given web vulnerabilities’ prevalence in today's attacks,*® the impact of the infiltration from the

abuse of an exploit is minimized.

Follow the principle of least privilege. This can be achieved by using a non-privileged user for your container and applications,
using managed identities and roles, and limiting public endpoints of linked cloud services. Also, consider using safer mechanisms

for generating and managing secrets such as passwords and API keys.

Audit and secure all employed out-of-the-box solutions. This can be done by performing third-party reviews and following

vendors' best practices for security.

Page 54 of 56 The State of Serverless Security on Microsoft Azure

Endnotes

1 Taylor Brown. (April 2017). Microsoft. “Bringing Docker To Windows Developers with Windows Server Containers.”
Accessed on Nov. 23, 2022, at: Link.

2 Trend Micro. (n.d.). Trend Micro Security News. “Zero Trust.” Accessed on Nov. 23, 2022, at: Link.
3 Netsurion. (n.d.). Netsurion. “The Assume Breach Paradigm.” Accessed on Nov. 23, 2022, at: Link.
4 Microsoft. (n.d.) Microsoft. “App Service."” Accessed on Nov. 24, 2022, at: Link.

5 David Fiser. (May 4, 2022). Trend Micro Security News. “Crafting an Azure App Services Threat Model.” Accessed on
Dec. 21, 2022, at: Link.

6 Docker Docs. (n.d.). Docker Docs. “Isolate containers with a user namespace.” Accessed on March 14, 2023, at: Link.

7 Microsoft. (Dec. 7, 2022). Microsoft. “Migrate custom software to Azure App Service using a custom container.”
Accessed on Dec. 21, 2022, at: Link.

8 PyPi. (n.d.). PyPi. "webssh 1.6.1." Accessed on Nov. 24, 2022, at: Link.

9 David Fiser and Alfredo Oliveira. (Dec. 17, 2019). Trend Micro Research, News, and Perspectives. “Why A Privileged
Container in Docker Is a Bad Idea."Accessed on Nov. 24, 2022, at: Link.

10 Linux. (Aug. 27, 2021). man7.org. “capabilities(7) — Linux manual page.” Accessed on Nov. 24, 2022, at: Link.

11 David Fiser. (May 4, 2022). Trend Micro Security News. "“Crafting an Azure App Services Threat Model.” Accessed on
Dec. 21, 2022, at: Link.

12 Microsoft. (Sep. 16, 2022). Microsoft. “App Service networking features.” Accessed on Nov. 25, 2022, at: Link.

13 Trend Micro. (May 13, 2017). Trend Micro Security News. “WannaCry/Wcry Ransomware: How to Defend against It.”
Accessed on Dec. 21, 2022, at: Link.

14 Microsoft. (June 3, 2021). Microsoft. “Azure Key Vault basic concepts.” Accessed on Nov. 27, 2022, at: Link.

15 projectkudu. (Aug. 22, 2022). GitHub. “Azure Web App sandbox.” Accessed on Nov. 27, 2022, at: Link.

16 Microsoft. (July 15, 2022). Microsoft. “Storage account overview."” Accessed on Dec. 5, 2022, at: Link.

17 Microsoft. (June 15, 2022). Microsoft. “API Management authentication policies.” Accessed on Dec. 5, 2022, at: Link.
18 Microsoft. (Oct. 13, 2022). Microsoft. “"About Azure Key Vault." Accessed on Dec. 5, 2022, at: Link.

19 Microsoft. (July 15, 2022). Microsoft. “Overview of Azure Service Fabric."” Accessed on Dec. 5, 2022, at: Link.

20 Microsoft Azure. (Dec. 3, 2022). GitHub. "azure-functions-host.” Accessed on Dec. 5, 2022, at: Link.

21 Microsoft. (May 6, 2022). Microsoft. Accessed on Dec. 5, 2022, at: Link.

22 Microsoft. (n.d.). Microsoft. “Azure Storage Explorer.” Accessed on Dec. 6, 2022, at: Link.

23 Microsoft. (Oct. 6, 2022). Microsoft. “Create a function on Linux using a custom container.” Accessed on Dec. 12,
2022, at: Link.

24 Microsoft Artifact Registry. (Dec. 12, 2022). Microsoft Artifact Registry. "Azure Functions Base."” Accessed on Dec. 12,
2022, at: Link.

25 Microsoft Artifact Reqistry. (n.d.). Microsoft Artifact Registry. “Microsoft Artifact Reqgistry.” Accessed on Dec. 12,
2022, at: Link.

Page 55 of 56 The State of Serverless Security on Microsoft Azure

https://learn.microsoft.com/en-us/archive/mdsn-magazine/2017/april/containers-bringing-docker-to-windows-developers-with-windows-server-containers/
https://trendmicro.com/vinfo/us/security/definition/zero-trust
https://netsurion.com/articles/the-assume-breach-paradigm
https://azure.microsoft.com/en-us/products/app-service/#overview
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/crafting-an-azure-app-services-threat-model
https://docs.docker.com/engine/security/userns-remap/
https://learn.microsoft.com/en-us/azure/app-service/tutorial-custom-container?tabs=azure-cli&pivots=container-linux
https://pypi.org/project/webssh/
https://www.trendmicro.com/en_us/research/19/l/why-running-a-privileged-container-in-docker-is-a-bad-idea.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/crafting-an-azure-app-services-threat-model
https://learn.microsoft.com/en-gb/azure/app-service/networking-features
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/wannacry-wcry-ransomware-how-to-defend-against-it
https://learn.microsoft.com/en-us/azure/key-vault/general/basic-concepts
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview.
https://learn.microsoft.com/en-us/azure/api-management/api-management-authentication-policies
https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://github.com/Azure/azure-functions-host
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options?tabs=azure-cli.
https://azure.microsoft.com/en-us/products/storage/storage-explorer/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-function-linux-custom-image?tabs=in-process%2Cbash%2Cazure-cli&pivots=programming-language-python
https://mcr.microsoft.com/en-us/product/azure-functions/base/about
https://mcr.microsoft.com/en-us/catalog

26 Alfredo Oliveira and Raphael Bottino. (Sept. 7, 2022). Trend Micro. “Enhancing Cloud Security by Reducing Container
Images Through Distroless Techniques.” Accessed on Jan. 20, 2023, at: Link.

27 Die.net. (n.d.). Die.net. “execve(3) - Linux man page.” Accessed on Dec. 14, 2022, at: Link.
28 Cplusplus.com. (n.d.). Cplusplus.com. “getenv.” Accessed on Dec. 14, 2022, at: Link.

29 Wesley Chai. (June 2022). TechTarget. “confidentiality, integrity and availability (CIA triad).” Accessed on Dec. 14,
2022, at: Link.

30 Man7.org. (n.d.). Man7.org. "ip(8) — Linux manual page.” Accessed on Dec. 14, 2022, at: Link.
31 Man7.org. (n.d.). Man7.org. "“ifconfig(8) — Linux manual page.” Accessed on Dec. 14, 2022, at: Link.
32 Man7.org. (n.d.). Man7.org. “netstat(8) — Linux manual page.” Accessed on Dec. 14, 2022, at: Link.
33 Man7.org. (n.d.). Man7.org. “ss(8) — Linux manual page.” Accessed on Dec. 14, 2022, at: Link.

34 David Fiser. (March 4, 2020). Trend Micro Research, News, and Perspectives. “Security Risks in Online Coding
Platforms.” Accessed on Dec. 14, 2022, at: Link.

35 Alfredo Oliveira. (Aug. 11, 2020). Trend Micro. “Securing Weak Points in Serverless Architectures: Risks and
Recommendations.” Accessed on Dec. 21, 2022, at: Link.

36 Trend Micro. (Aug. 11, 2020). Trend Micro. *Weak Points in Serverless Architecture: A Proof of Concept.” Accessed on
Jan. 20, 2023, at: Link.

37 Microsoft. (March 4, 2023). Microsoft. “Security recommendations for App Service.” Accessed on March 14, 2023, at:
Link.

38 Microsoft. (Dec. 16, 2022). Microsoft. “Securing Azure Functions.” Accessed on March 14, 2023, at: Link.

39 David Fiser and Alfredo Oliveira. (Aug. 17, 2022). Trend Micro Research, News, and Perspectives. “Analyzing the Hidden
Danger of Environment Variables for Keeping Secrets.” Accessed on Dec. 21, 2022, at: Link.

40 Magno Logan and Pawan Kinger. (Aug. 23, 2021). Trend Micro Security News. “Linux Threat Report 2021 1H: Linux
Threats in the Lcoud and Security Recommendations.” Accessed on Dec. 15, 2022, at: Link.

For more information visit trendmicro.com

Trend Micro, and the Trend A orated. All other company and/or

arks of their owners. Informe

2023 by Trend Micro Incorpo

product names may be tradems

For details about what personal information we collect and why, please see our Privacy Notice on our website at: trendmicro.com/privacy.

Page 56 of 56 The State of Serverless Security on Microsoft Azure

https://www.trendmicro.com/es_es/research/22/i/enhancing-cloud-security-by-reducing-container-images-through-di.html
https://linux.die.net/man/3/execve
https://cplusplus.com/reference/cstdlib/getenv/
https://www.techtarget.com/whatis/definition/Confidentiality-integrity-and-availability-CIA#:~:text=Confidentiality%2C%20integrity%20and%20availability%2C%20also,with%20the%20Central%20Intelligence%20Agency
https://man7.org/linux/man-pages/man8/ip.8.html
https://man7.org/linux/man-pages/man8/ifconfig.8.html
https://man7.org/linux/man-pages/man8/netstat.8.html
https://man7.org/linux/man-pages/man8/ss.8.html
https://www.trendmicro.com/en_us/research/20/c/security-risks-in-online-coding-platforms.html
https://documents.trendmicro.com/assets/white_papers/wp-securing-weak-points-in-serverless-architectures-risks-and-recommendations.pdf
https://www.youtube.com/watch?v=vbHdf6WNoO0&ab_channel=TrendMicro
https://learn.microsoft.com/en-us/azure/app-service/security-recommendations
https://learn.microsoft.com/en-us/azure/azure-functions/security-concepts?tabs=v4
https://www.trendmicro.com/en_us/research/22/h/analyzing-hidden-danger-of-environment-variables-for-keeping-secrets.html
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/linux-threat-report-2021-1h-linux-threats-in-the-cloud-and-security-recommendations
https://www.trendmicro.com/
https://www.trendmicro.com/en_us/about/trust-center/privacy.html

