
David Fiser and Alfredo Oliveira

The State of Serverless 
Security on Microsoft 
Azure



The State of Serverless Security on Microsoft AzurePage 2 of 56

Contents

Published by
Trend Micro Research

Written by
David Fiser
Alfredo Oliveira
Trend Micro Research

    Introduction ..................................................................04

    CSP and User Responsibilities .............................05

    Analyzing Serverless Security ............................08

    Technical Analysis .....................................................09

    Conclusion .....................................................................53

    Message from Microsoft ......................................... 52

    Security Recommendations ................................. 54

    Azure Functions in Linux-Based 
Environments ................................................................17

    Azure Functions on Windows-Based 
Environments .............................................................. 29

    Comparing Azure Services on Linux- and 
Windows-Based Environments ............................ 30

    Improving Standard Security Using 
Custom Images .............................................................31

    How to Improve the Overall State of 
Serverless Security ...................................................40

    App Service on Windows-Based 
Environments ................................................................15



Serverless computing has swiftly become a popular service among cloud service providers (CSPs) 

because it enables organizations to run services without needing to manage the underlying infrastructure. 

This means that with serverless technology, developers can upload code to a specific service without 

worrying about infrastructure maintenance, scalability, and availability.

In a serverless architecture, the CSP is responsible for infrastructure management. However, because 

this architecture allows user input, uploading untrusted code into multitenant environments poses 

several security challenges.

For this study, we performed exploitation simulations of user-provided code vulnerabilities among 

serverless services provided by major CSPs in the market. Based on our evaluation of each infected 

serverless environment, we found that most of the security concerns were in Microsoft Azure. Therefore, 

we have chosen to devote our research to this serverless environment.

In our investigation, we identified sensitive environmental variables inside the Microsoft Azure 

environment. When these variables are leaked, malicious actors can fully compromise the entire 

serverless environment. We also found a default runtime image using a master password that allows 

privilege escalation in most Azure App Service deployments. Based on our observations in this study, we 

can confirm that Microsoft Azure’s default security measures would need to be supplemented by proper 

token management to keep Microsoft Azure serverless deployments secure.

At a glance, some of our findings might seem overrated. However, recent publicly disclosed breaches 

have shown that a critical cybersecurity issue could start with just a single-service compromise. To 

address these security gaps, organizations should use custom images or tweak CSP-provided images, 

which are not entirely secure by default. This can be done via the Distroless approach by following the 

distributed, immutable, and ephemeral (DIE) paradigm. Finally, we discuss how increased adoption of the 

DIE paradigm in cloud environments can enhance serverless security.



The State of Serverless Security on Microsoft AzurePage 4 of 56

Introduction
Serverless or serverless computing is a popular service that allows developers to deploy code on systems and applications 

without needing to worry about the underlying infrastructure or needing high-scalability options.

Serverless functions can be used for APIs and back-end and front-end applications in various programming languages and 

frameworks, such as Node.js, Python, Java, PHP, .NET, and Go. Because serverless functions can have different uses and 

require different suitable environments, these functions might pose architectural challenges on the side of the CSPs — an 

aspect of the service that users have no visibility over. Serverless function execution code is often driven by an event trigger, 

such as HTTP access, message queues, and storage events.

These serverless functions’ architectural challenges can introduce security risks and provide attackers with different scenarios 

where they can access the serverless environment by exploiting user input code vulnerabilities. In this research paper, we 

aim to shed light on the security implications of the architectural challenges posed by serverless functions. It is important 

to note that these implications do not serve as attack entry points. Rather, these implications provide an opportunity for 

attackers to move laterally within the serverless environment after an initial compromise. It is crucial for users to be aware of 

these implications and take responsibility for addressing any code vulnerabilities in their input, in order to minimize the risk 

of abuse. This report delves into uncovering hidden environmental features that could potentially have security implications. 

After analyzing multiple CSPs in our study, we have decided to focus on Microsoft Azure — specifically Azure App Service and 

Azure Functions — by virtue of our investigation’s initial findings.



The State of Serverless Security on Microsoft AzurePage 5 of 56

CSP and User Responsibilities
As serverless computing can be difficult to imagine at first, one might begin by thinking of it as code executed on third-party 

infrastructure. The CSP is responsible for the execution process of the serverless service, which is usually multitenant in nature and 

should be isolated.

Meanwhile, the user is responsible for deploying code into the serverless system, which has a zero-trust architecture for user-

provided input. However, when the user-provided input is an actual source code that will be executed into the system, this becomes 

a security concern. This is why it is critical to design serverless environments for executing user-provided input or code that provides 

a certain level of isolation, such as a sandbox for executing or running untrusted applications.

If a serverless platform is not flawless in its design, breaking these isolations could have tremendous negative consequences for the 

CSP platform, such as CSPs being able to see customers’ private data or users having unauthorized access to the cloud infrastructure 

itself.

Fortunately, there are several isolation techniques, such as standalone containers and micro virtual machines (micro VMs), that allow 

users to isolate applications. However, these isolation techniques come with performance costs.

The way isolation techniques are implemented differs depending on the CSP, the chosen service, and its runtime. Serverless services 

depend on a container that runs inside a VM instance on a physical server. Physical servers usually run multiple VMs and each VM 

can run multiple containers.

Physical hardware
Hypervisor

VM VM VM
Containers

Container security boundary VM security boundary

Figure 1. Container security and VM security boundaries

When it comes to security boundaries, the actual serverless code is executed inside “the lowest leaves.” These are then surrounded 

by container isolation techniques, which are separated by VM security boundaries.



The State of Serverless Security on Microsoft AzurePage 6 of 56

Host Host

Kernel

VM hypervisor

Kernel

Container 1 Container 2
Container 1 Container 2

Container isolation

Container isolation

To escape these security boundaries, a malicious actor needs to exploit vulnerabilities within the container engine, kernel, or 

hypervisor.

CSPs are responsible for keeping these boundaries secure by ensuring that they cannot be escaped from. To mitigate this risk, CSPs 

can use a customized form of a kernel, such as one that does not have unnecessary modules or drivers, or does not require more 

security-oriented hardening. CSPs can also choose to implement an architectural design that has an additional security boundary 

that usually involves a trade-off between performance and costs.

An example of this second option is the use of micro VMs such as Kata Containers, which allow CSPs to use common container 

control interfaces. These micro VMs are lightweight in nature and can be used for additional resource isolation. This means that the 

code executed within the container is executed inside the hypervisor, which provides an additional sandbox between the host kernel 

and the container. But while micro VMs can directly run on a physical hardware host as well as inside the VM itself, this also comes 

with some performance cost.

Figure 2. A comparison of standard containers and micro VM-based containers

The implementation details vary for each CSP. When the host platform is Linux, the containers used are either standalone or UVM-

based. A Windows-hosted platform that has a container platform similar to that of the UVM architecture has a Host Compute System 

(HCS) that acts as an additional layer between the host kernel and the container.



The State of Serverless Security on Microsoft AzurePage 7 of 56

Figure 3. Host platform implementation details of Windows and Linux

Source: Microsoft Documentation1

Due to the high scalability of serverless environments, their containers should be executed by one of the following orchestrators:

• Kubernetes

• Docker Compose

• Service Fabric

• Custom service orchestration services

Different serverless services use different orchestrators that users do not have visibility over. Although certain serverless services 

can allow users to override default settings and use an orchestrator of their choice, doing so requires using alternate cloud services 

and advanced settings, which are beyond the scope of this paper. From a security perspective, it should be emphasized that the 

serverless function itself can communicate with the orchestrator or even exploit a misconfiguration.



The State of Serverless Security on Microsoft AzurePage 8 of 56

Analyzing Serverless Security
When it comes to analyzing serverless security, the entry point that triggers the serverless function execution must first be identified. 

This entry point can be either a direct HTTP, an HTTPS endpoint trigger that is being called, or an indirect action, such as a certain 

event that provides user data that the serverless function will process.

Securing endpoints and writing secure code is the user’s responsibility. This involves making sure that misconfiguration issues are 

not introduced into the system and that user-provided code is free of flaws or vulnerabilities.

Misconfiguration problems in cloud platforms are rampant, which is why malicious actors have started to shift their focus to abusing 

cloud-oriented services. It is only a matter of time before they fully set their sights on serverless environments.

In succeeding sections, we will focus on misconfiguration issues and exploring what malicious actors can do inside serverless 

environments once a user-provided vulnerability is exploited.

Another important aspect that needs to be identified is an organization’s cloud architecture, such as what cloud services are being 

used and how they are being accessed. It is also critical to know if an organization will fully migrate to a public CSP or adopt a hybrid 

form of cloud service that will access serverless functions from private networks.

Regardless of a company’s cloud architecture, the zero-trust model2 and the Assume Breach paradigm3 should be followed to 

maximize cloud security. This requires following the principle of least privilege by applying role-based access control (RBAC). Doing 

so would limit not only network and storage access available from the function execution context but also the execution time via 

timeouts. It is worth reiterating that it is the role of the  CSP to provide users with sufficient tools that will allow them to create a 

secure configuration. And since most of the services have a default container image for the user’s programming language of choice, 

the CSP should therefore also provide a secure default container image.



The State of Serverless Security on Microsoft AzurePage 9 of 56

Technical Analysis
We evaluated several CSPs’ serverless environments by simulating a user code vulnerability exploitation to attempt remote code 

execution (RCE) on the infected environment using a reverse shell that connects to our own server.

After establishing a successful connection, we ran several commands to analyze the environment, similar to what an attacker would 

do. We  looked for specific security gaps that we could abuse once we entered the environment.

User code vulnerability

Our server

Analyze serverless 
function

Code interpreter

Spawn reverse shell

Figure 4. Attack simulation of a serverless function

Our analysis focused on gathering environmental information such as internal architecture hints, including the orchestrator or 

container engine used, timeouts that applied to serverless environments, execution rights and capabilities, networks, and disk 

access. Most importantly, we looked for secrets management tools and methods, including storage and transfer of information.

Azure App Service
According to Microsoft, the Azure App Service is used to create “enterprise-ready” web and mobile apps for any platform or device, 

as well as to deploy them on a scalable and reliable cloud infrastructure.”4 App Service provides ready-to-use infrastructure for 

applications, and from a technical perspective, it is essentially a Docker container with prepared images and language interpreters 

for listed runtime stacks such as Python, Node.js, Java, .NET, and Ruby.

The presence of the “.dockerenv” file inside the file system root and the “docker run” command found inside the App Service log 

stream confirms that a Docker container engine is used to run the service.



The State of Serverless Security on Microsoft AzurePage 10 of 56

Figure 5. Azure log that confirms the use of a Docker container engine

Together with modern standards, the user is able to bind App Service with continuous integration and continuous delivery (CI/CD) 

pipelines, such as GitHub repositories and commit triggers.

.NET Java JavaScript PHP Python Ruby

.NET 6 (LTS) Java 8 Node 16 (LTS) PHP 8.0 Python 3.9 Ruby 2.7

.NET 5 Java 11 Node 15 (LTS) PHP 7.4 Python 3.8 Ruby 2.6

.NET Core 3.1 Node 12 (LTS) Python 3.7

ASP.NET V4.8

ASP.NET V3.5

Table 1. Available languages and versions for Azure App Service

Because the service is intended to be a publicly accessible web service, no default access limitation has been set.  It is the user’s full 

responsibility to limit access if needed.

Developer’s code

Repository

Access

Spawns

Customers

Azure Cloud

Endpoint
with HTTPS website

Container 0 Container N

Figure 6. Azure App Service with CI/CD integration

Source: Trend Micro Security New5



The State of Serverless Security on Microsoft AzurePage 11 of 56

Meanwhile, there are different timeouts for web requests and spawned processes.

Timeout for web request Timeout for spawned process

240 seconds Up to 10 minutes

Application and User Permissions
We also discovered that in Linux environments, the application and user permissions within an App Service application run with 

root privileges within the security boundary of the container. However, the container root user is mapped to a less-privileged user 

inside the Docker host using the user namespace remap feature,6 which effectively lowers malicious actors’ attack options upon 

compromise.

Figure 7. User permission within the App Service environment where the container is running code written in Python

A low-privileged user, such as “www-data,” can be used to run an App Service application. “Www-data” is the default user that web 

servers on Ubuntu and Apache use, and which we used as a PHP container image in our investigation. However, malicious actors 

can still easily escalate privileges to run it under root within the security boundary of the running container. This is possible when 

malicious actors abuse the shortcomings of a security-oriented application design.

Figure 8. Screenshot of a custom container tutorial from Azure

Source: Microsoft7



The State of Serverless Security on Microsoft AzurePage 12 of 56

Malicious actors can perform privilege escalation by entering the hard-coded master password, “Docker!”. This password is typically 

used to access the container through WebSSH,8 as it cannot be generated as an asymmetric keypair upon first execution.

Figure 9. Example of privilege escalation on a container running within the Azure App Service application

However, it should be noted that the root user does not have all the capabilities of the host machine and is, in fact, limited within 

container isolation schemes. Simply put, the container is not running in privileged mode.9

The following are the available capabilities within containers implemented on Linux:10

• CAP_CHOWN

• CAP_DAC_OVERRIDE

• CAP_FOWNER

• CAP_FSETID

• CAP_KILL

• CAP_SETGID

• CAP_SETUID

• CAP_SETPCAP

• CAP_NET_BIND_SERVICE

• CAP_NET_RAW

• CAP_SYS_CHROOT

• CAP_SYS_PTRACE

• CAP_MKNOD

• CAP_AUDIT_WRITE

• CAP_SETFCAP



The State of Serverless Security on Microsoft AzurePage 13 of 56

Network
Among the previously mentioned list of root user capabilities, CAP_NET_RAW allows the creation of raw sockets that give access 

to lower layer protocols and can be abused by malicious actors to launch low-level network attacks. The running container exposes 

two ports: a publicly accessible port for incoming connections that are handled by the application itself, and a port hidden behind 

the Azure authentication gateway for remote secure shell (SSH) access that only authenticated Azure App Service users can initiate.

Outbound network connections are enabled by default, which initiate remote connections to internet-available servers. Attackers 

can abuse these connections to initiate reverse shell connection attacks.

By default, a local area network (LAN) consists of a minimum of three IP addresses: one for the container network interface itself, 

another as the default gateway for accessing the internet, and the third for incoming SSH connections from WebSSH.

Internet
169.254.129.0/24

169.254.129.2
Container

169.254.129.1
Gateway

164.254.129.3
SSH tunneling interface

Figure 10. Default network scheme

Source: Trend Micro Security News11

These default LAN settings can be altered by modifying the App Service networking settings12 on a premium subscription using 

virtual networks (VNETs) and hybrid connections. Because there are multiple variations and use cases for different organizational 

needs, we would like to emphasize applying the principle of least privilege. From the network perspective, this means denying all 

other traffic that is unnecessary for the application to work, especially if an organization’s network consists of multiple endpoints 

within one VNET.

Disk Access
The source code is deployed inside the “/tmp/{build directory}” folder when a container is executed and CI/CD is configured. Because 

containers are mainly designed to be stateless, there is an interesting Server Message Block 3.0 (SMB3) network mount on the “/

home” directory. This volume serves as a persistent storage that hosts website files when CI/CD is not configured. It should be noted 

that SMB servers are known for having multiple vulnerabilities in the past. One very popular example of an attack that abused an 

SMB vulnerability is the WannaCry ransomware.13



The State of Serverless Security on Microsoft AzurePage 14 of 56

Secrets and Available Environmental Variables
Secrets are critical items that users need to secure, such as passwords, API keys, and certificates.14 As for Azure secrets for the CI/

CD pipeline, these are not located within the container, which is good for security. However, the container is architecturally designed 

to include environmental variables that the user does not have visibility and control over. From a security perspective, users should 

focus on the following variables:

• WEBSITE_AUTH_ENCRYPTION_KEY

• WEBSITE_AUTH_SIGNING_KEY

On Azure App Services, users can also customize application settings and connection strings. However, storing secrets in these 

locations is highly discouraged as they are exposed as environmental variables that the application or service can access at runtime.

Figure 11. Screenshot of Azure App Service’s application settings and connection strings

Additionally, users should not expose any secrets inside the container’s persistent storage, which can happen when CI/CD is not 

configured, as well as when users clone a private repository using an access token. This access token can be found in plain text inside 

the “.git/config” file.

Figure 12. Access token information in plain text inside the “.git/config” file



The State of Serverless Security on Microsoft AzurePage 15 of 56

App Service on Windows-Based 
Environments
The Windows environment is not available for all stacks, and malicious actors have limited attack options in this environment 

because the Azure Web App sandbox15 restricts access to all resources. This restriction also applies to network limitations because 

the creation of raw sockets effectively disables ping network tests.

Figure 13. Example of limited functionality via the Azure Web App sandbox

However, despite these restrictions, sensitive environmental variables remain present in Windows-based App Service instances.

Figure 14. Environmental variables inside a Windows-based App Service instance



The State of Serverless Security on Microsoft AzurePage 16 of 56

.NET Java JavaScript
PowerShell 

Core

.NET 6 Java 8 Node 16 (LTS) 7.0

.NET 3.1 Java 11 Node 15 (LTS) 7.2 (preview)

Node 12 (LTS)

Table 2. Available serverless stacks on Windows-based environments



The State of Serverless Security on Microsoft AzurePage 17 of 56

Azure Functions in Linux-Based 
Environments
Azure Functions is a purely code-oriented serverless service primarily designed to run a small block of code with any of the following 

runtime stacks:

.NET Java JavaScript PowerShell Core Python Custom

.NET 6 Java 8 Node 16 (LTS) 7.0 Python 3.9 Docker image

.NET 3.1 Java 11 Node 15 (LTS) 7.2 (preview) Python 3.8

Node 12 (LTS) Python 3.7

Table 3. Available serverless stacks on the Linux platform

Azure Functions needs an Azure storage account to create a serverless function. The Azure storage account is where the actual 

code is stored in the form of a blob storage.16 The stored blob has a .zip extension, but it is technically a compressed read-only file 

system for Linux called “squashfs.”

Once an HTTP-triggered function is publicly deployed, by default, the uniform resource identifier (URI) endpoint requires an access 

token to execute the serverless function, unless an anonymous authorization level is set. The token is entered via the “code” 

parameter of the URL. This pre-generated token has two types:

• A function scope token: A token used for executing serverless code

• An application-scope token (host key): The default token that also acts as the master key

An application-scope token authorizes for all endpoint functions. In contrast, a function-scope token works only for defined endpoint 

functions. An application-scope token acts as a master key that allows administrator access to the API for environment management 

of the serverless function. These keys are stored inside the linked Azure storage account in encrypted form.

Figure 15. An example of an “/admin/” endpoint authorized by an application-scope token that acts as a master key



The State of Serverless Security on Microsoft AzurePage 18 of 56

By default, endpoints can be accessed by either HTTP or HTTPS, which is why it is highly recommended for users to enforce SSL. The 

function access keys are a security concern when accessing endpoints from public environments. To counter this, Azure supports 

third-party identity providers and allows the configuration of API management authentication policies that users can set.17

Another available form of authentication is public key cryptography, in which either a public key or a client certificate is sent as an 

HTTP header. Since the validation of this authentication approach is implemented within serverless function code, the developer is 

fully responsible for it. Meanwhile, Azure Key Vault can be used to securely store associated secrets.18

HTTPS endpoint
function

Client function

Serverless workflow

Azure
Key Vault

Azure

Figure 16. Azure authentication approaches

The following is how authentication is performed within the Microsoft Azure serverless environment :

1. The function client sends an authentication request. An authentication secret is sent as a header to the HTTPS endpoint function.

2. The serverless function authenticator contacts Azure Key Vault to verify if a secret can be used, such as if a fingerprint is 

present within the store.

3. The secret undergoes checking to determine if it is verified and valid.

4. If the validation is successful, the remaining serverless workflow is executed.

The difference between public key cryptography and shared access signature (SAS) is that with the former, multiple secrets can be 

used and authorized for a single app using multiple certificates. Public key cryptography is more difficult to guess, can be revoked 

on either the Azure Key Vault or the certificate authority (CA) level, and has a longer secret length than SAS.

Azure Functions uses its own distributed platform called Azure Service Fabric19 as an orchestrator, which spawns an azure-functions-

host container.20 In turn, this container executes specific azure-functions-worker functions based on the chosen application stack 

where the actual source code is being interpreted.



The State of Serverless Security on Microsoft AzurePage 19 of 56

Figure 17. Azure Service Fabric’s function as an orchestrator

Azure also allows developers to use Kubernetes as an orchestrator for serverless environments using Azure Kubernetes Services 

(AKS) and virtual nodes. However, this service is beyond the scope of this research.

Timeouts
The default maximum timeout for Azure Functions is set to five minutes. Regardless of the function app timeout setting, 230 seconds 

is the maximum amount of time that an HTTP-triggered function can take to respond to a request. This is because of Azure Load 

Balancer’s default idle timeout. For longer processing times, users can consider using the Azure Durable Functions asynchronous 

HTTP API pattern or defer the actual work and return an immediate response. A user can specify a lower timeout to reduce the 

amount of time in which a potentially vulnerable service will be available to process malicious actions.

Azure Service Fabric
aka orchestrator

azure-functions-host
(Container)

azure0functions-python/java/node-worker

Actual code of serverless function

Spawns



The State of Serverless Security on Microsoft AzurePage 20 of 56

Figure 18. A comparison of Azure applications’ timeout plans

Rights and Capabilities
Default user permissions are limited and non-root. The “superuser do” or “sudo” utility is available within the environment, while 

write permission is only available inside the “/tmp/” folder. The content of the folder can be stateful if a cache is hit and a previous 

environment is used.

No capabilities are available for the running user.

The serverless container is running the main Azure Functions serverless service on TCP port 9091. Other internal services can also 

be present inside the container, such as managed identities that listen to TCP port 8081 and allow security tokens to be obtained 

within the Azure infrastructure.

TCP 
port

Definition

80 Nginx

6060 Mesh and reverse proxy

8081 Managed identities (used to obtain tokens)

9091 Azure Functions endpoints



The State of Serverless Security on Microsoft AzurePage 21 of 56

Outgoing Connections
By default, there are no outgoing connection limitations. However, advanced subscription plans allow users to configure outgoing 

connections.

Figure 19. A comparison of Azure networking features per available plan

Source: Microsoft21

Another important aspect of the serverless environment that needs to be analyzed is secrets management. This is especially true 

when the application needs to be authenticated in other services. Such services could be either user- or CSP-provided, and the 

application would usually use a form of secret for it to be authenticated.

Proper secret storage mitigates the risk of exposure and compromise. The following are key factors when evaluating secrets storage:

• Secret form of storage (whether it is plain or encrypted)

• Communication channel used for transfer

• Validity (how long secrets are valid and how often they are rotated)

• Availability (how long secrets are available in memory)

Azure stores secrets in an encrypted form by default and transfers them using a secure channel. However, users should note that 

they are responsible for a secret’s validity and rotation. In terms of availability, there is a significant margin for improvement, as we 

have observed that some crucial secrets for serverless environments are stored inside environmental variables.

Environmental variables are present within every process and are inherited by default. This means that every child process spawned 

within a serverless execution will automatically contain environmental variables of the parent process. Thus, if parent processes 

contain secrets, every new process will contain them as well. This significantly increases the chance of exposure since a single 

vulnerability in any of these processes could lead to security concerns.

Technically, environmental variables are stored in the stack during the application execution process and are not deleted even after 

they are not needed anymore.



The State of Serverless Security on Microsoft AzurePage 22 of 56

In the course of our investigation, we identified the following environmental variables as having security implications:

• APPSETTING_SCM_RUN_FROM_PACKAGE

 ° This allows source code leakage when public access to the storage account is enabled.

 ° To mitigate this security issue, users should disable public access to the storage account.

• APPSETTING_AzureWebJobsStorage

 ° This allows read/write permission to the linked storage account.

 ° This can also lead to a full RCE within the serverless environment.

 ° To mitigate this security issue, users should disable storage account key access. However, it is important to note that doing 

this will disable Virtual Studio Code extensions and impair users’ ability to upload to the storage account.

• CONTAINER_ENCRYPTION_KEY

 ° This allows context decryption, which can be leaked from CONTAINER_START_CONTEXT_SAS_URI.

• CONTAINER_START_CONTEXT_SAS_URI

 ° This allows encrypted container context with an initialization vector (IV) and SHA-256 of an Advanced Encryption Standard-

encrypted payload.

 ° This can be decrypted using CONTAINER_ENCRYPTION_KEY.The decrypted container context includes function and host 

keys and “MSISpecializationPayload”, which has client certificate information for identity provider (IDP) services and allows 

the authentication of linked services that are beyond the score of Microsoft Azure.

Figure 20. Encrypted container context



The State of Serverless Security on Microsoft AzurePage 23 of 56

Figure 21.  Decrypted container context

Figure 22. Leaked secrets from decrypted context

When configured, Azure can provide an IDP service that is accessible to serverless applications, which can allow Azure resources to 

obtain access tokens. Azure can distinguish between two types of managed identities:



The State of Serverless Security on Microsoft AzurePage 24 of 56

• System-assigned

• User-assigned

A system-assigned managed identity is limited to a single resource and tied to the life cycle of this resource. Permissions can be 

granted to system-assigned IDPs via the Azure RBAC. Because Azure Active Directory (AD) authenticates managed identities, users 

do not need to store credentials in code. 

The following is a list of system-assigned Azure resources that can be accessed using AD authentication via the IDP service:

• Azure Resource Manager

• Azure Data Lake

• Azure Cosmos DB

• Azure SQL

• Azure Data Explorer

• Azure Event Hubs

• Azure Service Bus

• Azure Storage blobs and queues

• Azure Analysis Services

• Azure Communication Services

Azure

Serverless function

127.0.0.1:8080/msi/token Cloud service

GetsAuthorizes
Uses token

Figure 23. An example of how a system-assigned managed identity is used

Users who would need to access a specific resource in a serverless function need to configure the resource in such a way that it 

grants access to the function. This can be checked inside the Identity and Access Management (IAM) section of the resource.



The State of Serverless Security on Microsoft AzurePage 25 of 56

After the resource is configured, a serverless function can obtain a token from a managed identity endpoint, which is an HTTP 

service running inside the container.

Figure 24. An example of getting a token from an IDP inside a serverless function

When the accessed resource is properly configured, it can be accessed using a token that was obtained via the IDP.

Figure 25. An example of an interaction with other cloud services using an IDP token for authentication

From a security perspective, it is important to discuss two access token properties: time validity and validity scope. 

The time validity property is straightforward in its definition. This property simply means that when a token expires, it can no longer 

be used for accessing a resource. Meanwhile, the scope validity property defines whether a token can be used, as well as whether 

it can still be considered valid outside of the CSP boundary. For instance, the scope validity property can determine that a token is 

invalid in case token information is leaked. This property can invalidate a token and prevent further damage done by a malicious 

actors.

Based on our experiments, we discovered that the token time validity is one day, and that the access token remains valid even when 

it is used outside the serverless environment.



The State of Serverless Security on Microsoft AzurePage 26 of 56

At this point, we would like to strongly emphasize the importance of implementing the principle of least privilege when 

configuring RBAC and IAM. There is no need to have an owner or administrator role when serverless functions only require 

read-only permissions.

Serverless environment

Managed Service Identity
(MSI) token service

Function Token provider

Service to be authenticated

Figure 26. The architecture of a serverless IDP service

1. A serverless function sends a request to the MSI token service (127.0.0.1:8081/msi/token).

2. The MSI token service proxies a request to an external token provider and authenticates itself via a client certificate that has 

been generated for the environment.

3. The MSI token provider sends a response to the internal token service.

4. The internal token service sends a response to the serverless function.

5. The serverless function uses the token to authenticate itself into the desired resource.

In order for the IDP localhost service to work, it needs to contact an external service to request for an authentication token. The 

configuration for the external service is present inside an encrypted container context. However, this container context can be 

leaked and decrypted if environmental variables are accessed. Using decrypted content, a malicious user can authenticate a request 

to an external IDP service using a leaked client certificates. This means that when variable leakage occurs, malicious actors will be 

able to obtain a valid token for linked IDP-authenticated services with permission restrictions defined inside Azure. This also means 

that a request can be sent outside of Azure or from internet-connected devices.



The State of Serverless Security on Microsoft AzurePage 27 of 56

The X509 client certificate is present within the encrypted context of the container and is unique per application ID (subject in 

certificate) with enabled managed identities. The certificate is valid for 180 days.

Figure 27. Details of managed identity certificates 

User-defined identities are bound to a specific resource. For instance, one can bind an Azure Key Vault to a serverless function and 

assign read permissions to the Vault’s secrets. Once this is done, the user-defined identity can then be used to retrieve secrets from 

the vault. The identity is identified by its “client_id” property, which is used to retrieve access tokens from the service.

The same MSI token service is used to obtain tokens for user-assigned identities and to minimize security risks. When using this 

service, users should employ the principle of least privilege, which prohibits the authorization of a service or an application with 

more rights than it needs. Users can also benefit from limiting the availability of the linked service, or from avoiding leaving the 

service publicly available to limit the possibility of token leakage. Notably, token leakage can be abused for authentication outside of 

the serverless environment’s scope.

Another example of an environmental variable that poses a security risk is the linked storage account connection string. When this 

secret is leaked, which can happen when the “AzureWebStorage” environmental variable is leaked, it could lead to a full RCE within 

the serverless context. This threat scenario requires a vulnerability that would leak environmental variable content, which could be 

caused either by a vulnerability inside the deployed user function or the environment itself. Because the environmental variable 

contains a connection string, when a storage account key access is enabled, a tool such as the Azure Storage Explorer22 can be used 

to manipulate the storage account.



The State of Serverless Security on Microsoft AzurePage 28 of 56

Figure 28. The Azure Storage Explorer connection string dialog where the “AzureWebStorage” variable can be entered

When connected, a user can simply delete and upload a new version of the serverless function, which can alter the serverless 

function itself.

Figure 29. Altering a serverless function using the Azure Storage Explorer

This can allow the execution of an attacker-provided code within the serverless function execution context.

Figure 30. Execution of an altered serverless function



The State of Serverless Security on Microsoft AzurePage 29 of 56

Azure Functions on Windows-Based 
Environments
Similar to the Azure App Service, the Windows-based Azure Functions environment only supports selected stacks and versions, such 

as .NET-powered applications, and those running on Java and Ruby. Like the Azure App Service sandbox, the Windows-based Azure 

Functions service also has limited capabilities.

During our investigation, we observed sensitive environmental variables in this environment. However, compared to Linux-hosted 

serverless applications, we did not see CONTAINER_START_CONTEXT_SAS_URI, which is the container-encrypted context linkage. 

What we found instead was the connection string to Azure storage, which unfortunately leads to the same threats that we have 

discussed regarding the Linux environment.

Figure 31. Windows-hosted environmental variables on Azure Functions

Figure 32. Connection to Azure Storage using an environmental variable connection string



The State of Serverless Security on Microsoft AzurePage 30 of 56

Comparing Azure Services on Linux- 
and Windows-Based Environments
After investigating the Azure App Service and Azure Functions serverless services, we have discovered several security gaps that are 

mostly related to environmental variables that are used to store confidential information. We believe that environmental variables 

are one of the worst places to store secrets because using them for secrets storage provides malicious actors with an additional 

attack surface copied within every child process that can be seen in case of compromise, or when memory access vulnerabilities 

are abused.

Another security issue that we have identified is related to users’ unwise architectural decisions. An example of this is the use of the 

master key  for SSH access, which would then allow privilege escalation inside a container with a known password. It is therefore 

imperative that users choose a public key cryptography for authentication to the SSH service to keep the system secure.

Some of the sensitive environmental variables also contained publicly accessible URL endpoints together with valid tokens, which 

upon exposure can grant malicious actors access to other pieces of sensitive information. Such sensitive information could then be 

used for further attacks on cloud environments. 

It is also imperative to determine whether these URL endpoints should be inherently publicly accessible. If the URL endpoints 

are publicly accessible, they are not limited to the cloud environment alone, meaning that tokens should be inside environmental 

variables. 

Serverless environments are designed in such a way that the user is responsible for implementing security best practices and 

policies to keep them secure. Indeed, some of these settings are not enabled by default, nor are they included in all available Azure 

serverless packages. The application code security deployed by users is crucial because without proper security, it can serve as an 

entry point for attackers.

According to our analysis, applications running on Windows are more secure than those that are running on Linux. In the Windows 

environment, an application sandbox prevents access to all resources. Meanwhile, the Linux environment only uses Docker isolation. 

Even though the Docker container engine is used for running containers inside the Linux environment, it is not the only isolation 

mechanism; the tenants are also separated at the hypervisor level. We also observed that some sensitive environmental variables 

that are found in the Linux environments are not present inside Windows environments.



The State of Serverless Security on Microsoft AzurePage 31 of 56

Improving Standard Security Using 
Custom Images
Both Azure App Service and Azure Functions give users the option to create their own Docker images to run serverless code in Linux 

environments. Because our investigation showed that sensitive information can be found inside environmental variables, we tried to 

enhance the official image and harden overall security while retaining maximum functionality. Overall, we were mostly successful in 

our efforts, except for the SSH access on Azure App Service, which would require enhancements on the side of the CSP.

Azure Functions includes the App Service plan, which guarantees physical hardware allocation that we can imagine as a VM. Inside 

that, we found a Docker container engine installed. This engine executes a container image that is built with the Azure-functions-

host runtime. Azure-functions-host effectively manages the Azure Functions runtime, making it responsible for communication with 

Azure back ends.  

The Azure-functions-host executes the Azure-functions-worker when the serverless function execution is triggered, which then 

executes the actual serverless application that has function app code provided.

Figure 33. Azure App Service plan inclusions

The actual Docker container image could be replaced by a custom image that must contain the azure-functions-host so that it can 

work with Azure Functions. It is important to note that the custom container option is only available for creating function apps on 

the Linux platform. A premium subscription plan is also required.

Serverless
application code

Azure-function-worker

Azure-functions-host

Docker container

Hyper-V boundary

App Service plan



The State of Serverless Security on Microsoft AzurePage 32 of 56

Figure 34. Creating an Azure Function app with a custom Docker container

We followed Azure documentation for creating a custom container using Python as our code interpreter.23 However, we made a 

slight modification and chose a private container registry inside Azure for deployment.

Figure 35. Setting a private registry for a custom container serverless deployment on Azure

After building the container image locally, we pushed it into a private registry, which we then configured to be linked with serverless 

functions.



The State of Serverless Security on Microsoft AzurePage 33 of 56

Figure 36. Deployment diagram

Building a Custom Image
We have chosen mcr.microsoft.com/azure-functions/python:4-python3.9 as our base image from the Azure Functions base list24 

available via the Microsoft Artifact Registry.25

First, we must acknowledge that some environmental variables will most likely be required to have the function-host running for 

Azure Functions to work. However, we also wanted to ensure that our serverless application would not have access to sensitive 

variables.

It is also important to compare the container image differences of the chosen Python stack when creating an Azure function via 

azure-functions/mesh:3.7.1-python3.9 and the Azure Functions base Python image.

The first difference is that the mesh container image executes an initialization wrapper script under the root user. The app user 

would then execute the WebHost.dll binary using the “sudo” command, wherein all the environmental variables would be passed. The 

azure-functions/base images would execute WebHost.dll binaries under root user by default. The WebHost.dll would then execute 

the python-worker, the process that will execute the serverless code itself.

Local Docker

Retrieves

Pushes image

Serverless application

Azure private
container repository

Docker build



The State of Serverless Security on Microsoft AzurePage 34 of 56

Azure Functions
mesh container image

launch.sh

run.shrun.sh

WebHost.dll

python-worker

Azure Functions
Base-Python image

WebHost.dll

python-worker

Figure 37. Comparison of container images

Custom Image Goals
Based on our investigation, we have decided to set the following goals:

• To get rid of sensitive environmental variables inside serverless applications’ executing context

• To minimize required permissions and needed container images for our serverless application

• To have a minimal impact on Azure Functions’ functionality

Getting Rid of Sensitive Environmental Variables
WebHost.dll needs sensitive environmental variables to run. However, because of the nature of the selected application design, they 

are inherited by the python-worker process, wherein serverless code is also executed. Since environmental variables are part of the 

process memory, our options are limited.

Another thing to consider is that other processes’ environmental variables running under the same user can be printed just by using 

read permissions. This is because of the nature of the “/proc/” file system.



The State of Serverless Security on Microsoft AzurePage 35 of 56

Figure 38. Accessing other processes’ environmental variables

Because of this feature, our best bet was to modify the WebHost.dll binary or its configuration to execute the language-worker under 

a different user and without accessing sensitive environmental variables.

By analyzing the container image build process, we were able to investigate the best injection point to alter the execution behavior. 

Because our interpreter was Python, we determined that the easiest way to inject code was to alter the Python binary within the 

container and to replace it with a custom shell script.

Figure 39. Environmental analysis of the container

Our custom shell script was simple. It executed the Python worker as a different user using the “sudo -u www-data” command 

without passing environmental variables. To pass environmental variables, sensitive ones can be suppressed by using the unset 

command and the -E parameter of “sudo.”



The State of Serverless Security on Microsoft AzurePage 36 of 56

Figure 41. A running Python worker without additional environmental variables

Figure 42. Denying access to sensitive environmental variables

We also tested if the changes we made would still allow us to run our serverless function within the Azure environment successfully.

Figure 40. Executing the Python worker via the user “www-data” command passing all other parameters

We were able to get rid of environmental variables and limit access to sensitive variables when needed.



The State of Serverless Security on Microsoft AzurePage 37 of 56

Figure 43. A custom container running on Azure without environmental variables

Minimizing Container Binaries and Permissions
The second goal was to minimize container binaries and their respective sizes to the bare minimum, which means minimizing it to 

include only the application and its dependencies. This is referred to as the Distroless approach.26 The base image for our custom 

container would be minimized by removing binaries that are not essential for it to run. Due to the removal of inessential binaries that 

could also be abused by attackers upon exploitation, the container image itself will become smaller.

The binaries that we removed from the container image were all binaries from the “/bin” directory. Our custom shell was also in 

this directory, which is why we needed to update our environmental tweak. We also removed the “curl,” “wget,” and “perl” binaries 

located in the “/usr/bin” directory in our investigation.



The State of Serverless Security on Microsoft AzurePage 38 of 56

Figure 44.  An example of a Distroless container Docker file

Our custom script no longer worked because we removed the shell interpreter. To counter this, we replaced our custom script with a 

custom compiled binary that does the same job but uses the “execve” system function instead of a shell interpreter.27 This function 

also allows the setting of environmental variables for the new process, allowing users to specify which non-sensitive environmental 

variables would be needed in their application. Users can also dynamically obtain variables via the “getenv” function.28

Figure 45. Custom binary proof of concept



The State of Serverless Security on Microsoft AzurePage 39 of 56

Figure 46. A successfully deployed custom image inside the Azure serverless environment where printing environmental variables 

are available to the executed serverless code

Based on our analysis, we can produce a custom image on Azure App Service, have a low-privileged user execute code, get rid of 

sensitive environmental variables, and harden the “Docker!” root password with minimal distribution.



The State of Serverless Security on Microsoft AzurePage 40 of 56

How to Improve the Overall 
State of Serverless Security
For as long as we have been studying and working in cybersecurity, we have understood that the concept of one-hundred-percent 

security is a myth. As cybersecurity defenders, we can only mitigate risks and impose difficulties on malicious actors, but at the end 

of the day, there is no such thing as an impenetrable system. 

There are many security models to help achieve a good level of security. One of the more popular and widely adopted models is the 

confidentiality, integrity, and availability (CIA) triad,29 a well-researched and experimented model that most industry standard guides 

use as their base for security development, implementation, and validation. 

After we performed a deep dive into the CIA model, it became clear to us that the model weighs security against the usability of 

the handled data. In this model, confidentiality guarantees that the data is only accessible to those who have the right to access it. 

Integrity protects the data against outsiders being able to read, change, or cause damage. Meanwhile, availability requires that the 

data be available when it is needed and when a user passes all security checks.

INTEGRITY

INFORMATION
SECURITY

CONFIDENTIALITY AVAILABILITY

Figure 47. The CIA triad model

For example, if a developer applies the CIA model for a web application with an e-commerce component, the model would help the 

developer find the best solutions for the following business and security concerns:

• Confidentiality: Before making a purchase, the customer needs to create a user account with a unique user ID. The user 

account also needs to be protected by a password. The web application should also offer multifactor authentication (MFA).

• Integrity: At the time of the purchase, the list of items or data that the customer sees must be the same as the list on the 

merchant side. 

• Availability: The application’s website or portal needs to be available for customers at all times so that customers can access 

it at their convenience and without interruption.



The State of Serverless Security on Microsoft AzurePage 41 of 56

Although the DIE model, which is not as widely known as the CIA model, is sometimes viewed as a good competition, it is also seen 

as an unachievable model to use. 

If we think about securing regular infrastructure, the DIE model might work. However, it might prove to be really difficult, if not 

impossible, to implement such a restrictive model on a physical server that runs a full operating system with several applications 

installed that need to communicate with each other. The DIE model can be seen as perfect in theory, but it might prove to be difficult 

to implement in real life.

Although DIE is not as popular as CIA, it is possible that DIE might be a good model to use with more modern forms of computing 

infrastructures.

The growing adoption of cloud infrastructure, containers, or a combination of both, raises the possibility of implementing the DIE 

model. Because of the manner of orchestration, it is easier than ever to distribute a system without needing Open Virtualization 

Formats (OVFs) or snapshots.

Containers that are properly developed and are only running one process can be easily immutable. All modifications needed can be 

done during the development of the container at runtime. There is no real need to change the system, and for better security, there 

might not be a need for a read/write system at all. 

Once a container, a pod, or a cloud instance runs without needing to be online anymore, by its design, it can be taken off without any 

prejudice when needed and without delay, in order to power it back again or to use it to retrieve network configuration. Ephemerality 

can thus be achieved without losing anything important.

Achieving the DIE Model
The use of this particular infrastructure does not automatically mean that DIE is achieved. Based on our assessment of real-life 

scenarios, it was not rare to find improper implementations of DIE. These scenarios included companies that moved their whole 

infrastructure to a CSP but kept the same model as if they were still using a local data center and using only workload servers but on 

the cloud. Another example involved companies using a single container to run everything, similar to how a regular physical server 

would run, except without orchestration or service isolation.

These scenarios undermine not only the purpose of leveraging these more modern infrastructures but also their security 

implementations. Sadly, some users think that using cloud environments or containers is more secure and that there is no need to 

hire cybersecurity personnel or use security products or tools. This is far from true — even if users follow security best practices, it 

is still highly recommended that they also rely on security solutions to help keep their cloud and container environments protected 

against threats.



The State of Serverless Security on Microsoft AzurePage 42 of 56

Physical
infrastructure

Shared
infrastructure

Virtual
machine-as-a-service

Operating system and
app libraries

Virtual network

Shared operating
system kernel 

Container-as-a-service

Application 1 and libraries

Application 2 and libraries

Virtual network

.

.

.

.

Operating system and
app libraries

Network

vs vs

User responsibility

CSP responsibility

Figure 48. The shared responsibility shift over different infrastructures

Cloud platforms and containers began as a kind of a technological revolution that brought about many monetary, resource, and 

security advantages. As previously mentioned, applying the DIE model on cloud infrastructures would be easier than less modern 

infrastructures. However, a new revolution in the form of serverless technology has started gaining more ground in the last few 

years. Indeed, already some young companies are being born and developed using such technology.

Up until this point, we have discussed and presented what serverless technology is, how it should work ideally, as well as how it works 

realistically. And although it is far from being perfectly secure, in a nutshell, it works with each principle of the DIE security model:

• Distributed: Serverless is distributed by nature. It only runs when it is called, and a user can determine the default configuration 

for when, where, and how triggers are called.

• Immutable: Most of the serverless services we presented in our research have their file systems fully or partially read-only by 

default.

• Ephemeral: Most of the serverless services we presented in our study are also fully or semi-ephemeral by default, with a small 

cache being implemented for spare resources.



The State of Serverless Security on Microsoft AzurePage 43 of 56

The Full Operating System and Native Tools
In our analysis, the framework we created relied heavily on native tools for acquiring enough information on the systems, as we 

would expect an attacker would do. We observed the availability of native tools without access restrictions on most of the services 

we checked.

In some cases, the whole operating system was present and available as a container. With such tools, it was relatively easy to map 

out crucial information about the environment and plan the next test phase. 

Tools such as “ping,” “ip,”30 “ifconfig,”31 “netstat,”32 and “ss”33 helped us understand the environment better by giving us information 

on whether it had internet access, what kind of network configuration it had, and if there was any other host alive on the same 

network in some cases.

For services which had internet access, “wget” and “curl” made it possible to download other tools for further exploration of the 

environment. Another very handy network tool that can be dangerous to have around is called “netcat”, which allows the creation 

of a low-effort backdoor.

In certain cases, user promotion tools such as “sudo” or “su” were also observed. This does not necessarily mean that these tools 

could be directly used by the user, but these can be targets for exploitation. 

As mentioned in the beginning of this section, there’s no such thing as one-hundred-percent security. However, it is helpful for 

organizations to remove unnecessary tools — ones that malicious actors can abuse. The removal of such tools can impose a bigger 

challenge for malicious actors in the sense that they would need to develop their own arsenal, find a way to drop them in the 

system, and find an alternative way to execute them. Also, on top of developing custom tools, users would also need to consider 

dependencies since there is also an option not only to remove unused executables but also libraries.

Function Container
In most serverless services, the container that runs the code has all the resources of a full Debian-based operating system. Malicious 

actors who gain access to this environment also gain access to a great number of native tools.

Figure 49. A list of all available default commands inside the “/bin” of the function container



The State of Serverless Security on Microsoft AzurePage 44 of 56

Figure 50. A list of all available default commands inside the “/usr/bin” of the function container

In case the tools are not enough, malicious actors can use “curl” and “wget” to add more tools to their arsenal for the next phase of 

their attack. Aside from this, an attacker can abuse native tools to get enough information about the operating system, the kernel, 

and the container runtime. If any of these are vulnerable, a malicious actor can download, compile, and deploy an exploit into the 

system. This is because of the presence of compilation tools that have execution permissions.

Figure 51. An example of available tools inside serverless environments that are commonly used in cloud attacks

Container Cache Removal and Lifetime
The original idea behind the use of serverless functions and containers as they pertain to runtime and data is to be able to recycle 

the serverless host or container as much as possible. This means that ideally, the serverless host or container should not hold any 

considerable amount of information. 



The State of Serverless Security on Microsoft AzurePage 45 of 56

In an ideal scenario, a container would run as a single process. If the purpose of the container does not involve storing information 

such as logs, or if it is not meant to serve as a database, everything inside it should be disposable.

In the serverless world, the delineation is more defined. The container or host of the function runs the code and exits, effectively 

killing the container or micro VM. If the container or host processes any data that must be retained, it gets forwarded to another 

service dedicated for that sole purpose. However, most CSPs implement a kind of a cache so that the user does not get a “cold” start 

every time a function is called.

That is where the line between security and usability should be drawn. Although not having a cache could impact initial performance, 

having it can give an attacker the opportunity to access the environment and drop different pieces of their arsenal to further expand 

the attack surface.

Attacker Web application First exploitation

Second exploitation

Third exploitation $ ./OS.xpl
#

�����������������
�������������
�������

��
�	���
�������������
�������

Figure 52. An example of an exploitation wherein an attacker breaks as a non-root user and downloads its arsenal under “/tmp”; 

the attacker then uses native building tools to compile exploits for further exploitation

Token Management
CSPs commonly use tokens to provide a secure method of communication between the user and the server or between services. 

Token authentication basically works by making sure that every request to a service is accompanied by verification data that checks 

the authenticity of the request. Since tokens are not necessarily encrypted or hashed, the following are basic recommendations to 

keep their implementations secure:

• Keep tokens secure and protected.

• Rotate tokens.

• Use different tokens per application.



The State of Serverless Security on Microsoft AzurePage 46 of 56

• Consider configuring token expiration.

• Do not use tokens out of context.

During our research, we noticed that tokens are used in two different phases of the serverless implementation. First, tokens are 

used on the user side. Most CSPs offer command-line interface (CLI) tools and develop application extensions34 to manage all cloud 

services, including serverless ones. To start using the token in this serverless phase, the user needs to input credentials at first login 

or configuration. For the purpose of not having to provide it at every request, the client creates access tokens to authorize future 

requests.

Credential

Credentials Access token

Access token Access token

End service

Resource
owner

Client

Resource
server

Authorization
server

User accesses resource

User inputs credentials

Client request authorization
usually with a login page

User can access the
application

Client transfer user’s
credentials with OAuth keys

Transfer access token

Authorization server gives
access token

Give access to the resource

End user

Client

Authorization
server

Resource
server

Figure 53. An ideal token management service



The State of Serverless Security on Microsoft AzurePage 47 of 56

In some of these implementations, the tokens are stored in a plain-text format on environment variables that are meant to last 

for as long as the computer session lasts. The tokens can also be stored in text files with the same permissions as that of the user 

who initially logged in. Because tokens are easily accessible and can be used in a different context, they have become a target for 

cybercriminals who want to hijack cloud accounts.

Immutable Environment
Another effective security implementation — one with a high impact on threats but also a large impact on usability — is restricting 

changes within the environment. Once you build your system with a kernel, an operating system, and applications, nothing can be 

changed anymore. For a long time, having an immutable environment was very hard to achieve, because servers can have more 

than one purpose, or because the files inside the server cannot be static at all times and can change according to use.

Although it is hard to achieve a completely immutable system, users have plenty of options to  harden their systems and achieve 

partial immutability on Unix-based operating systems to granulate access rights on determined directories and file systems. Based 

on our investigation of serverless implementations of different CSPs, users can achieve partial immutability by restricting certain 

mount points’ writing access.

Given significant advancements in technology and assuming that containers and micro VMs have better restriction implementations, 

we can be more aggressive in our approach toward immutability.

The container can be configured to have read-only permissions on every mount point, and if a write permission is needed, it can be 

granularly given to a specific mount point, which in most cases is “/tmp,” without giving it an execution permission.

During our exploration of serverless scenarios, much like ordinary infrastructures, after an attacker exploits the application and 

gains access to the file system, the attacker would also look for any native tool that would be available for further enumeration and 

exploitation. They would then download these native tools or their source code for compilation.

Given this scenario, an attacker who eventually breaks in and gets file system access would not be able to download any tool if the file 

system has read-only permissions. Even if they get lucky and succeed in downloading their arsenal, they would not be able to run it.

These restrictions are, again, neither new nor revolutionary and are a headache to implement. They have also been restricted to a 

very specific infrastructure scenario, such as embedded systems. In contrast, with containers and micro VMs, permissions can be 

implemented like any other security requirement.



The State of Serverless Security on Microsoft AzurePage 48 of 56

Figure 54. Comparing a container before and after removing execution permissions from a specific folder, 

which is a security best practice

Restricting Shell Access 
In computing terms, a shell is essentially a program that takes an input from a user and forwards it to the operating system to 

process. Nowadays, even the most classic Unix systems have graphical interfaces. But for system administrators, the shell is still the 

main way to interact with the system. Not surprisingly for threat actors who target Unix systems, a shell has an important role in 

attacks. This is because although restricting access to it is vital for security, it can be hard to implement at times.

It has become more apparent that security implementations are becoming increasingly restrictive. Almost all the attack scenarios 

that we have described up to this point grant access to the file system. It is, after all, ideal for an attacker to have valid shell access 

to have the ability to map out the environment, use native or downloaded tools, move laterally to other services, or simply hijack 

sensitive data from inside the container.

Restricting the shell can also mitigate a security issue that is caused by a malicious script, as it would be applied to whatever is 

running inside the environment — and not only if an attacker gets access to it. Although it is not the ultimate, foolproof technique, it 

adds a layer of security and is easy to implement. The benefits also extend beyond a micro VM or a container environment to include 

any Unix system.

A restricted shell can be implemented as the default shell for any user (even specific ones) in case the environment has valid users. 

It should be noted, however, that this is not the best practice for serverless environments.



The State of Serverless Security on Microsoft AzurePage 49 of 56

Figure 55. A video, a GIF, and a link for implementation of a restricted shell where only specific commands are allowed to run

Network Access
Given that not all of the implementations we have described so far can be implemented at once, attackers can abuse the network 

once they get access to the shell.

If the functions are configured in a way that they have internet access, attackers can abuse them to download and dump their own 

tools for further exploitation. Attackers will then map out the environment and obtain detailed information about the operating 

system, kernel, and running applications so that they can download exploits for specific scenarios using the outbound connection. 

In our investigation of different CSPs, we did not find any that block outbound traffic, nor did we find any that  had an option for the 

user to disable outbound traffic in case their applications do not require it.

In this paper, we discussed a proof of concept in which we discovered that after the initial exploitation, we are able to download a 

native tool and use its own permissions to change the settings, as though it was administrative application.

We have seen a mix of internal network access implementations in our study. Some of them were very restrictive and secure, 

including containers that ran in an isolated network environment, which hindered attackers from mapping out other servers or 

services running on the same provider.

Others, for no apparent reason, implemented a full /24 network where it was possible for an attacker to run network mapping and 

attack tools from inside the application container.



The State of Serverless Security on Microsoft AzurePage 50 of 56

Figure 56. Serverless endpoint configuration with a single IP network

As some CSPs implementations show, it is possible to restrict internal network access even without external tools. Doing this would 

limit the attack surface. However, it should be noted that this option is either not available by default or is part of an upgraded plan.

Attacker Injects shell
command on Lambda

function with
high permissions

Downloads,
unpacks, and

installs CLI tool

Checks roles
and policies

Modifies function
timeout from two minutes

to 15 minutes

Figure 57. An AWS Lambda kill chain for a function with high permissions

Source: Trend Micro35

In 2020, we created a proof-of-concept video36 that shows how poor coding practices and permissive access policies could give 

malicious actors the capability to alter the timeout of an AWS Lambda function.



The State of Serverless Security on Microsoft AzurePage 51 of 56

Application Timeout
The application timeout, which is configurable for all CSPs, is a setting that users should always check, especially when they are 

concerned about monetary resources and security. Some CSPs use the running time of a function as a parameter to bill the customer. 

This means that if the running time is high, the billed amount would also be high. Though the impact of a high running time to the 

billed amount is not always direct, it is still part of the billing equation.

Security could serve as the extra push customers need to restrict their application’s running time. The shorter the timeout, the 

smaller the attack surface, and this serves as another incentive for keeping the application distributed among focused and shorter 

functions.

The default application timeout is five minutes or less. This would depend on the CSP and on the purpose of the function. The user 

who will use the application and the language that will be used (since different languages need varying period lengths to load and 

run) also determine the application timeout.



The State of Serverless Security on Microsoft AzurePage 52 of 56

Message from Microsoft
Microsoft Azure teams (MSRC, Azure App Service, Azure Functions) appreciate Trend Micro’s efforts in looking into any possible 

security vulnerabilities and issues along with the education of customers about any possible threats/weaknesses.

While it is great that no unauthenticated exploit/vulnerability was identified during this research, being secure is always a moving 

target, and Microsoft Azure constantly evaluates best practices and how to factor them into future improvements to further harden 

the platform and help customers to build inherently more secure solutions easily with a “secure-by-default” mindset.

Microsoft provides security best practices for Microsoft Azure on their website.37, 38



The State of Serverless Security on Microsoft AzurePage 53 of 56

Conclusion
Although the idea of going serverless shifts the responsibility over certain aspects to the CSP, giving users a feeling that their 

environment will be more secure, now is a good time to shine the spotlight on the security concerns associated with migrating to or 

starting a project using serverless services.

Security should never be neglected. Although the surface of attack is smaller in serverless deployments, it does not mean that 

threats only exist in the user’s code, or worse, that threats no longer exist in these deployments. Planning to make the move to 

serverless requires ensuring the security of the application. Users need to determine how their applications will interact with the 

resources involved in their projects, and which data might be sensitive and should never be mishandled.

Two key factors of this threat modeling process were understanding how serverless services communicated with each other and 

how a user controls serverless resources. In our investigation, we considered it as a big red flag when both the user and the CSPs 

do not properly secure secrets and access tokens. Our team also found secrets stored in plain text inside files, or secrets that are 

loaded by the operating system via environment variables. This practice is not recommended for users and should be avoided. If 

the CSP does not provide a secure way for users to handle secrets, the user should still ensure that secrets are handled as securely 

as possible. When our team started investigating and shining a light on serverless security, attacks where threat actors can take 

advantage of unsecured tokens were just theoretical. Today, there are now multiple hacker teams that harvest CSP-specific secrets 

so that they can take over services and, in some cases, the whole account.39

There are different ways to use the cloud. Some CSP customers use the cloud in a way similar to how they would use a regular or 

a traditional data center: They would use workloads and at the same time, manage all the necessary infrastructure, such as server 

resources and networks. Meanwhile, other customers use the cloud for user application-level services, such as serverless computing, 

where the CSP takes care of the infrastructure. The leap from using cloud workloads to using serverless on cloud is quite challenging, 

as it requires users to adapt to a different manner of implementation for most aspects, including the way users deal with security. 

By its very nature and when properly implemented, serverless computing follows a more restrictive security model, or at the very 

least, it is easier to implement it in a more secure manner compared to other hard-to-apply security models.

Security features that once would have had a big impact on an application’s usability, such as keeping a workload immutable and 

enabling safe memory cleaning, are default features of the serverless infrastructure. This makes serverless adoption more secure. 

Still, it is important to understand that there is still a great need to strike a balance between security and usability. It is our hope that 

this study has exposed some of the blind spots and the seldomly discussed security issues of serverless services hosted on Microsoft 

Azure to help users make well-informed security decisions.



The State of Serverless Security on Microsoft AzurePage 54 of 56

Security Recommendations
• Follow CSPs’ recommendations. CSP recommendations for securing environments and projects are usually found in their 

respective documentations.

• Use vaults to store keys and passwords. This might incur additional costs to the team or organization, but it gives users and 

security teams an additional layer of protection for their credentials’ storage.

• Use custom images. While default services allow for speed and efficiency for deployment and development, custom container 

image designs and implementations give developers more room for out-of-the-box solutions and additional security.

• Use encrypted channels and pipelines. Locking the values of the variables ensures that sensitive information, such as 

passwords and IDs, remains secret in instances of unauthorized access.

• Achieve compliance with the Assume Breach paradigm. Under this paradigm, users know that vulnerabilities exist. In the 

instance of compromise and given web vulnerabilities’ prevalence in today’s attacks,40 the impact of the infiltration from the 

abuse of an exploit is minimized. 

• Follow the principle of least privilege. This can be achieved by using a non-privileged user for your container and applications, 

using managed identities and roles, and limiting public endpoints of linked cloud services. Also, consider using safer mechanisms 

for generating and managing secrets such as passwords and API keys.

• Audit and secure all employed out-of-the-box solutions. This can be done by performing third-party reviews and following 

vendors’ best practices for security.



The State of Serverless Security on Microsoft AzurePage 55 of 56

Endnotes

1 Taylor Brown. (April 2017). Microsoft. “Bringing Docker To Windows Developers with Windows Server Containers.” 
Accessed on Nov. 23, 2022, at: Link.

2 Trend Micro. (n.d.). Trend Micro Security News. “Zero Trust.” Accessed on Nov. 23, 2022, at: Link.

3 Netsurion. (n.d.). Netsurion. “The Assume Breach Paradigm.” Accessed on Nov. 23, 2022, at: Link.

4 Microsoft. (n.d.) Microsoft. “App Service.” Accessed on Nov. 24, 2022, at: Link.

5 David Fiser. (May 4, 2022). Trend Micro Security News. “Crafting an Azure App Services Threat Model.” Accessed on 
Dec. 21, 2022, at: Link.

6 Docker Docs. (n.d.). Docker Docs. “Isolate containers with a user namespace.” Accessed on March 14, 2023, at: Link.

7 Microsoft. (Dec. 7, 2022). Microsoft. “Migrate custom software to Azure App Service using a custom container.” 
Accessed on Dec. 21, 2022, at: Link.

8 PyPi. (n.d.). PyPi. “webssh 1.6.1.” Accessed on Nov. 24, 2022, at: Link.

9 David Fiser and Alfredo Oliveira. (Dec. 17, 2019). Trend Micro Research, News, and Perspectives. “Why A Privileged 
Container in Docker Is a Bad Idea.”Accessed on Nov. 24, 2022, at: Link.

10 Linux. (Aug. 27, 2021). man7.org. “capabilities(7) — Linux manual page.” Accessed on Nov. 24, 2022, at: Link.

11 David Fiser. (May 4, 2022). Trend Micro Security News. “Crafting an Azure App Services Threat Model.” Accessed on 
Dec. 21, 2022, at: Link.

12 Microsoft. (Sep. 16, 2022). Microsoft. “App Service networking features.” Accessed on Nov. 25, 2022, at: Link.

13 Trend Micro. (May 13, 2017). Trend Micro Security News. “WannaCry/Wcry Ransomware: How to Defend against It.” 
Accessed on Dec. 21, 2022, at: Link.

14 Microsoft. (June 3, 2021). Microsoft. “Azure Key Vault basic concepts.” Accessed on Nov. 27, 2022, at: Link.

15 projectkudu. (Aug. 22, 2022). GitHub. “Azure Web App sandbox.” Accessed on Nov. 27, 2022, at: Link.

16 Microsoft. (July 15, 2022). Microsoft. “Storage account overview.” Accessed on Dec. 5, 2022, at: Link.

17 Microsoft. (June 15, 2022). Microsoft. “API Management authentication policies.” Accessed on Dec. 5, 2022, at: Link.

18 Microsoft. (Oct. 13, 2022). Microsoft. “About Azure Key Vault.” Accessed on Dec. 5, 2022, at: Link.

19 Microsoft. (July 15, 2022). Microsoft. “Overview of Azure Service Fabric.” Accessed on Dec. 5, 2022, at: Link.

20 Microsoft Azure. (Dec. 3, 2022). GitHub. “azure-functions-host.” Accessed on Dec. 5, 2022, at: Link.

21 Microsoft. (May 6, 2022). Microsoft. Accessed on Dec. 5, 2022, at: Link.

22 Microsoft. (n.d.). Microsoft. “Azure Storage Explorer.” Accessed on Dec. 6, 2022, at: Link.

23 Microsoft. (Oct. 6, 2022). Microsoft. “Create a function on Linux using a custom container.” Accessed on Dec. 12, 
2022, at: Link.

24 Microsoft Artifact Registry. (Dec. 12, 2022). Microsoft Artifact Registry. “Azure Functions Base.” Accessed on Dec. 12, 
2022, at: Link.

25 Microsoft Artifact Registry. (n.d.). Microsoft Artifact Registry. “Microsoft Artifact Registry.” Accessed on Dec. 12, 
2022, at: Link.

https://learn.microsoft.com/en-us/archive/mdsn-magazine/2017/april/containers-bringing-docker-to-windows-developers-with-windows-server-containers/
https://trendmicro.com/vinfo/us/security/definition/zero-trust
https://netsurion.com/articles/the-assume-breach-paradigm
https://azure.microsoft.com/en-us/products/app-service/#overview
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/crafting-an-azure-app-services-threat-model
https://docs.docker.com/engine/security/userns-remap/
https://learn.microsoft.com/en-us/azure/app-service/tutorial-custom-container?tabs=azure-cli&pivots=container-linux
https://pypi.org/project/webssh/
https://www.trendmicro.com/en_us/research/19/l/why-running-a-privileged-container-in-docker-is-a-bad-idea.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/crafting-an-azure-app-services-threat-model
https://learn.microsoft.com/en-gb/azure/app-service/networking-features
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/wannacry-wcry-ransomware-how-to-defend-against-it
https://learn.microsoft.com/en-us/azure/key-vault/general/basic-concepts
https://github.com/projectkudu/kudu/wiki/Azure-Web-App-sandbox
https://learn.microsoft.com/en-us/azure/storage/common/storage-account-overview.
https://learn.microsoft.com/en-us/azure/api-management/api-management-authentication-policies
https://learn.microsoft.com/en-us/azure/key-vault/general/overview
https://learn.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://github.com/Azure/azure-functions-host
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options?tabs=azure-cli.
https://azure.microsoft.com/en-us/products/storage/storage-explorer/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-function-linux-custom-image?tabs=in-process%2Cbash%2Cazure-cli&pivots=programming-language-python
https://mcr.microsoft.com/en-us/product/azure-functions/base/about
https://mcr.microsoft.com/en-us/catalog


The State of Serverless Security on Microsoft AzurePage 56 of 56

26 Alfredo Oliveira and Raphael Bottino. (Sept. 7, 2022). Trend Micro. “Enhancing Cloud Security by Reducing Container 
Images Through Distroless Techniques.” Accessed on Jan. 20, 2023, at: Link.

27 Die.net. (n.d.). Die.net. “execve(3) - Linux man page.” Accessed on Dec. 14, 2022, at: Link.

28 Cplusplus.com. (n.d.). Cplusplus.com. “getenv.” Accessed on Dec. 14, 2022, at: Link.

29 Wesley Chai. (June 2022). TechTarget. “confidentiality, integrity and availability (CIA triad).” Accessed on Dec. 14, 
2022, at: Link.

30 Man7.org. (n.d.). Man7.org. “ip(8) — Linux manual page.” Accessed on Dec. 14, 2022, at: Link.

31 Man7.org. (n.d.). Man7.org. “ifconfig(8) — Linux manual page.” Accessed on Dec. 14, 2022, at: Link.

32 Man7.org. (n.d.). Man7.org. “netstat(8) — Linux manual page.” Accessed on Dec. 14, 2022, at: Link.

33 Man7.org. (n.d.). Man7.org. “ss(8) — Linux manual page.” Accessed on Dec. 14, 2022, at: Link.

34 David Fiser. (March 4, 2020). Trend Micro Research, News, and Perspectives. “Security Risks in Online Coding 
Platforms.” Accessed on Dec. 14, 2022, at: Link.

35 Alfredo Oliveira. (Aug. 11, 2020). Trend Micro. “Securing Weak Points in Serverless Architectures: Risks and 
Recommendations.” Accessed on Dec. 21, 2022, at: Link.

36 Trend Micro. (Aug. 11, 2020). Trend Micro. “Weak Points in Serverless Architecture: A Proof of Concept.” Accessed on 
Jan. 20, 2023, at: Link.

37 Microsoft. (March 4, 2023). Microsoft. “Security recommendations for App Service.” Accessed on March 14, 2023, at: 
Link.

38 Microsoft. (Dec. 16, 2022). Microsoft. “Securing Azure Functions.” Accessed on March 14, 2023, at: Link.

39 David Fiser and Alfredo Oliveira. (Aug. 17, 2022). Trend Micro Research, News, and Perspectives. “Analyzing the Hidden 
Danger of Environment Variables for Keeping Secrets.” Accessed on Dec. 21, 2022, at: Link.

40 Magno Logan and Pawan Kinger. (Aug. 23, 2021). Trend Micro Security News. “Linux Threat Report 2021 1H: Linux 
Threats in the Lcoud and Security Recommendations.” Accessed on Dec. 15, 2022, at: Link.

For more information visit trendmicro.com

©2023 by Trend Micro Incorporated. All rights reserved. Trend Micro, and the Trend Micro t-ball logo, OfficeScan and Trend Micro Control Manager are trademarks or registered trademarks of Trend Micro Incorporated. All other company and/or 
product names may be trademarks or registered trademarks of their owners. Information contained in this document is subject to change without notice. [REP01_Research_Report_Template_A4_221206US]

For details about what personal information we collect and why, please see our Privacy Notice on our website at: trendmicro.com/privacy.

https://www.trendmicro.com/es_es/research/22/i/enhancing-cloud-security-by-reducing-container-images-through-di.html
https://linux.die.net/man/3/execve
https://cplusplus.com/reference/cstdlib/getenv/
https://www.techtarget.com/whatis/definition/Confidentiality-integrity-and-availability-CIA#:~:text=Confidentiality%2C%20integrity%20and%20availability%2C%20also,with%20the%20Central%20Intelligence%20Agency
https://man7.org/linux/man-pages/man8/ip.8.html
https://man7.org/linux/man-pages/man8/ifconfig.8.html
https://man7.org/linux/man-pages/man8/netstat.8.html
https://man7.org/linux/man-pages/man8/ss.8.html
https://www.trendmicro.com/en_us/research/20/c/security-risks-in-online-coding-platforms.html
https://documents.trendmicro.com/assets/white_papers/wp-securing-weak-points-in-serverless-architectures-risks-and-recommendations.pdf
https://www.youtube.com/watch?v=vbHdf6WNoO0&ab_channel=TrendMicro
https://learn.microsoft.com/en-us/azure/app-service/security-recommendations
https://learn.microsoft.com/en-us/azure/azure-functions/security-concepts?tabs=v4
https://www.trendmicro.com/en_us/research/22/h/analyzing-hidden-danger-of-environment-variables-for-keeping-secrets.html
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/linux-threat-report-2021-1h-linux-threats-in-the-cloud-and-security-recommendations
https://www.trendmicro.com/
https://www.trendmicro.com/en_us/about/trust-center/privacy.html

