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The most popular protocols for machine-to-
machine (M2M) technology — the backbone of 
the internet of things (IoT) and industrial internet 
of things (IIoT) — are affected by security and 
privacy issues that impact several market verticals, 
applications, products, and brands.
This report provides a holistic security analysis of the most popular M2M protocols: Message 

Queuing Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP). Given 

their flexibility, these data protocols are being adopted in a variety of settings for consumer, 

enterprise, and industrial applications to connect practically all kinds of “machine,” from 

innocuous fitness trackers to large power plants. We found issues in design as well as 

vulnerable implementations, along with hundreds of thousands of unsecure deployments. 

These issues highlight the risk of how endpoints could be open to denial-of-service (DoS) 
attacks and, in some cases, taken advantage of to gain full control by an attacker. Despite 

the fixes in the design specifications, it is hard for developers to keep up with a changing 

standard when a technology becomes pervasive. Also, the market for this technology is very 

wide because the barrier to entry is fairly low. This has led to a multitude of fragmented 

implementations.

This report is aimed at raising security awareness and driving the adoption of proper 

remediation measures. Given the results of our research, we make the following high-level 

recommendations:

• Implement proper policies to remove unnecessary M2M services. This is particularly 

hard in complex, multi-vendor IIoT systems, which depend on M2M technology for basic 

functionalities, from simple notifications to critical software upgrades. Before being used 

in IoT solutions, M2M technology was (and is still being used) for integration.

• Run periodic checks using internet-wide scan services or tools to ensure that none 
of the sensitive company data is inadvertently leaked through public IoT services. 
It is often the case that — for fast prototyping — test systems use unsecure IoT servers, 

which are then left unchanged, even when supposed to run in production mode.

• Implement a vulnerability management workflow or other means to secure the 
supply chain. This is important because M2M technology is implemented not only in 

large and enterprise-grade software but also in small, embedded devices, which are less 

likely to receive timely security upgrades.

• Stay up to date with the standards in this space because this technology is evolving 
rapidly. The small footprint of these software may justify in-house development, so it is 

likely that organizations have chosen to develop their standard M2M technology rather 

than buy existing implementations.
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These high-level recommendations are based on our findings, which show how current M2M 

technology can be abused for:

• Target reconnaissance. We have found numerous unsecure deployments of endpoints 

all over the world leaking sensitive data including technical details, names, phone 

numbers, credentials, and network configuration details. This data is gold for an attacker 

who is preparing for a targeted attack. Given the scarce security awareness around this 

technology, it doesn’t take advanced skills to collect hundreds of millions of records in a 

few months of internet-wide scanning.

• Industrial espionage. We have found production data related to critical industry 

sectors, including manufacturing, healthcare, public administration, building automation, 

transportation, and agriculture. An adversary can use this data to gain a competitive 

advantage over a company, city, or nation-state. We show that with simple keyword-

based searches, an attacker can elicit business-relevant data that includes, for instance, 

the location and identifying information of assets and personnel, the technology used 

by a given company, and business-to-business relations, including the exchanged 

communication.

• Targeted attacks. Given the high value associated with affected sectors and the detailed 

information that attackers have at their disposal, targeted attacks are the most obvious 

next step. We show that the technology has design, implementation, and deployment 

security issues that can facilitate the job of a motivated attacker looking to launch a 

targeted attack. We show that current M2M technology can be abused to take control of 

endpoints or force them in a DoS state.

• Lateral movement. By abusing specific functionality, an attacker can use M2M 

technology to maintain persistent access to a target via software upgrades or to perform 

lateral movement, including against other targets. For instance, we show how an attacker 

can abuse a by-design protocol feature to implement amplification attacks, which are still 

feasible in, as of this writing, about 17 to 22 percent of the IPv4 autonomous systems on 

the internet.

Considering the expected increase in the adoption of M2M technology required to implement 

both IoT and IIoT solutions, we foresee the following changes in the threat landscape:

• Current threats will embrace M2M technology in the near future. Although we are 

unaware of malware using MQTT or CoAP protocols as an exfiltration or command-and-

control (C&C) channel, we believe it won’t take long for threat actors to realize that M2M 

technology is well suited for malicious purposes. In a similar vein, if the adoption of CoAP 

keeps rising, it will become convenient to exploit the protocol for reflective DoS attacks, 

as has happened with Domain Name System (DNS), Simple Service Discovery Protocol 

(SSDP), and other protocols.

• New threats will emerge in exploiting M2M technology. In the long run, M2M 

communication will have a more direct impact on our lives. Automation systems running 

in factories and cities will take decisions based on collated telemetry data. We believe 

that we will reach the point that poisoning telemetry data will become a feasible, indirect 

attack vector.
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This report is structured around multiple orthogonal aspects and thus can be read in different, 

self-contained ways:

• Technology. We look at the protocols from a technology perspective, focusing on the 

design issues of the two most popular protocols used in M2M communication, and show 

how such issues had a negative impact on the implementations, ultimately leading to 

software vulnerabilities that can be exploited by threat actors. In this section, we explore 

the technical details from the high-level specification to the low-level software flaws.

• Applications. We consider four broad applications of M2M technology, namely, 

telemetry and notification, IoT node configuration and management, automation command 

queuing, and over-the-air upgrades. All of these applications are essential in every IIoT 

system. Through our findings, we show concrete examples of how a threat actor can 

negatively impact each application.

• Products. We look at M2M from a product-oriented viewpoint, from the higher level of 

the stack (management platforms) down to the software that runs on the “things.” Our 

security analysis considers all of these levels, and our findings regard the largest players 

in this market.

• Impact. We conclude by bringing together all the pieces — technology, applications, 

products, and respective findings — and discussing them in the context of smart factories 

and smart cities. We have chosen these two use cases because of their high business 

value as well as the direct impact in people’s lives.

Throughout the document, each heading labeled as “Security Angle” highlights a short 

summary of the security issues presented in the preceding section. Similarly, each heading 

labeled as “Findings” highlights our findings within the context of the preceding section.

Section 2

Section 3

Section 4

Section 5
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Introduction
If there is one key technology that has significantly contributed to the fast development of the IoT and 

IIoT, it would be M2M protocols. Short for machine-to-machine protocols, this umbrella term refers to 

the information technologies (ITs) that enable machines to “talk” a common language, a language 

made of commands for actuators, and telemetry data from field sensors, which are the lifeblood of 

any IoT and IIoT system.

Throughout this report, unless otherwise stated, the term “machine” is used with an IIoT meaning. 

Depending on the sector, we use this term to indicate manufacturing devices (e.g., industrial robots, 3D 

printers), agricultural machines (e.g., soil sensors, irrigators), smart city devices (e.g., traffic lights, air 

quality monitors), and so on.

Scope
Despite the existence of several M2M protocols, in this report we focus on MQTT and CoAP, whose 

immense popularity for at least the past two years is showing no signs of waning. Both past and 

present researches have found hundreds of thousands of publicly available endpoints implementing 

these technologies. The generality of MQTT and CoAP makes them flexible and adaptable to a variety 

of use cases. Unfortunately, it also makes them attractive targets for threat actors.

M2M technology based on MQTT and CoAP is found in a variety of sectors including, but not limited to, 

manufacturing, public administration, avionics and aerospace, defense, building automation, marine, 

transportation, agriculture, food supply, and healthcare. From a security and privacy standpoint, attacks 

in these settings have high impact because of the critical assets at play in these sectors.

MQTT and CoAP are found in a variety of enterprise-grade products ranging from control and 

analytics dashboards to connectivity, all the way down to the software running on the field sensors 

or networking devices.

Methodology
We follow a holistic methodology, by looking at the technology, its applications, the market, and the 

impact of our findings. We take an analytical approach based on concrete findings, which include 

vulnerabilities and data gathered from real systems.

We do not exclusively focus on software vulnerabilities that can be fixed, but we look at their root 

cause. Also, we look at issues in how the design of M2M technology is specified, as we show that it has 

affected the robustness of the implementations.

1.1

1.2
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For data gathering, we played the role of a casual attacker with modest resources, scanning the internet 

for exposed MQTT brokers and CoAP hosts. In just nearly four months, such a “casual attacker” was 

able to collect 209,944,707 MQTT messages obtained from 78,549 brokers and 19,208,047 CoAP 

responses from 441,964 servers.

Angle
We focused our research on the increased security and privacy risks introduced by the pervasive 

adoption of M2M protocols, using MQTT and CoAP as two representative examples. We consider only 

real technology implementations, already adopted and deployed in the real world, with an eye on the 

future. In particular, we consider the technology that will run cyber-physical assets for the next three to 

five years.

We analyze M2M technology considering active attackers with at least the following goals: perform 

reconnaissance activity against a target, conduct industrial espionage, prepare targeted attacks, 

take control of or subvert the (physical) machines that talk over these protocols, and perform lateral 

movements within the same target organization or against other targets.

We show that the current security status of this M2M technology facilitates an attacker with these 

goals in mind because of, first, design and technical issues with the technology and, second, scarce 

security awareness.

We have disclosed all discovered vulnerabilities and, where applicable, we’re reaching out directly or via 

computer emergency response teams (CERTs) to notify the owners of the affected services.

Background
Message Queuing Telemetry Transport (MQTT) is a standard messaging protocol that allows endpoints 

to exchange data in a publish-subscribe fashion. Constrained Application Protocol (CoAP), on the 

other hand, is a client-server protocol — not yet standardized and much younger than MQTT — that 

allows two endpoints to exchange data in a connectionless way. On top of this basic functionality, 

CoAP allows for the design of custom M2M protocols. Despite fulfilling different needs, both protocols 

are playing a fundamental role in the IoT and IIoT trend, where fast and flexible device-to-device data 

exchange is the most basic operational requirement.

High-level view of the interaction models of MQTT (left) and CoAP (right)Figure 1.

MQTT CoAP

Client

Client

Client Client

Client

Server

Server

Client

Client

Client

Broker

1.3
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MQTT: Message Queuing Telemetry Transport
In MQTT, data exchange is mediated by one or more brokers. Clients can publish messages to the 

broker and/or subscribe to the broker to receive (certain) messages. All published messages must 

have a topic, which is essentially a “label” of that particular message. Although there is no standard 

rule, topics are usually organized as a filing system (e.g., “/station1/substation3/reactor3/

temperature”) and are used to dispatch messages according to the right subscribers, depending on 

what topics they subscribed to. For instance, the control software of a power plant could subscribe to 

receive a message with the topic filter “/station1/substation3/#” (where “#” means “any string”). 

In this way, any message published from any reactor (e.g., “reactor1”, “reactor2”, “reactor3”) 

would be delivered to the control software.

At any time, clients can subscribe to and unsubscribe from one or more topics by connecting to a 

broker. So if a new industrial device is installed (e.g., a new reactor, “reactorX”), the IT operations 

will have to configure its IoT node with the Internet Protocol (IP) address and connection details of the 

broker. When booting up, the new IoT node will announce its presence to the broker and subscribe to 

the requested topics. MQTT subscribers and publishers are transient and can come and go at any time, 

and could receive old, queued messages when they come back online.

MQTT clients publish messages to the broker, which takes care of dispatching them to the 

subscribers according to their topics.

In the example above, Client 1 is publishing messages with the topic “/station1/substation3/

reactor3/temperature” and payload 500. Client 2, which has previously subscribed to any topic 

matching “/station1/substation3/#”, will receive those messages. Client 3 and 4, on the other hand, 

will not. Client 3 could be an endpoint with a dashboard to manage or configure other nodes. In our 

hypothetical scenario, it has subscribed to “/station2/#” to receive any data from that station. For 

example, this data could include the software version, like the message sent by Client 4.

Figure 2.
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CoAP: Constrained Application Protocol
CoAP is a client-server protocol, which means that the data exchange is initiated by a client node with 

a request sent to a server node, which will answer with a response. CoAP does not require the client 

to open or keep a connection to a server because it’s based on User Datagram Protocol (UDP). At any 

time, a client can send one CoAP packet to a server. Each request has a few options, with the most 

important one being the Uniform Resource Identifier (URI), which indicates the “path” to the requested 

resource — much like Uniform Resource Locators (URLs) for websites. Note that a node could be both 

server and client at the same time, implementing a point-to-point, full-duplex data layer.

CoAP clients send requests to the server, which responds to those that are correctly received.

Following the same example used in the MQTT description above, a client node could command 

another node to, say, “turn on” or “execute a given task,” by sending a CoAP packet such as  

 “/station1/substation3/reactor3” with payload “on”. The CoAP server will interpret the URI, extract 

the “on” payload, and decide what to do according to its logic. Depending on the request, the server 

could reply with an acknowledgment, or just remain silent: Not all requests must be acknowledged.

MQTT vs. CoAP
CoAP is much more lightweight than MQTT, in terms of both operational requirements (i.e., no broker 

setup is needed) and memory and network overhead (i.e., UDP does not require keeping a connection 

open, and messages are much smaller in size). Thus, it meets the requirements of low-power IoT nodes: 

It minimizes the transmission cost and does not impose an always-on connection. For its part, MQTT 

is thus preferred over CoAP for mission-critical M2M: It allows the enforcement of quality of service 

and ensures message delivery. On the other hand, CoAP is preferred over MQTT in gathering telemetry 

data transmitted from transient, low-power nodes like tiny field sensors. An extreme application use 

case for CoAP is satellite communication: The European Space Agency’s Advanced Research in 

Telecommunications Systems (ARTES) program has recently kick-started a research project1 on M2M 

communication in satellite networks (where latency can be very high), and CoAP is unsurprisingly listed 

among the chosen protocols.

 1 TIA Advanced Research in Telecommunications Systems (ARTES). (2 May 2017). ARTES. “M2MSAT - Demonstrator of Light-
Weight Application and Transport Protocols for Future M2M Applications.” Last accessed on 1 August 2018 at  
https://artes.esa.int/projects/m2msat.

Figure 3.
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Questions
With the goal of raising security awareness, Lucas Lundgren, a security consultant at IOActive, presented 

the results of an internet-wide measurement conducted between 2016 and 2017, which showed a clear 

deployment problem2 (also confirmed in the same year by follow-up research3). There were tens of 

thousands of unsecure MQTT hosts handing out sensitive data to any casual attacker.

Starting from these results — and adding CoAP to the picture — we arrived at our first and foremost 

question:

Has anything changed since then, and have users become 
more aware of the security issues?

Unfortunately, our data shows the opposite — both for MQTT and CoAP. Our results indicate that 

a casual attacker with modest resources would find hundreds of thousands of MQTT or CoAP 

endpoints providing an attacker with hundreds of million records. As the figure below shows, these 

numbers have almost always been increasing. Acquiring this data is feasible because of the inherent 

openness of the protocols, coupled with unaware public deployments. This alone is a red flag.

New MQTT (left) and CoAP (right) hosts found per day (black) and cumulative (red). The sudden 

increase since June 2018 is natural: We haven’t changed anything in the data gathering routine. 

These numbers refer to unsecure deployments. In comparison, we found fewer than 30 hits on 

Shodan for port 8883 (MQTT over TLS well-known port) and 30,000 on ZoomEye. However, port 

8883 is also often used for many other protocols.

These results raised the second question:

Is this just a deployment problem, or do these M2M 
protocols carry an inherent security risk?

Detailed answers to these two questions are provided in Section 3, specifically under the headings 

“Findings” and “Security Angle.”

 2 Lucas Lundgren. (25 July 2017). Black Hat USA. “Taking Over the World Through MQTT—Aftermath.” Last accessed on 28 July 
2018 at https://www.blackhat.com/docs/us-17/thursday/us-17-Lundgren-Taking-Over-The-World-Through-Mqtt-Aftermath.pdf.

 3 Moshe Zioni. (26 October 2017). LinkedIn SlideShare. “MQTT - for fun and profit - explore & exploit.” Last accessed on 28 July 
2018 at https://www.slideshare.net/moshez/mqtt-for-fun-and-profit-explore-exploit-owasp-il-2017-v12.

Figure 4.
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Technology
MQTT is a mature standard, with its first version dating back to 1999. Still, we discovered several security 

issues in the standard itself and in its software implementations. The MQTT version 3.1.1 specification4 

 describes a set of disallowed Unicode control codes and non-Unicode characters, and doesn’t require 

the endpoint to validate the encoded strings. In particular, it allows each implementation to disconnect 

upon receiving any of those invalid characters. When a broker decides not to validate strings encoded 

in Unicode Transformation Format – 8-bit or UTF-8 (i.e., topics), a malicious client could initiate a DoS 

attack that would cause clients to disconnect if they enforce closing the connection upon receiving 

disallowed characters. Older versions of the standard also present unsafe examples of parsing variable-

length fields in the packet, leading developers to implement these unsafe patterns. In fact, we discovered 

this vulnerable pattern being implemented in the most popular embedded MQTT client library that 

supports several architectures and devices (e.g., Arduino, Intel Galileo), and adopted commercially for 

automation and industrial applications. Combining with an unbounded static buffer write led us into 

achieving remote code execution. It should be noted, however, that all discovered vulnerabilities have 

been fixed, thanks to responsible disclosure.

CoAP is in a very early stage of development, although many pieces of IIoT software has already 

implemented it. However, the Request for Comments (RFC) defining the protocol, RFC 7252,5 

explicitly pinpoints the security issues (mainly due to the “connectionless” nature of UDP), which we 

confirmed with a practical experiment. On a test network with CoAP clients and servers, we launched an 

amplification attack with increasing payload size and estimated the maximum bandwidth amplification 

factor (BAF). According to our estimate, CoAP can reach up to 32 times (32x) amplification factor, which 

is roughly between the amplification power of DNS and SSDP. This means that an attacker who has 

access to a 1-Mbps (megabit per second) link would be able to hit a target at 32 Mbps.

The outcome of fuzzing tests carried out in 2017 revealed that the current implementations are not very 

robust: In its “State of Fuzzing 2017” report,6 Synopsys found 6,275 crashes against 16,122,616 test 

runs with an average runtime of 3 hours, with the first crash found in 8.5 seconds. These results were 

confirmed by an independent academic research.7

 4 OASIS Message Queuing Telemetry Transport (MQTT) TC. (10 April 2014). OASIS. “MQTT Version 3.1.1.” Last accessed on 28 
July 2018 at http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html.

 5 Zach Shelby, Klaus Hartke, and Carsten Bormann. (June 2014). IETF Tools. “The Constrained Application Protocol (CoAP).” Last 
accessed on 28 July 2018 at https://tools.ietf.org/html/rfc7252.

 6  Synopsys. (9 August 2017). Synopsys. “State of Fuzzing 2017.” Last accessed on 28 July 2018 at https://www.synopsys.com/
content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf.

 7 Bruno Melo and Paulo Licio de Geus. (2017). Semantic Scholar. “Robustness Testing of CoAP Server-side Implementations 
through Black-box Fuzzing Techniques.” Last accessed on 28 July 2018 at https://www.semanticscholar.org/paper/Robustness-
Testing-of-CoAP-Server-side-through-Melo-Geus/487b7a45bc5962fd2cdf65da2caa05fcaef64591.

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
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This section does not provide a comprehensive list of any type of vulnerability and risk. Rather, we focus 

on the issues that have the highest impact on industrial applications and environments, which MQTT 

and CoAP adopters must consider.

Design Issues (MQTT)
Knowing the weak spots in the design of a protocol is of paramount importance to avoid corner use 

cases that might create preconditions for successful exploitation. After all, the IoT and IIoT are about 

device and software integration. Understanding how data protocols are intended to work is crucial for 

secure deployments.

While the MQTT standard is not complex, there are some corner cases that haven’t been scrutinized 

and discussed so far, which provide opportunities for misunderstanding and consequent vulnerabilities 

to be introduced in the implementations. We have reached out to the OASIS MQTT Technical Committee 

and reported our findings.

Payload Remaining Length
To understand these corner cases, we first need to understand how MQTT packets are structured.

Structure of an MQTT packet. The leftmost part of the header has fixed length, as opposed to the 

variable length header, which, as it name suggests, can have varying length, therefore influencing 

the overall length of the packet.

Previous versions of the standard contained vulnerable pseudocode examples as a reference for 

developers. For example, the code example to parse the “remaining length” field in packets changed 

between versions 3.18  and 3.1.19 + errata,10 going from a “no check” to “wrong check” and then to 

“correct check”. This turned out to be an interesting pattern to look for, leading us to discover a memory 

error (exploitable to obtain a remote code execution primitive) in real MQTT implementations. On top of 

this, the MQTT version 5.0 specification11 is not entirely compatible with previous versions, which could 

delay its future adoption despite the security improvements that it brings.

  8 International Business Machines Corporation (IBM) and Eurotech. (19 August 2010). IBM. “MQTT V3.1 Protocol Specification.” 
Last accessed on 28 July 2018 at http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html. 

  9 OASIS Message Queuing Telemetry Transport (MQTT) TC. (10 April 2014). OASIS. “MQTT Version 3.1.1.” Last accessed on 28 
July 2018 at http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html. 

10 OASIS Message Queuing Telemetry Transport (MQTT) TC. (10 December 2015). OASIS. “MQTT Version 3.1.1 Errata 01.” Last 
accessed on 28 July 2018 at http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os.html. 

11 OASIS Message Queuing Telemetry Transport (MQTT) TC. (15 May 2018). OASIS. “MQTT Version 5.0.” Last accessed on 21 
November 2018 at http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html.

2.1

2.1.1

Figure 5.
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Algorithm for encoding a decimal number (X) into the variable length encoding scheme (as boxed)

Unicode Handling in Topic Strings
Another interesting venue prone to error is the handling of topic strings. The first issue is that the 

standard leaves it up to the developers’ choice to close the connection upon failing validation of 

disallowed UTF-8 code points.

Confusing changes in the standard containing vulnerable pseudocode, which led to 

implementation flaws in real MQTT libraries12

12 International Business Machines Corporation (IBM) and Eurotech. (19 August 2010). IBM. “MQTT V3.1 Protocol Specification.” 
Last accessed on 28 July 2018 at http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html.

Figure 6.

Figure 7.

2.1.2
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The standard leaves it up to the developers what to do when invalid characters are encountered 

in topic strings.13

This implies that DoS attacks are possible: If a broker doesn’t implement checks for disallowed UTF-8 

code points and clients do (or vice versa), a malicious client could exploit this discrepancy to disconnect 

other clients by sending invalidly encoded strings. The following set of diagrams visualizes the issue.

Context (top left); a broker that implements the check as in the standard (top right); both client and 

broker do not implement the check (bottom left); the broker lets invalid character pass, while the 

client follows the standard (bottom right).

13 OASIS Message Queuing Telemetry Transport (MQTT) TC. (10 April 2014). OASIS. “MQTT Version 3.1.1.” Last accessed on 28 
July 2018 at http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html. 

Figure 8.

Figure 9.
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The above figure explains how, if the broker follows the standard, the issue is not present. Surprisingly, 

if both broker and client do not follow the standard, the issue is also avoided. However, if the broker 

does not follow the standard, but the client does, the client will disconnect upon receiving invalid 

content. Some clients, especially if embedded, low-power microcontrollers, are programmed to restart 

automatically in case of failures or to keep reconnecting upon disconnection. In this case, if the broker 

does not follow the standard, a malicious client could keep all the clients offline with a single message, 

by setting the “retain message” to true and the quality of service (QoS) to 2. The clients will disconnect 

upon receiving the (invalid) message, and never acknowledge back to the broker, which will think that 

they never received the message, and so will keep flooding them with the same (retained) message over 

and over — because this is what “retain message” and “QoS = 2” mean.

A malicious client could exploit the discrepancy between validating versus non-validating nodes 

to keep nodes offline. Surprisingly, in this case, not following the standard is the best approach  

for a client.

Upon finding this discrepancy in the standard, we reached out to the Oasis MQTT Technical Committee, 

which acknowledged the issue and clarified this potential security issue in the latest version of the 

standard (version 5.0). To address the problem in the short term, the committee released a technical 

note for older versions.14

14 OASIS Message Queuing Telemetry Transport (MQTT) TC. (19 April 2018). OASIS. “MQTT Handling of Disallowed Unicode Code 
Points Version 1.0.” Last accessed on 28 July 2018 at http://docs.oasis-open.org/mqtt/disallowed-chars/v1.0/cn01/disallowed-
chars-v1.0-cn01.pdf.
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URI-Style Topic Validation
The second issue with topic strings originates from the flexibility offered by “path-style” topics (a path 

with wild cards).

Specification explaining how topic filters work15

Parsing a URI is only apparently simple, and the most straightforward way is to use regular expressions 

when developing a broker. This creates a perfect stage to score another renowned attack technique, 

regular expression denial of service (ReDoS),16 which was first spotted in web applications, due to their 

URL-based nature. MQTT topics are nothing but strings separated by slashes, pretty much like URLs. 

More recently, the most popular JavaScript libraries have been systematically scrutinized for ReDoS 

vulnerabilities, with alarming findings that could impact virtually any software based on such libraries.17

15 Solace Corporation. (31 July 2018). Solace. “4.7 Topic Names and Topic Filters.” Last accessed on 6 August 2018 at 
https://docs.solace.com/MQTT-311-Prtl-Conformance-Spec/Operational_behavior.htm#_Toc430864970.

16 OWASP. (5 July 2017). OWASP. “Regular expression Denial of Service - ReDoS.” Last accessed on 28 July 2018 at 
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS.

17 Cristian-Alexandru Staicu and Michael Pradel. (5 April 2018). USENIX Security. “Freezing the Web: A Study of ReDoS 
Vulnerabilities in JavaScript-based Web Servers.” Last accessed on 28 July 2018 at https://www.usenix.org/conference/
usenixsecurity18/presentation/staicu.

2.1.3

Figure 11.
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Implementation Vulnerabilities
To exemplify how the design issues described in Section 2.1 could concretize in software vulnerabilities, 

this section presents the main details of the vulnerabilities that we discovered in some popular 

implementations of MQTT. It also demonstrates the effect of an amplification attack based on CoAP.

MQTT Payload Remaining Length (CVE-2018-17614)18

Nick O’Leary’s pubsubclient library19 is the most popular open-source MQTT client library for embedded 

systems such as Arduino-compatible boards (e.g., ESP8266) or the Intel Galileo. This library20 is used 

extensively by commercial platforms such as Losant21 and other IoT platforms.  

The core of the bug is an unbounded write-in caused by a missing check on the “remaining length” field 

in the library, which allows an attacker to execute arbitrary code on vulnerable devices that implement 

an MQTT client. This vulnerability can be triggered during the parsing routine for an MQTT PUBLISH 

packet, and precisely when reading the “remaining length” and “topic length” fields.

In other words, to successfully exploit the vulnerability, the attacker must either control a rogue MQTT 

broker, or the broker must be missing proper checks for the remaining length field and just relay MQTT 

packets “as they are” from publishers to subscribers. Brokers missing checks on the remaining length 

field exist (e.g., Emitter.io), although we did not find any instance where the packet was able to be 

relayed “as is,” so the vector for the exploit should be considered the adjacent network. 

A potential problem that should also be underscored is that embedded network libraries might allow 

off-the-path attacks (e.g., allowing the attacker to spoof packets).

The PubSubClient::readPacket member function has an overflow bug in the buf static buffer when 

reading the remaining length field of the MQTT packet. By writing exactly 142 characters, we can 

overwrite the callback field:

Location of the unbounded write that causes the memory error, which can be exploited to execute 

arbitrary code

18 The MITRE Corporation. CVE. “CVE-2018-17614.” Last accessed on 21 November 2018 at https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2018-17614.

19 Nick O’Leary. (2018). GitHub, Inc. “Arduino Client for MQTT.” Last accessed on 28 July 2018 at https://github.com/knolleary/
pubsubclient.

20 Brandon Cannaday, Ivan Kravets, and Michael Kuehl. (22 July 2017). GitHub, Inc. “Losant/losant-mqtt-arduino.” Last accessed 
on 21 November 2018 at https://github.com/Losant/losant-mqtt-arduino/blob/master/library.json.

21 Losant IoT, Inc. (2018). Losant IoT, Inc. “LOSANT.” Last accessed on 2 August 2018 at https://www.losant.com/.

2.2.1

2.2

Figure 12.
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https://github.com/knolleary/pubsubclient
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For exploit development, the challenge is that the most significant bit must be set for all the bytes in the 

remaining length except for the last one. However, the library also allows the overwrite of the two bytes 

representing the length of a topic string22 from a PUBLISH packet.

Being able to send two packets in a row to the client, we can partially overwrite the callback two 

bytes at a time: Since the returned len from the readPacket function, in case of overflow, is more than 

MQTT_MAX_PACKET_SIZE, the callback won’t be executed until a proper PUBLISH packet is sent to the 

device. However, since we control the callback pointer, we can execute an arbitrary function. Since we 

also control the arguments (two pointers to arbitrary data and a third parameter, the length), we have a 

greater degree of control, leading to executing arbitrary code.

Notice that the overwrite can be triggered as many times as the attacker wishes, leading, for example, to 

persistent DoS condition. The code examples provided by the library include automatic reconnection 

to the broker: Such a feature is desirable especially in an embedded library, where cycles of sleep might 

be implemented to extend the battery life, requiring reconnection to the broker. However, if the broker is 

malicious — or if a client can force a broker to relay a malicious payload — all the vulnerable connected 

nodes will persist in a DoS state, or will continue to execute the arbitrary code shipped by the attacker.

Using the ESP8266,23  a popular Arduino-compatible system-on-chip (SoC) board, we implemented a 

proof of concept (PoC) by modifying the HBMQTT broker24 to send a payload that will disconnect the 

nodes by calling the wifi_promiscuous_enable function in place of the callback.

Modified MQTT broker showing how to implement an exploit for the vulnerability as described

22 Nick O’Leary et al. (18 July 2018). GitHub, Inc. “knolleary/pubsubclient.” Last accessed on 2 August 2018 at 
https://github.com/knolleary/pubsubclient/blob/master/src/PubSubClient.cpp.

23 Espressif Systems. (2018). Espressif. “Espressif.” Last accessed on 2 August 2018 at https://www.espressif.com/en/products/
hardware/esp8266ex/overview.

24 Nicolas Jouanin. (2015). HBMQTT. “HBMQTT.” Last accessed on 2 August 2018 at https://hbmqtt.readthedocs.io/en/latest/.

Figure 13.
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The first PUBLISH packet with length equal to 16 sent via the broker will cause the crafted packet to be 

sent to a subscribing client, overwriting the callback. A second “regular” publish packet will then trigger 

the callback, executing the arbitrary function of our choice.

Despite the vulnerability’s being conceptually simple, the fix may not be. What to do when an overflowing 

packet is parsed is up to the developer: to close the connection or to discard the packet and leave 

the connection open. Before our responsible disclosure to the developers, there was a fix for this 

vulnerability,25 but the developers couldn’t agree26 on the best way to implement it. A fix has since been 

reviewed and adjusted.27 We see an interesting parallel with the changes in the standard that we’ve 

highlighted in Section 3.1.1, which could be confusing for the developers.

MQTT Unicode Handling in Topic Strings (CVE-2017-7653)28

We found that the most popular broker, Mosquitto (the original broker developed and still maintained 

by IBM) was prone to this vulnerability. During the disclosure process, we found out that a fix was 

implemented in the development branch but was integrated into the upstream version in May 2018, 

after the MQTT technical committee acknowledged our finding29 in April 2018. Up to version 1.4.15, 

Mosquitto was not enforcing the standard, and thus let any invalid Unicode character pass, causing 

the possible “chain reaction” scenario that we described in Section 2.1.2. Unfortunately, we found out 

that the vast majority of the top active brokers are running outdated versions of Mosquitto — clearly, we 

have no way to passively determine whether they integrated custom patches.

Breakdown of the top 10 most popular MQTT broker versions according to our internet-wide scan 

data analysis. Notice that the most current Mosquitto versions, 1.4.15 and 1.5, are not among the 

top 10. All of the top deployments of Mosquitto are vulnerable (including 1.4.15).

An example exploit against this vulnerability is as simple as sending an invalid Unicode code point in the 

topic or will topic, and QoS set to 2 and retain option set to “true”.

25 Newman101. (28 April 2016). GitHub, Inc. “Fix Issue #156 #158.” Last accessed on 2 August 2018 at  
https://github.com/knolleary/pubsubclient/pull/158. 

26 Edwin Oetelaar. (11 May 2016). GitHub, Inc. “Fix Issue #156 #158.” Last accessed on 2 August 2018 at  
https://github.com/knolleary/pubsubclient/pull/158#issuecomment-218234667.

27 Nick O’Leary. GitHub, Inc. “Fix remaining length protection.” Last accessed on 22 November 2018 at https://github.com/
knolleary/pubsubclient/commit/4daba0ae5c11cca4da2fd98a1ba4fe0b490a4a86.

28 The MITRE Corporation. CVE. “CVE-2017-7653.” Last accessed on 21 November 2018 at https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2017-7653.

29 OASIS Message Queuing Telemetry Transport (MQTT) TC. (19 April 2018). OASIS. “MQTT Handling of Disallowed Unicode Code 
Points Version 1.0.” Last accessed on 28 July 2018 at http://docs.oasis-open.org/mqtt/disallowed-chars/v1.0/cn01/disallowed-
chars-v1.0-cn01.pdf.

800K400K0

717,403 

635,242 

436,317 

246,902

132,465 

120,100

68,370

77,888 

75,167

411,304 

Mosquitto version 1.4.8

Mosquitto version 1.4.14

Mosquitto version 1.4.10

Mosquitto version 1.4.12

Mosquitto version 1.3.4

Mmosquitto version 1.4.9

Mosquitto version 1.4.11

Mosquitto version 1.4.13

Mosquitto version 1.3.1

Mosquitto version 1.3.5

Figure 14.

2.2.2

https://github.com/knolleary/pubsubclient/commit/4daba0ae5c11cca4da2fd98a1ba4fe0b490a4a86
https://github.com/knolleary/pubsubclient/commit/4daba0ae5c11cca4da2fd98a1ba4fe0b490a4a86
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7653
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7653


| The Fragility of Industrial IoT’s Data Backbone  20 |

MQTT URI-Style Topic Validation (CVE-2018-11615)
Regular expression denial of service (ReDoS) is an attack technique that takes advantage of the 

algorithmic complexity in matching regular expressions, which could grow exponentially when parsing 

specially crafted expressions. For example, the “(a+)+” pattern could be matched in several ways; so, 

an input string such as “aaaaaaaaaa[...]aaaaaaaa!” would slow down the matching routine at the 

point that it would be stuck, holding computing resources.

This vulnerability affects a broker, which is the part of the MQTT ecosystem that dispatches messages 

based on topic filters. The impact is quite substantial because an entire “network” of MQTT nodes 

would stop communicating if the broker goes offline. In some cases, the topic-matching routine is 

executed before authenticating the client. If this is the case, any client could exploit such vulnerability.

A vulnerable broker can be rendered unresponsive by a single client, by subscribing to a topic containing 

an “evil” regex, or possibly crashing the broker via an invalid regex (e.g., unbalanced parentheses, 

null characters). The following source code is from a popular MQTT broker library implemented in 

NodeJS, which contains an instance of this vulnerability (CVE-2018-1161530). This library is embedded 

in several products, the most notable ones being Mainflux31 and Logsene,32 while for Node-RED,33 it is 

an optional MQTT broker add-on. According to open-source code we found, it may also be included as 

a dependency in code samples in Microsoft Azure34 and IBM-related repositories.35

Result of CVE-2018-11615 exploitation against Mosca, a popular MQTT broker.

30 Federico Maggi and Davide Quarta. (13 June 2018). Zero Day Initiative. “npm mosca Regular Expression Parsing Denial-of-
Service Vulnerability.” Last accessed on 2 August 2018 at https://www.zerodayinitiative.com/advisories/ZDI-18-583/.

31 Aleksandar Novakovic and Dusan Borovcanin. (15 June 2018). GitHub, Inc. “mainflux/mainflux.” Last accessed on 2 August 2018 
at https://github.com/mainflux/mainflux/blob/d8357b500c6f4dc305a1f799cdb4a591829e3b10/mqtt/mqtt.js#L34.

32 Stefan Thies, robin1607, Francois Hodierne, and Filippo Balicchia. (19 July 2018). GitHub, Inc. “sematext/logagent-js.” Last 
accessed on 2 August 2018 at https://github.com/sematext/logagent-js/blob/master/package.json.

33 Jochen Scheib. (2018). Node-RED. “node-red-contrib-mqtt-broker 0.2.4.” Last accessed on 2 August 2018 at  
https://flows.nodered.org/node/node-red-contrib-mqtt-broker.

34 Marc Schier. (23 March 2017). GitHub, Inc. “Azure-Samples/iot-gateway-mqtt-http.” Last accessed on 2 August 2018 at 
 https://github.com/Azure-Samples/iot-gateway-mqtt-http/blob/master/package.json.

35 Jose Martinez-Rivera and Scott Graham. (12 January 2016). GitHub, Inc. “WASdev/sample.angular-rtcomm.” Last accessed on 2 
August 2018 at https://github.com/WASdev/sample.angular-rtcomm/blob/master/package.json.

2.2.3
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As a result of an invalid regular expression, a vulnerable Mosca broker can be crashed systematically. 

We found other brokers that are susceptible to this attack. Fortunately, the maintainer of Mosca has 

quickly propagated the fix also to the new fork of the product, Aedes.36

CoAP Amplification (PoC)
Being a more recent and thus less widespread protocol than MQTT, CoAP deserves a separate section 

to discuss what we believe are the most relevant security risks. It is very positive that these points, 

among others, are already highlighted in Section 11 of RFC 7252.37 We hereby go more in-depth and 

provide concrete examples to better understand the impact.

Abstract layering of CoAP38

IP Address Spoofing on UDP

CoAP is UDP-based, and thus inherently susceptible to IP spoofing. UDP is a connectionless protocol 

and, as such, unlike Transmission Control Protocol (TCP), has no handshake phase, in which the two 

endpoints agree on a sequence number that identifies a connection. This means that if an attacker 

A sends a UDP packet with a spoofed source IP address B to an endpoint C, C will have no way to 

verify whether that packet comes from B or A. So, if the autonomous systems (ASs) adopt no specific 

countermeasures against spoofing, C will have to trust the UDP packet header and act accordingly.

IP spoofing alone only exploits the lack of authentication in UDP and, per se, is not a big issue nowadays. 

However, if the application layer implements a request-response protocol, the attacker A could use C as 

a “reflector.” C will trust the source address B, and send any response packet to B, which will accept 

such a packet according to its application layer.

Address spoofing on the internet is harder nowadays than in the past, thanks to various countermeasures. 

However, as of this writing, about 17 to 22 percent of the IPv4 (Internet Protocol version 4) ASs are still 

susceptible to spoofing — roughly, this translates to 9 to 14 percent of the IPv4 blocks.

36 Matteo Collina. (June 2018). Nine Project Managers. “aedes.” Last accessed on 2 August 2018 at https://www.npmjs.com/
package/aedes.

37 Zach Shelby, Klaus Hartke, and Carsten Bormann. (June 2014). IETF Tools. “The Constrained Application Protocol (CoAP).” Last 
accessed on 28 July 2018 at https://tools.ietf.org/html/rfc7252.

38 Ibid.
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About 17 to 22 percent of the IPv4 autonomous systems (ASs) are still susceptible to spoofing, 

which roughly translates to 9 to 14 percent of the IPv4 blocks.39

This means that an attacker that has access to any of these ASs or IP blocks can successfully launch 

attacks that require packets to be spoofed.

Risk of Amplification

In February 2018, an amplification attack taking advantage of the Memcache service reached almost  

1 terabit per second (Tbps) of bandwidth, which could easily take down any large website. Services 

other than Memcache have been used in the past to launch other amplification attacks, the most notable 

ones being DNS and SSDP. As surveyed by a well-referenced research in 2014,40 there are at least 15 

application protocols that can be abused for amplification attacks, and they all have two aspects in 

common: They are based on UDP and are request-response-based.

39 Center for Applied Internet Data Analysis. (6 August 2018). CAIDA. “State of IP Spoofing.” Last accessed on 6 August 2018 at 
https://spoofer.caida.org/summary.php. 

40 Christian Rossow. (23 February 2014). Network and Distributed System Security Symposium (NDSS). “Amplification Hell: 
Revisiting Network Protocols for DDoS Abuse.” Last accessed on 28 July 2018 at https://www.ndss-symposium.org/ndss2014/
programme/amplification-hell-revisiting-network-protocols-ddos-abuse/.

Figure 17.
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Like DNS, SSDP, and so on, CoAP is also based on UDP and, more importantly, is based on a request-

response scheme. CoAP responses can be significantly larger than the requests, which means that an 

attacker with, say, 1 Mbps bandwidth, can achieve up to X times the bandwidth, making the attack very 

convenient.

For DNS, the BAF ranges between 28x and 98x, whereas SSDP’s is between 30x and 64x. To estimate 

the BAF for CoAP, we set up a test network to simulate an attacker that has access to one of the 

ISPs that allow spoofing. In our network, there is a victim node — running CoAP or any other service 

(it doesn’t really matter) — and a cooperating CoAP server, which is normally called a “reflector.” We 

prepare a single packet of a given size, with a spoofed source address — the victim IP address — and 

send it to the reflector. The reflector will interpret it according to the CoAP server logic and send it to 

the victim. However, given the inherent asymmetry of the protocol, the response packet will be X times 

larger than the request packet.

At first glance, as shown in the following network trace, a request packet with 36 bytes of application 

payload (CoAP) — 60 bytes overall — will translate to an 89 bytes payload — 113 overall. It’s not much: 

2.47x.

First estimate of bandwidth amplification factor (BAF) achievable with CoAP

However, if an attacker finds a reflector that allows them to POST or PUT content to it, they can prepare 

a very large response beforehand and then request it with a spoofed request, having the reflector send 

that large packet to the victim.

Figure 18.
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CoAP supports a block-wise transfer, which allows the attacker to “tune” the desired 

amplification factor.41

A careful look at the protocol specification reveals that CoAP supports “block-wise transfer,” which 

essentially means that a large response can be divided into smaller responses. The interesting bit is 

that both sides have a say in the block size that will actually be used. This means that the attacker could 

craft a request packet asking for the maximum block size. This brings the amplification factor up to 32x, 

which is substantial, considering that CoAP nodes are usually resource-constrained (e.g., running on 

battery).

Using the block-wise transfer feature of CoAP, an attacker can reach up to 32x amplification 

factor.

41 Carsten Bormann and Zach Shelby. (8 July 2016). IETF Tools. “Block-wise transfers in CoAP draft-ietf-core-block-21.” Last 
accessed on 6 August 2018 at https://tools.ietf.org/html/draft-ietf-core-block-21#page-28. 

Figure 19.

Figure 20.
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Applications
We group M2M applications into four, broad groups:

• Telemetry and notifications refer to a passive use of M2M protocols to transmit data or messages. 

Here, security risks arise when such data is sensitive from a privacy perspective, or when it triggers 

automation rules.

• Node configuration and management regards the active use of M2M protocols to set up, 

configure, and manage endpoints. Here, security risks arise because an attacker could take control 

of a machine during its configuration phase, for instance.

• Command queuing refers to an active use of M2M protocols to send direct commands to physical 

machines. Here, security and safety risks arise because an attacker could subvert such commands 

and affect the physical environment.

• Over-the-air upgrades, which are the most critical, refer to the active use of M2M protocols as 

a transport layer to ship software upgrades to endpoints. Here, the security risk comes from the 

fact that an attacker could intercept such upgrades to take complete and persistent control of an 

endpoint.

Telemetry and Notification
Telemetry generally refers to data collection, which is possibly the most common problem solved 

by the IoT and IIoT technology: Machines that in the past were isolated and provided data through 

custom protocols are nowadays connected to IoT sensors that read values from them and send them 

somewhere via IP networks. To some extent, based on our findings, it seems that MQTT and CoAP are 

being used as the modern equivalent of pagers, except that they work over IP networks, on a global 

scale, rather than via radio, on a limited scale. However, given the abundance of sensitive private data 

disclosed over these messages, the situation is not far from what Trend Micro research has discovered 

about pagers.42

42 Stephen Hilt and Philippe Lin. (22 December 2016). Trend Micro. “Leaking Beeps: Are Pagers Leaking Confidential Information?” 
Last accessed on 28 July 2018 at https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/leaking-beeps-pagers-
leaking-confidential-information. 

3.1
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Real telemetry data, formatted as JavaScript Object Notation (JSON), sent via MQTT, likely coming 

from a connected slurry pump, with details of the chemicals detected and their concentration

For instance, a turbine could provide rotation speed readings to its IoT node through analog or digital 

signals, and the IoT node interprets those signals as numbers and sends them as payload of MQTT or 

CoAP messages. In the case of MQTT, such messages will be sent to a centralized broker, which will 

then make them available to other machines for control decisions or just store them for analytics. In 

the case of CoAP, telemetry data will be sent directly to the data consumer. If a more complex logic is 

needed (e.g., receive message only if the URI contains “temperature”), then the CoAP server must be 

specifically programmed for that. For MQTT, this behavior is already part of the protocol.

Security Angle

Figure 21.

The most obvious problem lies in the secrecy of the collected data. By inspecting MQTT or CoAP 

responses, an attacker could learn about a manufacturing process (e.g., a chemical plant that 

synthesizes a high-value substance whose formula is intellectual property and core to the business), 

or do remote reconnaissance on the target (e.g., when and how many times a person leaves a 

building, or who the suppliers of a company are). The less obvious issue with telemetry data is that 

it could be crafted in a way that the whole automation chain would be altered. Industrial automation 

systems consume data and directly or indirectly react depending on it, ultimately altering other 

machines — and the physical world.
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Findings: Healthcare Monitors, Assistive  
Technology, and Asset Trackers

Patient monitor in a hospital

Earlier this year, Trend Micro and HiTrust43 released a report on the security risks of connected hospitals,44 

showing that a casual attacker could find plenty of publicly exposed data leaked from misconfigured 

systems deployed in clinics and hospitals.

By looking specifically at MQTT, we understood the contribution of these protocols in the data exposure, 

due to their pervasive use for notification purposes. For example, we found data about the location of 

ambulances as well as data from patient monitors (e.g., heart rate, pressure), including the international 

mobile equipment identity (IMEI) of the leaking device, which is a unique identifier of each cellular 

modem.

43 HiTrust Alliance. (2018). HiTrust Alliance. “HITRUST.” Last accessed on 28 July 2018 at https://hitrustalliance.net/.

44 Mayra Rosario Fuentes and Numaan Huq. (5 April 2018). Trend Micro. “Securing Connected Hospitals.” Last accessed on 28 July 
2018 at https://documents.trendmicro.com/assets/rpt/rpt-securing-connected-hospitals.pdf. 

Figure 22.
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Examples of exposed healthcare-related records (ambulance live location, HL7 data from a patient 

monitor, and an insulin pump exposed via OpenAPS, which appears to be a test)

While searching for known brands of medical devices, we observed a certain pattern. We noticed 

multiple records showing device names (the specific manufacturers of an infusion pump and a patient 

lift have been obscured in the example below) along with email addresses, location information, and 

numerical identifiers. We realized that we were looking at an inventory system backed by an asset-

tracking software, based on radio frequency identification (RFID), run by a company serving hospitals, 

clinics, and other industry sectors.

Asset-tracking records leaked by a system deployed in — or used by — a healthcare facility

This data represents an advantage for attackers who target specific hospitals, as they would know 

which systems hospitals deploy, including detailed version information.

Figure 23.

Figure 24.
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Outside the scope of healthcare facilities, we found exposed data regarding a recently launched 

assistive service for blind or low-vision people. The service offers a dedicated human operator who can 

assist a person, who is equipped with wireless smart glasses and headphones that record video and 

audio data, allowing the agent to “see” and “hear” what the assisted person is experiencing, in order to 

guide them in day-to-day tasks.

Record of a personal healthcare service leaked through a misconfigured broker

In a test setup, we found a few dozen records that included the assisted person’s email address and 

user identifier. In two of these cases, the records included the agent name, phone number, username, 

password, and IP or hostname of the voice over Internet Protocol (VoIP) endpoint used to provide the 

audio service. In these records, there was an attribute named “testCall,” whose value was “false”.

Findings: Leaking Groupware Messaging App

Official screenshots of the Bizbox Alpha mobile groupware application from the  

Google Play App Store45 

Outside the industry scope, MQTT is widely used as a messaging protocol, with Facebook Messenger 

as the most popular example. However, when a messaging system based on MQTT is used in an 

enterprise-level business context, the assets at stake are much more valuable and the security risk 

increases, as in the example described in this section.

45 DuzonBizon. (2018). Google Play. “Bizbox Alpha mobile.” Last accessed on 2 August 2018 at https://play.google.com/store/apps/
details?id=com.duzon.bizbox.next.phone.

Figure 25.

Figure 26.

3.1.2
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https://play.google.com/store/apps/details?id=com.duzon.bizbox.next.phone
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We found numerous leaked email messages and noticed that they were all containing the same string 

pattern, “bizbox_*.” Upon further analysis, we discovered that they all originated from the same app, 

Bizbox Alpha mobile, an Android groupware app developed by Douzone.46 The app contains an MQTT 

client, which connects to a broker to broadcast notifications across subscribed clients. One of the 

brokers used by the app was misconfigured for a while, and leaked 55,475 messages in over four 

months, of which about 18,000 were email messages.

Among the leaked records were chat and email messages, including the whole body of the conversation. 

The app is intended for a Korean-speaking enterprise audience. We found numerous conversations that 

revealed business relations, including names, business contacts, and of course, exchanged information. 

This, in itself, is a concrete risk to the secrecy of business-to-business relationships. The root cause 

here was a misconfigured MQTT server used by an enterprise app.

Although we can’t name the affected organizations, we hereby list the industry sectors and aggregated 

information:

• Large consumer electronics and mobile device manufacturer

• Fashion and clothing industry

• Marine industry

• Internet service providers (ISPs)

• Logistics

• Industry-grade thin-film-transistor (TFT) display manufacturer

• Automotive parts manufacturer

• Medical and rehabilitation equipment

• Civil engineering, manufacturing, and construction

46 Douzone. (2015). Douzone. “홈제품/서비스그룹웨어기업용 Bizbox Alpha.” Last accessed on 2 August 2018 at  
http://www.douzone.com/product/groupware/gw01_biz_05.
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In the following figure, we provide some example leaked records, from which we redacted any sensitive 

information.

Records leaked by a Korean enterprise-grade groupware app. The first one involves a large 

lifeboat manufacturer, the second is a purchase order from a large consumer electronics and 

mobile device manufacturer, and the last is from a large engineering, manufacturing, and 

construction business.

Figure 27.
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Findings: Smart Farming Telemetry
We found about 4,310 agriculture-related records, the most notable of which include protocol gateways, 

field data with precise location information, and smart agriculture platforms.

Examples of exposed agriculture-related records. Notice the payload passed as non-ASCII (American Standard 

Code for Information Interchange) data (payload_hex) and the use of LoRa (long range) technology.

The first two records in the above figure are from a broker in China, which is sending binary data in the 

MQTT payload. The second and third records refer to two European smart agriculture systems for small 

to medium farms.

As in the manufacturing cases, exposed agriculture-related data not only is a risk to the individual 

businesses affected, but on a larger scale it could also impact a whole nation, as enemy nations could 

eavesdrop on this data and take advantage of it.

Node Configuration and Management
In the most generic situation, IoT nodes are small microcontrollers with limited interfaces to the outside 

world. In the best case, they have a serial port that programmers and system integrators use to load 

or upgrade firmware on them, or a small Secure Digital (SD) slot for storage. While firmware upgrading 

deserves a section of its own, node configuration and management is probably the second most 

common need in the IoT.

Recall that nodes are designed to be remote and generally hard to reach. Even in a simple consumer 

IoT scenario (e.g., smart light bulbs), it would be very cumbersome if a light bulb would require the user 

to connect a computer to it via a USB cable in order to change the dimming speed or the color variants. 

Similarly unwieldy is a network router that would require the user to connect a cable just to change the 

IP or password settings.

3.1.3

Figure 28.

3.2
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In IIoT settings, the scale of the problem is greater, and thus node configuration and management must 

happen remotely. The usual workflow starts with an onboarding procedure, where the node “broadcasts” 

its presence in the network (e.g., by entering a pre-configured Wi-Fi hotspot mode). This is the perfect 

use case for CoAP because it requires no brokers set up. For example, the newly onboarded node could 

start a CoAP server to accept configuration requests to a certain URI (e.g., /configure), and the node 

configuration and management platform sends the configuration details as a payload of such requests. 

These configuration details could contain, for example, the IP address and credentials of an MQTT 

server in the network, which would be used from that moment on in place of CoAP.

Security Angle

3.2.1
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Figure 29.

Configuring a node is a critical task because it could alter the node’s functionality. For example, 

during the configuration time window, an attacker can manage to convince a node that it has to 

connect to its (malicious) MQTT broker. This problem is similar, just at a higher layer in the network 

stack, to what could happen if an attacker manages to compromise a Dynamic Host Configuration 

Protocol (DHCP) server to send rogue configuration packets.

Findings: Exposed Credentials and  
Network Configuration Details

Leaked credentials over time

We measured an average of around 1,000 records per month containing credentials. This highlights 

a key aspect of MQTT’s message-retaining and QoS features: If a sensitive message is sent by a 

node once, and that node marked it as “retained,” any other future subscriber — including malicious 

ones — will keep receiving it every time the subscriber subscribes. The chances that a single leaked 

password could fall into the wrong hands are thus high. For example, we found out three passwords 

that were repeatedly leaked nearly 2,000 times throughout the whole observation period.
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Broker
Message 

count
Location

A  1,264 Montenegro

B  1,054 China

C  87 France

D  75 Ireland

E  61 Singapore

F  48 Germany

G  39 United States

H  38 United States

I  37 United States

J  31 United States

K  14 India

L  13 Denmark

M  8 United States

N  6 Russia

O  3 United States

P  3 United States

Q  2 United States

R  1 United States

S  1 United States

T  1 Singapore

 

Breakdown of the number of messages recorded by most active MQTT brokers

After further probing into the two most active brokers that exposed credentials, we found out that the 

one in Montenegro was a factory automation system including robots, cameras, alarms, and heating, 

ventilation, and air conditioning (HVAC) devices, while the other broker was an industrial router. An 

accurate inspection revealed that the industrial router was not revealing any credentials. However, it 

contained details about the private network configuration details, including IPs.

Searching CoAP records matching the “password” keyword, we found a uniform group of about 365,000 

hosts, using networking devices of the same brand, responding on the CoAP port. These hosts are all 

mobile hotspots located in the Asia Pacific (APAC) region. Given such authentication information and 

given the abundance of hotspots in the region, it is easy for an attacker to connect to that network and 

abuse the service to disguise their true identity.

Table 1.
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Exposed credentials and network details discovered via a CoAP request to the standard 

 /.well-known/core URI

Expanding on the findings above, we focused on JSON-RPC, a simple remote procedure call protocol 

over JSON, which is widely used in routers. We found out that, possibly because JSON-RPC is used in 

router management systems, JSON-RPC records that are exposed —for no clear reason — via MQTT, 

represent about 0.21 percent of the overall collected records. Among these 539,422 records, about 28 

percent leak private network details and password information.

Figure 30.
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Example of exposed JSON-RPC records via MQTT

Generalizing from this finding, we systematically looked for records containing private IP addresses and 

found 4,627,973 records. Excluding JSON-RPC records, we found 3,036 records containing cleartext 

passwords, including ones involving a connected parking lot in Brazil (with details about the waypoints), 

various IP cameras, network video recorders (NVRs), and VoIP endpoints. Among these, 219 records 

had the password set to “12345”.

Command Queuing
In addition to receiving telemetry data, the (manufacturing) automation system takes decisions and 

sends active commands to the machines. Sending commands to actuators is the third most important 

capability of an IoT system. In the scope of IIoT systems, a “command” could be something like “turn 

motor on at X speed” or “increase laser cutting power by X mW.”

 

MQTT and CoAP can be used to send automation commands. The above JSON-formatted data 

shows an “open door” command (probably coming from a public transport station) that we found 

during our research.

Figure 31.

3.3

Figure 32.
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Over-the-Air Upgrades
Upgrading the firmware running on an IoT node over the air (aka OTA upgrade) is a very sensitive 

functionality. A small mistake or unexpected interruption could translate to high maintenance or 

replacement costs. Even though modern microcontrollers are robust and have hard-reset features, a 

buggy firmware sent over the air could render the nodes unreachable from remote sites, requiring a 

technician to push a physical button located on the nodes or connecting a cable to each of them for 

recovery. This could prove problematic in a complex IoT setting, typical of industrial deployments. 

Worse, a malicious actor could create targeted malware that uses OTA upgrade features to implement 

wormlike functionality.

OTA firmware upgrade via MQTT. The above Base64-encoded data is a real OTA command sent over MQTT 

that we captured during our data gathering.

Technically speaking, both MQTT and CoAP “just” transport data, no matter what the “data” is. It could 

be text data or pure binary data, like firmware. For instance, MQTT nodes could subscribe to “/nodes/

ota/#” topics and receive “/nodes/ota/data” messages, where the payload is the binary data of the 

firmware image file.

Security Angle

As with any other message, this example use case can be implemented via MQTT or CoAP, or both. 

For MQTT, the machines are all subscribed to a topic, say “/factory1/floor0/line42/miller/#”, 

and thus will receive any message matching that topic. For example, the automation system of an 

entire factory could send a “/factory1/floor0/line42/miller/command/engrave/depth” with 

payload “50”, which the machine will interpret as “engrave workpiece 50 mm down.” Similarly, the 

machines could be running a CoAP server on their node, to respond to requests (sent by the automation 

system) addressed to a given URI, or a CoAP client that periodically polls an external CoAP server (the 

automation system) on a URI to receive commands as responses.

Security Angle

3.4

Figure 33.

From a security standpoint, sending commands to a device could have high impact on both the 

machine and the physical world. If the sender is not properly authenticated and the connection is 

not encrypted and signed, the machine would be open to abuse — anyone could send wrong or 

deliberately malicious commands.

Needless to say, the aforementioned simple procedure alone does not guarantee any security, as 

any man in the middle could modify the firmware in transit. Even if the connection is encrypted 

and authenticated via Transport Layer Security (TLS), there is no guarantee that the firmware file 

is authentic and benign. To use an analogy, despite mobile devices connecting to app stores via 

encrypted and authenticated connections, there have been countless cases of malicious or trojanized 

apps.
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Findings: OTA Firmware Upgrades

An example code for OTA via MQTT

We found hundreds of MQTT messages regarding OTA firmware upgrade procedures, including the 

media access control (MAC) addresses and sometimes vendor information of the target devices. In 

some cases, the firmware image file was either encapsulated in the payload (Base64-encoded) or a URL 

was provided for the target node to fetch it.

Example of exposed system-related record (a firmware-upgrade message)

On a second analysis, we found out that certain broadband provisioning systems are broadcasting their 

firmware update procedures via JSON-RPC over MQTT. Here’s an example:

Example of exposed firmware-related record (device provisioning system that broadcasts 

firmware updates via MQTT)

3.4.1

Figure 34.

Figure 35.

Figure 36.
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In addition to the obvious privacy problem, OTA firmware upgrades over publicly exposed transports, 

such as MQTT or CoAP services, represent a concrete security risk because anyone that could reach 

the MQTT broker could send an upgrade command with custom firmware, resulting in malfunctioning or 

fully compromised devices. For example, it was demonstrated in 2016 that a piece of IoT malware with 

wormlike capabilities could spread quickly across smart lightbulbs47 by exploiting a flaw in the network 

protocol, and more importantly, the OTA firmware update capabilities. On a different environment, an 

open MQTT or CoAP server that is used to transport OTA firmware updates could be exploited in the 

very same way, and actually have larger-scale impact.

47 Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. (22 June 2017). IEEE Symposium on Security and Privacy 
(SP). “IoT Goes Nuclear: Creating a ZigBee Chain Reaction.” Last accessed on 28 July 2018 at https://ieeexplore.ieee.org/
document/7958578/. 

https://ieeexplore.ieee.org/document/7958578/
https://ieeexplore.ieee.org/document/7958578/
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Products
MQTT and CoAP are found in a variety of IoT and IIoT products (and services), from control and 

analytics dashboards to the connectivity data plane, all the way down to the firmware running on the 

field sensors or protocol gateways. IoT programming frameworks support both MQTT and CoAP, 

either natively or through third-party extensions.

We hereby contextualize the security risks explained in the previous section within the scope of a given 

category of products.

IoT and IIoT Platforms
Being a prominent and pervasive messaging protocol, MQTT is supported by — and sometimes is the 

central part of — any IIoT platform. For example, AWS IoT, part of Amazon Web Services (AWS), is 

essentially a managed MQTT service with strong and enforced security policies. In this, Amazon has 

recognized the value of MQTT as a strong technology for IoT solutions. In a similar vein, other big names 

such as Microsoft Azure IoT Hub, GE Predix, AT&T M2X, and IBM Cloud (formerly IBM Bluemix) — no 

surprise, given that IBM invented MQTT — all support MQTT.

4.1

Figure 37. The IoT platform IBM Cloud (formerly IBM Bluemix) supports MQTT, which is unsurprising, given 

that IBM invented the protocol.48

48 Michael Yuan. (18 February 2015). IBM. “Explore MQTT and the Internet of Things service.” Last accessed on 6 August 2018 at 
https://www.ibm.com/developerworks/cloud/library/cl-mqtt-bluemix-iot-node-red-app/index.html. 
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In addition to its native support for MQTT, PTC ThingWorx supports CoAP through  

third-party extensions.49

Interestingly, in addition to supporting MQTT natively, PTC ThingWorx supports CoAP through third-

party extensions, available through what looks like a marketplace for IoT extensions. Kepware, the other 

IIoT solution by PTC, also supports MQTT. Other IIoT players that implement MQTT in their solutions 

include Altizon Datonis and Cumulocity. Among the open-source IIoT platforms, a notable product is 

Mainflux, which supports both MQTT and CoAP.

Findings: IIoT Products and Protocols
 

Photo of a demo wall that we took at the 2018 Hannover Messe exhibition floor, showing a  

list of field protocol logos and test programmable logic controller (PLC) devices at the bottom

49 PTC. (2018). PTC Marketplace. “coap.” Last accessed on 3 August 2018 at https://marketplace.ptc.com/listing?q=coap#!/list/
page/1/search=coap.

Figure 38.

4.1.1

Figure 39.

https://marketplace.ptc.com/listing?q=coap#!/list/page/1/search=coap
https://marketplace.ptc.com/listing?q=coap#!/list/page/1/search=coap


| The Fragility of Industrial IoT’s Data Backbone  42 |

To give a picture of the most popular IIoT products and brands, we systematically searched for top 

brands and names in our data. The resulting breakdown confirms that the MQTT and CoAP deployment 

problem affects IIoT applications and not just IoT ones. Even with this simple picture in mind, an attacker 

already knows which product is worth targeting in terms of exposed hosts. For example, by inspecting 

Kepware messages, an attacker can learn that this product is popular for the management of solar 

panel plants.

Breakdown of IIoT product names appearing in the leaked records

Example records containing direct mentions of products and brands that sent or processed them

"Bluemix" (now IBM cloud)

"PTC Kepware"

"Altizon’s Datonis"

"PTC ThingWorx"

"Historian"

"Mainflux"

38.72%

23.38%

18.15%

17.48%

2.24%

0.03%

TOTAL

133,594

Figure 40.

Figure 41.
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Misconfigured devices that leak the brand names — for example, in the MQTT topics — represent a risk 

for the intellectual property, since the leaked content reveals implementation details of the product, as 

well as being a brand reputation issue.

The presence of field protocol gateways is a further, and possibly stronger, characteristic that 

distinguishes IIoT applications from consumer or simple applications. As a confirmation that MQTT 

and CoAP are used in industrial applications, we looked at protocol names appearing in the exposed 

records, including field protocols in our searches.

"zwave"

"jsonrpc"

"knx"

"modbus"

"J1939"

"1wire"

"RS485"

"EtherCAT"

"insteon"

"enocean"

"RS232"

"profinet"

"bacnet"

40.96%

40.92%

8.81%

4.15%

1.57%

1.17%

0.6%

0.47%

0.43%

0.4%

0.26%

0.21%

0.05%

TOTAL

1,318,265

 

Breakdown of field protocols appearing in the leaked records

In the figure above, the highlighted protocol names are mainly used for industrial applications. Modbus 

was developed by Modicon (now Schneider Electric) for PLC communication. J1939 is used for marine 

propulsion, power generation, and industrial pumping, and by diesel engine manufacturers. For this 

reason, J1939 is considered “the CAN bus for heavy-duty trucks.” RS485 is heavily used for industrial 

applications, and interestingly, it’s more frequently found in our data than RS232, which is instead 

used mainly for non-industrial applications. Profinet is another very popular protocol for industrial 

applications: For example, by inspecting leaked Profinet messages, we found that someone was 

deploying an industrial robot of one of the top 10 robot manufacturers in the world.

Details of the protocols aside, the breakdown shows the presence of industry-specific field protocols in 

exposed MQTT and CoAP messages.

Figure 42.
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Industrial Routers and Protocol Gateways
In 2017, we surveyed the market for industrial router and gateway vendors50 and compiled a list of 

12 brands. According to publicly available information, most of these brands currently support MQTT 

(eWON,51 Moxa,52 Eurotech,53 Digi,54 NetModule,55 Sierra Wireless,56 InHand,57 Advantech58), and some of 

them have already included CoAP in their products and solutions (Digi,59 Sierra Wireless,60 Advantech61). 

Notably, Eurotech and IBM are the originators of MQTT.

In our white paper on industrial robot security,62 we’ve already highlighted the crucial role that these 

devices play in keeping the smart factory secure. Unfortunately, the picture that we’ve drawn isn’t very 

reassuring because of both unsecure deployment (e.g., without authentication), and more importantly, 

software vulnerabilities.

Security Angle

From a security viewpoint, the problem of software vulnerabilities in embedded devices’ firmware 

is only conceptually simple. In reality, however, it’s hard to tackle because of the strict downtime 

requirements typical of industrial and enterprise environments — regardless of how quickly the 

vendor’s updates are shipped.

50 Federico Maggi. (3 May 2017). TrendLabs Security Intelligence Blog. “Compromising Industrial Robots: The Fallacy of Industrial 
Routers in the Industry 4.0 Ecosystem.” Last accessed on 28 July 2018 at https://blog.trendmicro.com/trendlabs-security-
intelligence/compromising-industrial-robots/. 

51 Diego Fernandez. (14 February 2018). eWON. “eWON Flexy supports MQTT for data acquisition.” Last accessed on 3 August 
2018 at https://ewon.biz/about-us/news/2018/02/14/ewon-flexy-supports-mqtt-for-data-acquisition.

52 Moxa. (2018). Moxa. “Make Your OT, IT, IIoT Protocol Interoperability Easier for Industry 4.0.” Last accessed on 3 August 2018 at 
https://www.moxa.com/Event/integrated-solutions/smart-factory/industry-4.0/protocol-interoperability.htm.

53 Eurotech. (2018). Eurotech’s Everyware Cloud. “PART 3. CONNECTING DEVICES TO THE EVERYWARE CLOUD Introducing 
MQTT.” Last accessed on 3 August 2018 at http://everywarecloud.eurotech.com/doc/ecdevguide/latest/3.01-MQTT-Intro.asp.

54 Digi International Inc. (2018). Digi. “Get started with MQTT.” Last accessed on 3 August 2018 at https://www.digi.com/resources/
documentation/Digidocs/90001541/concepts/c_mqtt.htm.

55 Moritz Rosenthal. (20 March 2018). NetModule. “Release Note NRSW 4.1.2.1.” Last accessed on 3 August 2018 at 
http://share.netmodule.com/public/system-software/testing/4.1/4.1.2.1/NB_Release_Note_4.1.2.1.pdf.

56 Sierra Wireless. (2015). Sierra Wireless. “How to use the MQTT Connector.” Last accessed on 3 August 2018 at  
https://source.sierrawireless.com/airvantage/av/howto/cloud/mqtt_howto/.

57 InHand Networks. (2018). InHand Networks. “Industrial Robots Remote Monitoring.” Last accessed on 3 August 2018 at  
https://www.inhandnetworks.com/solutions/industrial-robot-remote-monitoring.html.

58 Advantech. (2016). Advantech. “Advantech Devices Now Support the MQTT Protocol.” Last accessed on 3 August 2018 at http://
select.advantech.com/wise-iot-sensing-devices/devices-mqtt/.

59 Digi International Inc. (2018). Digi. “Get started with CoAP.” Last accessed on 3 August 2018 at https://www.digi.com/resources/
documentation/Digidocs/90001541/concepts/c_coap_get_started.htm.

60 Sierra Wireless. (31 January 2017). Sierra Wireless. “WP8548 and WP750x Release 12 Customer Release Notes.” Last accessed 
on 3 August 2018 at https://www.sierrawireless.com/-/media/support_downloads/legato/wpx5xx/release%2013.1/wp8548_
wp750x_release13.1_crn.pdf?la=en.

61 Advantech. (23 August 2017). Advantech. “WISE-1540.” Last accessed on 3 August 2018 at http://advdownload.advantech.com/
productfile/PIS/WISE-1540/Product - Datasheet/WISE-1540_DS(08.23.17)20170907161742.pdf.

62 Federico Maggi, Davide Quarta, Marcello Pogliani, Mario Polino, Andrea M. Zanchettin, and Stefano Zanero. (3 May 2017).  
Trend Micro and Politecnico di Milano. “Rogue Robots: Testing the Limits of an Industrial Robot’s Security.” Last accessed on 28 
July 2018 at https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf. 
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Findings: CAN-MQTT and J1939-MQTT 
Protocol Gateways
Companies offering logistics services have to keep track of and manage the status of their fleet. So-

called fleet management systems usually include a device equipped with a global positioning system 

(GPS) and a modem, attached to the vehicle via onboard diagnostics (ODB) or a J1939 port. These 

aftermarket devices gather a myriad of data, including consumed fuel, acceleration, overall driving 

“style,” and of course, coordinates — in real time. With this data, the fleet management software can 

provide useful analytics and insights to optimize the use of the fleet and minimize costs.

Clearly, this data is also sensitive for the business because it reveals the precise position of the vehicles. 

By searching our MQTT and CoAP data, we found records that confirmed that this data could fall into 

the wrong hands. For example, we found over 37,000 records of vehicles in various locations around 

the world.

Example of exposed positioning records (feed of logistics, fleet management data).  

Notice the abundance of data regarding the status of the vehicle.

Raw Controller Area Network (CAN) frame data from the in-vehicle network leaked via an 

open MQTT broker. We found about 360,000 instances of these records.

As shown in the figure above, in some cases, the exposed data included the raw CAN frame data from 

the in-vehicle network. In 2017, we showed the security risks of a stealthy attack that exploited a design 

issue in the CAN protocol,63 by demonstrating how an attacker with CAN-level access to a vehicle could 

selectively and “silently” disable individual subsystems (e.g., park assist).

Firmware, SDKs, and Real-Time OSs
While in general-purpose computing the software development kit (SDK) is decoupled from the 

underlying operating system (OS), in IoT, resources are limited for the microcontrollers that run the 

software. For this reason, in IoT nodes there is no such thing as “applications” or “user-level software,” 

but there is just one software layer. Programmers write software using an SDK, compile it, and load it 

as a single binary file onto the node. Such software will take care of everything, from boot to execution 

of the given high-level task (e.g., connecting to an MQTT broker or sending data to a CoAP server). It’s 

much like having a miniaturized, single-purpose OS running on the node, over which the programmer 

has control at development time.

63 Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. (16 August 2017). TrendLabs Security Intelligence Blog. 
“The Crisis of Connected Cars: When Vulnerabilities Affect the CAN Standard.” Last accessed on 28 July 2018 at  
https://blog.trendmicro.com/trendlabs-security-intelligence/connected-car-hack/.

4.2.1

Figure 43.

Figure 44.
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For these reasons, IoT and IIoT technology companies have been focusing on providing SDKs to their 

customers, as part of their solutions. Most of the time, the SDKs themselves are open-source, and the 

community can contribute to them.

The most popular SDKs offer support for MQTT and CoAP, either natively or through third-party libraries. 

For example, Amazon FreeRTOS64 (used by the likes of Schlage, Hive, Honeywell, and NASA) is the core 

of AWS IoT’s solution65 and is heavily based on MQTT. ARM Mbed OS66 also includes client support 

for both MQTT and CoAP. Arduino, probably the most popular IoT hardware prototyping platform, has 

numerous MQTT and CoAP libraries, with Nick O’Leary’s pubsubclient library67 being the most popular. 

Interestingly, Arduino is used in industrial automation, thanks to satellite projects that provide so-called 

“shields”68 (i.e., adapters) that connect to industrial equipment via field protocols and buses.

Findings: Vulnerable MQTT Firmware Library
In Section 3, we describe how a vulnerability on this library can impact the operation of industrial 

equipment. Given that Arduino SDKs are compatible with several target boards, our finding applies 

beyond the actual Arduino board and affects any firmware that embeds the library. MongoosOS69 is 

another SDK that embeds MQTT: It powers the firmware of over 100 commercial products, with over 

150,000 devices in the world. Other less popular software stacks such as NodeMCU70 and Particle71 

also support MQTT, and CoAP can be embedded via embeddable libraries (e.g., microcoap72).

The vulnerability that we found is conceptually simple. There was a fix for this vulnerability,73 but the 

developers couldn’t agree74 on the best way to implement it. As a result, the library remained vulnerable 

for quite some time, until we reached out to the developer, who has since provided a fix.75

64 Amazon. (2018). Amazon Web Services, Inc. “Amazon FreeRTOS.” Last accessed on 3 August 2018 at https://aws.amazon.com/
freertos/.

65 Amazon. (2018). Amazon Web Services, Inc. “What is AWS IoT Core?” Last accessed on 3 August 2018 at https://aws.amazon.
com/iot-core/.

66 Mbed. (16 January 2018). Arm Mbed. “MQTT.” Last accessed on 3 August 2018 at https://os.mbed.com/teams/mqtt/.

67 Nick O’Leary. (2018). GitHub, Inc. “Arduino Client for MQTT.” Last accessed on 28 July 2018 at https://github.com/knolleary/
pubsubclient.

68 Industrial Shields. (2018). Industrial Shields. “Automate your application based on open source.” Last accessed on 3 August 2018 
at https://www.industrialshields.com/.

69 Mongoose OS. Mongoose OS. “Mongoose OS - IoT Firmware Development Framework.” Last accessed on 3 August 2018 at 
https://mongoose-os.com/.

70 NodeMcu. (2018). NodeMcu. “NodeMcu.” Last accessed on 3 August 2018 at http://nodemcu.com/.

71 Particle. (2018). Particle. “Meet The Only All-In-One Iot Platform On The Market.” Last accessed on 3 August 2018 at  
https://www.particle.io/.

72 GitHub. (2018). GitHub, Inc. “1248/microcoap.” Last accessed on 3 August 2018 at https://github.com/1248/microcoap.

73 Newman101. (28 April 2016). GitHub, Inc. “Fix Issue #156 #158.” Last accessed on 02 August 2018 at https://github.com/
knolleary/pubsubclient/pull/158.

74 Edwin Oetelaar. (11 May 2016). GitHub, Inc. “Fix Issue #156 #158.” Last accessed on 2 August 2018 at https://github.com/
knolleary/pubsubclient/pull/158#issuecomment-218234667. 

75 Nick O’Leary. GitHub, Inc. “Fix remaining length protection.” Last accessed on 22 November 2018 at https://github.com/
knolleary/pubsubclient/commit/4daba0ae5c11cca4da2fd98a1ba4fe0b490a4a86.
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IoT and IIoT Development Tools
Node-RED is a visual programming tool that significantly lowers the barrier for developing complex 

IoT and IIoT workflows. In Node-RED, IoT nodes are abstracted as “blocks” and their interactions as 

“wires.” Thus, connecting an MQTT or CoAP client to their broker or server is as simple as dragging a 

line between two blocks.

MQTT support in Node-RED contributes to accelerating further adoption of both protocols.  

CoAP is also supported.76

Given these characteristics, it acts as an accelerator for industry IoT system integration because it 

allows engineers and designers to focus on the problem rather than on the low-level implementation 

details.

Security Angle

MQTT and CoAP are both supported by Node-RED via third-party extensions. Obviously, there is a 

trade-off between abstraction and security. The more we abstract, the more we hide details of the 

problem, and the more the security of the overall system will depend on the third-party extensions. 

By way of an analogy, the flourishing WordPress plugin “marketplace” is known to be the cause of 

several, serious vulnerabilities that would simply not exist if WordPress had added support for certain 

requested functionalities, rather than leaving it up to the community without any vetting procedure. 

Here, with Node-RED, we see a similar precondition: a platform with a very high potential, already 

widely adopted and endorsed by large IoT and IIoT players (e.g., IBM, Amazon, Microsoft), and an 

active community around it that quickly provides support for new functionalities and blocks — MQTT 

and CoAP are just two of them. The issue could be deeper: For example, during our research, we 

found that the NodeJS library imported by Node-RED’s third-party MQTT extension77 was affected by 

a DoS vulnerability that would allow an unauthenticated attacker to keep the resulting MQTT broker 

persistently offline.

76 Jochen Scheib. (2018). Node-RED. “node-red-contrib-mqtt-broker 0.2.4.” Last accessed on 2 August 2018 at  
https://flows.nodered.org/node/node-red-contrib-mqtt-broker. 

77 Ibid.

4.4
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Impact
IIoT solutions, and by extension, M2M technology, are found in a variety of sectors including, but not 

limited to, avionics and aerospace, defense, building automation, marine, transportation, agriculture, 

food supply, and healthcare. From a security and privacy standpoint, attacks against IIoT environments 

have high impact because of the critical assets at play in these sectors.

Putting all of our findings together, we now take a step back and look at the grand scheme of things to 

understand how this technology can be abused now and in the future. The diagram below provides an 

overview of our vision.

Our findings in the context of an attackers’ goals

IIoT deployments are more attractive than IoT deployments, even though there isn’t any strong technical 

difference between the two. As the figure below shows, in both settings, there are physical objects 

with computing and networking capabilities, which can interact with the physical world. The only 

technical difference is that, in industrial settings, so-called protocol gateways (e.g., from MQTT to 

Modbus and vice versa) are frequently found, as opposed to simple IoT deployments. 
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Abstract IIoT scenario with sensors producing data, actuators receiving commands, and control 

software, operators, and other roles

The fundamental difference is the scale of the problem: An IIoT ecosystem is responsible for running 

factories, large buildings, and even cities, whereas a simple IoT ecosystem is, in the best case, responsible 

for running a house, or supporting consumers by gathering fitness data and providing dietary or health 

recommendations. An IIoT system is thus by several orders of magnitude more complex, expensive, 

and extensive than an IoT system, mainly because of the mission-critical requirements, which call for 

high availability, speed, and quality.

To better understand the impact of our findings in the real world and in the future threat landscape, 

we consider the context of two use cases: smart factories and smart cities.

We consider an attacker with the following goals:

• Target reconnaissance. Given the numerous unsecure deployments leaking sensitive data, 

including technical details, names, phone numbers, credentials, and network configuration details 

of several endpoints, an attacker can use it to prepare a targeted attack.

• Industrial espionage. Within our research, we found records about critical industry sectors, 

including manufacturing, healthcare, public administration, building automation, transportation, 

and agriculture. Within the context of the two following use cases, this data can be used for a 

competitive advantage over a company, city, or nation-state.

• Targeted attacks. The vulnerabilities that we discovered, paired with the high degree of exposure, 

facilitate the job of a motivated attacker looking to launch a targeted attack. In particular, we 

consider an attacker who wants to implement advanced malware that exploits our findings to 

infect and spread in an industrial environment. A recent academic report has demonstrated the 

theoretical feasibility of a botnet based on MQTT.78

• Lateral movement. By abusing CoAP nodes, an attacker can take advantage of UDP’s 

susceptibility to spoofing, together with the fact that CoAP responses can have “arbitrarily” large 

sizes to implement amplification attacks, either as a lateral movement action within the target or 

against another target.

78 Daniele Antonioli, Giuseppe Bernieri, and Nils Ole Tippenhauer. (1 February 2018). Cornell University Library. “Taking Control: 
Design and Implementation of Botnets for Cyber-Physical Attacks with CPSBot.” Last accessed on 28 July 2018 at  
https://arxiv.org/pdf/1802.00152.pdf.

Figure 47.
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Example Case Study: Smart Factories

A smart factory with industrial robots at work

When talking about industrial manufacturing and automation, it’s practically impossible not to mention 

operational technology (OT), which indicates all the technologies — excluding information technology 

(IT) — that run a factory. OT comprises legacy systems such as programmable logic controllers (PLCs), 

which automate the machines of a production plant and keep the manufacturing process running  

“by itself.”

Prototype, small-scale production line that Trend Micro built for explaining and demonstrating 

security risks to its customers

Figure 48.

Figure 49.

5.1
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With the advent of IP-based networks, IT and OT have started to bridge, and to some extent, when 

speaking of IIoT, we refer to the convergence of these two worlds. Thanks to such integration, once a 

production line is set up, it can be controlled and monitored locally and remotely by a computer (e.g., 

by a product designer or field operator), rather than remaining isolated within the scope of the (legacy) 

OT system.

Schematized industrial manufacturing scenario. Each machine has a threefold role: sensor, 

actuator, and node to be managed.

In a manufacturing environment, there are several actuators (e.g., servo motors, laser cutters, and 

welding tools), which actively affect the physical world, as well as several sensors (e.g., temperature, 

pressure, humidity, power, distance, and presence), which instead passively gather real-time data 

from the physical world. On one hand, sending commands to actuators and receiving data from 

sensors could mean countless proprietary protocols used. (We won’t discuss these protocols in this 

paper.) On the other hand, the Industry 4.0 paradigm calls for openness, data availability and flexible 

communication, mostly because of consolidation and centralization needs. To some extent, proprietary 

protocols are “from the past” (OT world), whereas present and future (IT world) call for standard and 

interoperable technology.

Findings: Manufacturing Production Data
In our research, we found several interesting instances of sensitive data exposure related to the 

manufacturing sector, including PLCs, industrial robots, laser cutters, chemical processes, and 

computer numerical control (CNC) machines. For example, the figure below shows the telemetry record 

of a CNC machine operating in Europe. The blurred name identifies the brand of this machine, which is 

worth US$82,000. About 5,000 records like this one were leaked by a PLC of a well-known Japanese 

vendor, which was broadcasting telemetry data via an open MQTT broker.

Control software

Cutting AssemblyQuality check

Telemetry dataCommand Management

Motor speed

Site
measurement Check site

Checkpoint

Laser current

Start cutting
OTA update or configuration

Move arm

5.1.1
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Example telemetry record of a CNC machine operating in Europe. The blurred name identifies  

the brand of this US$82,000 machine.

Also, we found a processing machine exposed through an MQTT broker hosted on Alibaba Cloud. By 

monitoring records such as the one shown in the figure below, an attacker could learn the name assigned 

to the control system (“workssys.mt-xxxxxx”, which tells us that the node is using a Worksystems Inc.  

controller connected to the processing machine), and of course, learn details of the manufacturing 

process itself (e.g., drilling coordinates, time, and current power setting).

Figure 51.
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What looks like production data (cutting or milling device) related to industrial devices, exposed 

via a broker hosted on Alibaba Cloud

By exploring another brand, we found an urgent maintenance request to a company specializing in the 

manufacturing of automotive body assembly systems (see figure below).  Digging deeper into this type 

of message, which looks like mail, we unveiled a business-to-business groupware mobile app that was 

leaking the communication through an open MQTT broker.

Urgent alert or maintenance request for a company specializing in the manufacturing of the 

automotive body assembly system and body parts

Figure 52.

Figure 53.



| The Fragility of Industrial IoT’s Data Backbone  54 |

In our 2017 research on the security of industrial robots,79 we scanned the internet for directly exposed 

robots, and fortunately, we could find only a couple of dozen robots from the top five brands. By 

searching in exposed MQTT and CoAP data, we found more than 50,000 records, like those shown 

in the figure below, that mention the terms “robot” and “factory”, including detailed data about the 

process. In our previous research, we already highlighted the security and safety implications of a 

compromised robot (e.g., defective products, operator injury). With this data at hand, an attacker would 

be able to better prepare for attacks.

Records from a production line in the APAC region (the “Name” attributes refer to the 

individual robot devices).

79 Federico Maggi, Davide Quarta, Marcello Pogliani, Mario Polino, Andrea M. Zanchettin, and Stefano Zanero. (3 May 2017).  
Trend Micro and Politecnico di Milano. “Rogue Robots: Testing the Limits of an Industrial Robot’s Security.” Last accessed on 28 
July 2018 at https://documents.trendmicro.com/assets/wp/wp-industrial-robot-security.pdf.

Figure 54.
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Records from what seems to be a production line of a smart factory in 

Taipei, Taiwan (part of the APAC region)

We found similar cases of exposed machines located in Germany and the Netherlands.

In light of this and previous findings, an attacker could exploit this data for target reconnaissance (e.g., 

equipment names and brands, including nicknames assigned to each machine). A casual attacker could 

simply try to publish MQTT messages to the broker, causing unexpected changes in the controlled 

process. An attacker behind a more targeted attack could instead find their way into the factories and 

take advantage of other vulnerabilities to directly affect the MQTT clients, or simply collect more of this 

data for industrial espionage purposes.

Example Case Study: 
Smart Cities and Transportation

Example of a modern highway

Figure 55.

5.2

Figure 56.
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Extending on the previous factory automation example, smart cities can be seen as large factories that 

need to be automated. Instead of industrial robots, however, smart cities have construction sites, gates 

and bridges, public transportation, traffic-control systems, and waste collection and disposal.

• Occupants
• Regulate 
   temperature

• Available light
• Turn on/off

• Congestion
• Regulate flow

• Air quality
• Increase recycle
• Software OTA update or configuration

• Software OTA update
   or configuration

• Software OTA update or configuration

• Software OTA 
   update or
   configuration

Abstract smart city scenario. As in the smart-factory case, each node serves three functionalities: 

actively affect the physical world, measure from the environment, and be an IT node to be 

managed.

Like smart factories, smart cities produce large volumes of data through a variety of sensors (e.g., 

temperature, lighting conditions, and presence of vehicles or pedestrians). Based on such data, several 

control procedures are at work to trigger actuators. For example: “turn on street lights dynamically 

based on available light” (or to meet power-saving objectives) or “let traffic flow if no pedestrians are 

waiting or no vehicles are on sight in the opposite direction.”

Findings: Smart City Telemetry Data

In 2017, we published two research papers about the risks of exposed cities80 and transportation 

systems.81 Looking at these verticals in MQTT and CoAP data confirmed that the risks are real. By 

searching for one brand of traffic monitoring system, we found an MQTT broker that was leaking data 

about the traffic conditions in specific locations in Mexico City, Mexico.

Exposed traffic monitoring system in Mexico City, Mexico

80 Numaan Huq, Stephen Hilt, and Natasha Hellberg. (15 February 2017). Trend Micro. “US Cities Exposed: A Shodan-Based 
Security Study of Exposed Assets in the US.” Last accessed on 28 July 2018 at https://www.trendmicro.com/content/dam/
trendmicro/global/en/security-intelligence/research/reports/wp-us-cities-exposed.pdf. 

81 Numaan Huq, Rainer Vosseler, and Morton Swimmer. (24 October 2017). Trend Micro. “Cyberattacks Against Intelligent 
Transportation Systems: Assessing Future Threats to ITS.” Last accessed on 28 July 2018 at https://documents.trendmicro.com/
assets/white_papers/wp-cyberattacks-against-intelligent-transportation-systems.pdf. 

Figure 57.
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Figure 58.
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Injecting false data into these brokers could interfere with control systems, with consequences that 

depend on the implemented automatic controls. For example, if the measured congestion level is used 

to control traffic lights, an attacker could forge data, in such a way that would arbitrarily increase the 

congestion level, with concrete impact on a city.

Findings: Smart Transportation Data
While looking for leaked data related to smart cities, we noticed a group of records containing email 

addresses and location names matching the names of well-known companies. Further examination 

revealed that these records all pertained to taxi or car-sharing rides either booked by employees of large 

enterprises using their business email addresses or directed to — or departing from — the offices of 

the enterprises. All of the records contained precise timing information, which would allow an attacker 

to know “who is going to [name of important enterprise]” or “which employee of [name of important 

enterprise] is going where.”

Taxi or car-sharing data containing business names and email addresses

The possibilities are countless because this reconnaissance information could allow an attacker to 

know the movements of employees of high-profile target companies. With the telemetry data about 

smart cities, an attacker could prepare an attack against the smart city control system itself or against 

the individuals.

5.2.2

Figure 59.
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Affected Countries and ISPs
We found exposed MQTT and CoAP endpoints in virtually every country. However, to have an 

overall, aggregated overview of which countries and ISPs are most affected, we provide the following 

breakdowns.

Countries or territories with the highest numbers of MQTT brokers (top) and CoAP  

servers (bottom)

Note: We recorded 17,226 MQTT brokers in the Asia-Pacific (AP) region. However, limitations in Shodan’s 
geolocation metadata inhibited us from determining more precise country or territory locations for the counts.

5.3
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Top organizations or ISP names associated with the IPs of MQTT brokers (top) and CoAP servers 

(bottom)

Note: Listed names are how ISP/organization names were reported on Shodan data.
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Affected Sectors
To have an overall, aggregated overview of what type of data the leaked records contained, we’ve 

automatically classified the records using pattern matching as follows. We’re not aiming at perfect 

record provenance information, but we’d like to answer a generic question: 

Which sectors or topics are most affected by these leaks?

Breakdown of exposed data by coarse-grained categorization

Note that, in the following list, labels are not disjoint: A record could be tagged as “consumer,” 

“positioning,” and “environment,” indicating that it transports consumer-relevant information about 

the environment, along with some positioning data (e.g., a weather station installed in a smart home 

system). The list includes only some of the examples, just for explanatory purposes. The most relevant 

categories will be expanded later on.

• Manufacturing. This refers to any record mentioning keywords such as “robot” or “cnc” (computer 

numerical control), “factory”, and so on.

• Agriculture. We noticed the presence of some agricultural machines reporting data. Despite being 

simple, keywords such as “agri” or “agro” are sufficient to get a rough estimate.

• System. We noticed traditional computers exchanging system messages referring to update 

procedures or file exchanges. Given the criticality of executable files being exchanged, we used 

specific patterns to label a record as “system” when we saw “*.bin” or “*.exe” files being mentioned, 

for instance.

• ICS (industrial control system). Intuitively, this refers to ICSs, which we “detected” when we saw 

words like “profinet”, “modbus”, “profibus”, “opcdata”, and so on being mentioned.

• Healthcare. This simply matches records containing terms such as “patient”, “hospital”, or 

“ambulance”. Despite their simplicity, we were able to catch the GPS coordinates of ambulances 

parked in India, patient monitors, and so on.

• Energy. This label generally indicates if the leaked records contained some energy- or power-

related information such as power consumption, voltage level, and any other kind of power meter.

5.4
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• Communication. Although there is a separate analysis for leaked IMEI and IMSI (international 

mobile subscriber identity) numbers, we labeled as “communication” each record that contained 

an IMEI or IMSI number.

• Positioning. Intuitively, this refers to records containing GPS data, which we matched with proper 

regular expressions. This category is quite popular, due to the pervasive nature of consumer-level 

tracking devices. However, we found out that location data appears in industrial applications too 

(for instance, in heavy-duty vehicle tracking systems).

• Transportation. This refers to vehicles and more. In general, we included vessels, trucks, trains, 

airplanes, and so on.

• Emergency. This term refers to records containing some kind of message alert. This use case is an 

interesting modern version of pagers.82 For this, we searched for keywords such as “emergency”, 

“alarm”, and “urgent” to estimate the fraction of records that are allegedly important for the recipient.

• Consumer. To distinguish “certainly consumer”-related records from the rest, we matched a list of 

well-known product or technology names (e.g., “homie”, “fitbit”, and “owntracks”).

• Environment. This refers to a node that reports environmental conditions such as temperature, 

pressure, humidity, and noise. For example, we found about 20,000 records pertaining to lighting 

systems, door automation, intrusion detectors, smoke alarms, air quality monitors, and so on.

Note on misclassified records: We acknowledge the presence of a minority of misclassified records, due to the 
non-exhaustive keyword list that we used, and due to generic content (e.g., news) circulating over MQTT or 
CoAP, which could likely match any of the keywords. To minimize the ratio of false matches, we manually vetted 
each of our searches and removed outliers.

82 Stephen Hilt and Philippe Lin. (22 December 2016). Trend Micro. “Leaking Beeps: Are Pagers Leaking Confidential Information?” 
Last accessed on 28 July 2018 at https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/leaking-beeps-pagers-
leaking-confidential-information.
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Conclusion
MQTT and CoAP are data protocols playing a fundamental role in M2M communication among 

consumer and industrial applications. The presence of unsecure MQTT and CoAP deployments shows 

no improved security awareness since 2017, when this problem was first highlighted for MQTT. Despite 

the security recommendations being well highlighted in the CoAP RFC, CoAP already suffers from a 

deployment problem similar to that affecting MQTT.

Both MQTT and CoAP have some features that, even in the absence of implementation vulnerabilities, 

can be abused to the attacker’s advantage. When deploying or using MQTT and CoAP services, the 

following practical points should be considered.

First, in current versions of both MQTT and CoAP, security is optional and not built in; except for basic 

authentication features, strong authentication and encryption are delegated to TLS or its equivalent. 

There is one research proposal83 for a secure version of MQTT that supports security at the protocol 

level, but the time to market for such changes is rather long. One of the reasons behind this white 

paper is that, with the exception of the HiveMQ Security Guide84 (which has a higher web rank than 

the official MQTT FAQ85 for “MQTT security”), there are no security-related references on MQTT.  

Most of the integration guides and tutorials that can be found show examples with no security enabled. 

Additionally, it’s very easy to find open MQTT brokers and CoAP servers that are meant to be used for 

testing purposes only. These resources are provided to developers to aid in the prototyping of their 

code without the need of setting up an actual server, but the risk is that they’re used even if it’s just 

in production. The mere fact that they’re available is, in our opinion, a problem because it encourages 

incautious development practices.

Second, MQTT and CoAP allow users to directly or indirectly obtain a directory of the transported data. 

MQTT has the concept of wild-card topics (e.g., “#”), and CoAP has the concept of linked resources, 

along with special URIs that can be queried (/.well-known/core) to obtain a list of resources exposed 

by a node. These features, despite fulfilling legitimate use cases, can be abused by an attacker to gather 

data about a target. The most striking demonstration of the security risk of this feature is mentioned in 

Section 2: We show how an attacker would be able to collect a very large amount of data, from which 

they could learn sensitive details about the victims.

Third, the IoT promotes agile integration, with transient and ephemeral nodes that come and go. It’s 

not hard to think of two different nodes expecting different kinds of data or running different versions 

of the MQTT or CoAP protocol implementations. Data parsing is notoriously a hot spot for security 

vulnerabilities. A concrete case is the discrepancy in accepting invalid Unicode code points, which can 

lead to DoS.

83 Meena Singh, M. A. Rajan, V. L. Shivraj, and P. Balamuralidhar. (April 2015). 2015 Fifth International Conference on 
Communication Systems and Network Technologies. “Secure MQTT for Internet of Things (IoT).” Last accessed on 28 July 2018 
at https://ieeexplore.ieee.org/document/7280018/. 

84 dc-square GmbH. (2012). HiveMQ. “MQTT Security Fundamentals.” Last accessed on 28 July 2018 at  
https://www.hivemq.com/mqtt-security-fundamentals/. 

85 MQTT. MQTT. “Frequently Asked Questions.” Last accessed on 6 August 2018 at http://mqtt.org/faq.
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Along the same line, the IoT promotes the creation of analytics workflows and web-based visualization 

dashboards. Here is where the “machine” world meets the web world. Recall that MQTT and CoAP 

make no assumption or checks on the payload that they transport, which could be plain text data as 

well as binary data. From a web security perspective, MQTT and CoAP nodes should be treated as 

unsafe data sources, to avoid the risk of their becoming vectors of well-known XSS/SQL (cross-site 

scripting/Structured Query Language) injection attacks.

Finally, users should be aware that data sent to an MQTT broker is not just “transiting,” but could be 

retained, at least for two reasons: because it may serve logging purposes and because it’s requested by 

the sender (recall the “message retain” option). Therefore, using a cloud broker does not guarantee that 

the provider could not store the messages for operational requirements or intentionally.

As a concrete example of best practices, we put forth the example of AWS IoT. In AWS IoT, it is 

impossible for a user (even a non-expert user) to connect an IoT device in an unsecure way, or to create 

an unsecure instance of AWS IoT’s backend. The service is essentially a managed MQTT broker that:

• Enforces TLS encryption. There’s no other way to connect to the broker than over TLS.

• Enforces mutual TLS-based authentication with per-device certificates. Each new “thing” 

(node) must have a new certificate, which will be used to authenticate the thing onto the server, 

and a certificate that will allow the thing to authenticate the AWS IoT server. If a node is lost or 

compromised, the administration dashboard allows the revocation of its certificate.

• Disables QoS = 2 and retained messages. This effectively reduces the risk and power of DoS. As 

shown in Section 3.2.2, if a malicious publisher sends a message with QoS = 2 (i.e., the message 

must be confirmed and requires two transfers each side) and “retain option” enabled, this will cause 

the delivery to be repeated indefinitely, until the subscribers ACK (acknowledge) the message, 

including all future subscribers. If, because of a failure, a message is not acknowledged, the broker 

will keep resending it.

• Is usable. All of the above is “wrapped” in a usable web wizard that guides the user from zero to 

testing with in-line documentation.

We believe that this deployment should be used by other service providers, and as a reference for 

system integrators.

Security and privacy risks in MQTT and CoAP data protocols warrant attention as they are being 

widely used in M2M communications in IoT deployments and are being increasingly adopted in IIoT 

applications. The number of exposed MQTT and CoAP hosts and misconfigured systems that leak 

credentials, sensitive information, and industry-related process data to potential attackers further brings 

the concern to the fore. The gathered information may be used to perform reconnaissance on target 

companies. The vulnerabilities we outlined, furthermore, could even allow attackers to gain remote 

control of a device or keep it in a DoS state.

We recommend closely adhering to the aforementioned best practices, which should cover the 

considerations that we cited and provide organizations with hardened, enterprise-grade security that 

detect and prevent threats to M2M communications. Cybersecurity should be prioritized by service 

providers, system integrators, and IT teams to deter attackers from subverting and abusing MQTT and 

CoAP-enabled applications and systems. 



The Fragility of Industrial IoT’s  
Data BackBone 

Security and Privacy Issues in 

MQTT and CoAP Protocols

TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information and educational purposes only. 

It is not intended and should not be construed to constitute legal advice. The information 

contained herein may not be applicable to all situations and may not reflect the most 

current situation. Nothing contained herein should be relied on or acted upon without the 

benefit of legal advice based on the particular facts and circumstances presented and 

nothing herein should be construed otherwise. Trend Micro reserves the right to modify 

the contents of this document at any time without prior notice.

Translations of any material into other languages are intended solely as a convenience. 

Translation accuracy is not guaranteed nor implied. If any questions arise related to the 

accuracy of a translation, please refer to the original language official version of the 

document. Any discrepancies or differences created in the translation are not binding and 

have no legal effect for compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate and up-to-date 

information herein, Trend Micro makes no warranties or representations of any kind as to 

its accuracy, currency, or completeness. You agree that access to and use of and reliance 

on this document and the content thereof is at your own risk. Trend Micro disclaims all 

warranties of any kind, express or implied. Neither Trend Micro nor any party involved 

in creating, producing, or delivering this document shall be liable for any consequence, 

loss, or damage, including direct, indirect, special, consequential, loss of business profits, 

or special damages, whatsoever arising out of access to, use of, or inability to use, or 

in connection with the use of this document, or any errors or omissions in the content 

thereof. Use of this information constitutes acceptance for use in an “as is” condition.

For Raimund Genes (1963-2017)

Published by: 

Trend Micro Research

Written by: 

Federico Maggi and 
Rainer Vosseler 
Trend Micro Research

Davide Quarta 
EURECOM and Politecnico di Milano

Stock images used under license 

from Shutterstock.com



TREND MICROTM RESEARCH
Trend Micro, a global leader in cybersecurity, helps to make the world safe for exchanging digital information. 

Trend Micro Research is powered by experts who are passionate about discovering new threats, sharing key 
insights, and supporting efforts to stop cybercriminals. Our global team helps identify millions of threats daily, 
leads the industry in vulnerability disclosures, and publishes innovative research on new threats techniques. We 
continually work to anticipate new threats and deliver thought-provoking research.  

www.trendmicro.com

©2018 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are 
trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be 
trademarks or registered trademarks of their owners.


	1 Introduction
	Scope
	Methodology
	Angle
	Background
	MQTT: Message Queuing Telemetry Transport
	CoAP: Constrained Application Protocol
	MQTT vs. CoAP 

	Questions

	2 Technology
	2.1 Design Issues
	2.1.1 Payload Remaining Length
	2.1.2 Unicode Handling in Topic Strings
	2.1.3 URI-Style Topic Validation

	2.2 Implementation Vulnerabilities
	2.2.1 MQTT Payload Remaining Length (PoC)
	2.2.2 MQTT Unicode Handling in Topic Strings (PoC)
	2.2.3 MQTT URI-Style Topic Validation (CVE-2018-11615)
	2.2.4 CoAP Amplification (PoC)


	3 Applications
	3.1 Telemetry and Notification
	3.1.1 Security Angle 
	3.1.2 Findings: Healthcare Monitors, Assistive  Technology, and Asset Trackers
	3.1.3 Findings: Leaking Groupware Messaging App 
	3.1.4 Findings: Smart Farming Telemetry

	3.2 Node Configuration and Management
	3.2.1 Security Angle
	3.2.2 Findings: Exposed Credentials and  Network Configuration Details

	3.3 Command Queuing
	3.3.1 Security Angle

	3.4 Over-the-Air Upgrades
	3.4.1 Security Angle
	3.4.2 Findings: OTA Firmware Upgrades


	4 Products
	4.1 IoT and IIoT Platforms 
	4.1.1 Findings: IIoT Products and Protocols

	4.2 Industrial Routers and Protocol Gateways
	4.2.1 Security Angle
	4.2.2 Findings: CAN-MQTT and J1939-MQTT Protocol Gateways

	4.3 Firmware, SDKs, and Real-Time OSs
	4.3.1 Findings: Vulnerable MQTT Firmware Library

	4.4 IoT and IIoT Development Tools
	4.4.1 Security Angle


	5 Impact
	5.1 Example Case Study: Smart Factories
	5.1.1 Findings: Manufacturing Production Data

	5.2 Example Case Study: Smart Cities and Transportation
	5.2.1Findings: Smart City Telemetry Data
	5.2.2 Findings: Smart Transportation Data 

	5.3 Affected Countries and ISPs
	5.4 Affected Sectors

	6 Conclusion

