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Abstract

In this paper we propose Mastino, a novel defense system to detect malware 

download events. A download event is a 3-tuple that identies the action of 

downloading a file from a URL that was triggered by a client (machine). 

Mastino utilizes global situation awareness and continuously monitors 

various network- and system-level events of the clients’ machines across 

the internet and provides real time classification of both files and URLs to 

the clients upon submission of a new, unknown file or URL to the system. To 

enable detection of the download events, Mastino builds a large download 

graph that captures the subtle relationships among the entities of download 

events, i.e. files, URLs, and machines. We implemented a prototype version 

of Mastino and evaluated it in a large-scale real-world deployment. Our 

experimental evaluation shows that Mastino can accurately classify malware 

download events with an average of 95.5% true positive (TP), while incurring 

less than 0.5% false positives (FP). In addition, we show the Mastino can 

classify a new download event as either benign or malware in just a fraction 

of a second, and is therefore suitable as a real time defense system.
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1. Introduction
Remote malware downloads, e.g., via drive-by exploits, social engineering attacks, second-stage 

malware drops, etc., currently represent one of the most effective infection vectors. Unfortunately, existing 

defenses that aim to prevent malware downloads, such as anti-virus engines (AVs) and URL blacklists, 

are only partially effective because they tend to lag behind the latest threats, thus leaving users exposed 

to new malware infections [17]. For instance, AVs are notoriously ineffective against malware code 

obfuscation [11], whereas URL blacklists can often be circumvented by distributing malware downloads 

from frequently changing domains [9].

In this paper we present Mastino, a novel system for accurate real-time detection of malware download 

events. Our system aims to detect malware downloads by determining who is downloading what and 

from where, rather than trying to classify the content of the single downloaded files or the specific 

download URLs in isolation. To this end, we target a real-world deployment scenario in which a large 

number of machines (in the order of hundreds of thousands) run a download identication agent (DIA) 

capable of identifying new executable file download events. Each DIA sends information about new 

download events to our detection system and temporarily quarantines the file, thus preventing the 

operating system from opening or executing a file until a decision is received regarding its nature, as 

shown in Figure 1. If Mastino classifies the file as benign, the DIA will allow the downloaded file to run; 

otherwise, the file can be permanently blocked or removed.

Based on the download events reported by hundreds of thousands of machines, our system maintains a 

large tripartite graph of historic download events (Figure 2), in which nodes represent either a machine, 

a downloaded file, or the download URL, and edges between nodes express who (i.e., what machine) 

downloaded what file and from what URL. This tripartite graph is further augmented by annotating nodes 

with intrinsic features that pertain to each separate node (e.g., file nodes contain information about 

whether the downloaded file is packed, carries a valid signature, etc.). We then cast the problem of 

accurately detecting new malicious file downloads as an inference problem over this annotated tripartite 

graph. In essence, Mastino leverages large-scale situation awareness about web-based software 

download events to more accurately detect future malware downloads.

To achieve high detection accuracy, Mastino combines knowledge derived from historic relationships 

between machines, files, and URLs, with both system- and network-level properties of each download 
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event. This is in contrast with previous works, which attempt to detect malware downloads based 

primarily on features derived from network traffic [12, 19, 22] or that only consider the “relationships” 

between machines and files [8]. In addition, unlike [19], our system is not limited to detecting browser-

initiated malware downloads (e.g., via drive-by and social engineering attacks), and instead aims to 

detect any malware download, including malware updates, second-stage malware drops, pay-per-install 

malware downloads, etc. (dierences with previous work are discussed in detail in Section 7).

For instance, given a machine m that downloads an executable file f from a URL u, Mastino takes into 

account features such as the name and hash of the process running on m that initiated the download, the 

name of the downloaded file as it was rst saved on disk, whether or not m had been previously infected, 

etc. These system-level features are further combined with file-based information, such as whether f is 

believed to be packed/obfuscated (as determined by the download identication agent), whether the file 

carries a valid digital signature, its lifetime (i.e., when was the file first observed by any of the agents), 

etc., along with network-level features about the source URL (e.g., the “age” of the download domain, 

its effective second-level domain, etc.). In Section 4, we show that combining both system-level and 

network-level features signicantly improves detection accuracy.

In summary, we make the following contributions:

•	 We present Mastino, a novel system for accurate real-time detection of web-based malware download 

events. Mastino leverages large-scale situation awareness about web-based software download 

events, and casts the problem of detecting new malware downloads as an inference problem over 

large URL→file→machine relationship graphs.

•	 Unlike previous work, Mastino combines both system-and network-level information related to 

executable fille downloads, allowing us to more accurately detect future malware downloads. In 

addition, the classification of new download events can be performed in a fraction of a second, thus 

enabling real-time malware detection.

•	 We evaluate Mastino over data collected from a real-world deployment across hundreds of thousands 

of end-user machines globally distributed across the internet. We show that our system is able to 

classify new malware download events with a true positive (TP) rate of 95.5% at less than 0.5% false 

positives (FP).
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ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China

© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00 

DOI: http://dx.doi.org/10.1145/2897845.2897918

http://dx.doi.org/10.1145/2897845.2897918


6 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

2. Overview
Problem Definition. Let m be a user’s machine that downloads an executable file f from a remote 

download URL u at time t. Our main goal is to concurrently classify f and u to determine in real time 

whether they are likely malicious. In other words, we aim to proactively detect malware download events, 

so that malware files can be immediately quarantined (or removed) to prevent their execution on the 

download client system.

Approach. Our approach leverages large-scale situation awareness to accurately detect new malware 

download events in real time. We continuously monitor system and network events on a large number 

(hundreds of thousands, in our current deployment) of client machines scattered across the internet, as 

shown in Figure 1. Each client runs a download identication agent (DIA), whose main responsibility is to 

recognize when an executable file download has occurred and report detailed information about this event 

to a centralized malware download detection (MDD) system. MDD collects information about executable 

file download events from all participating clients, automatically updates its malware download detection 

models, and responds to download classification requests from the clients.

Executable
file download
servers

Clients
that run
Download
Identification
Agent (DIA)

F

U

M

Malware Download Detector (MDD)

•  Global situation awareness
•  Build/update annotated graphs
•  Learn malware detection models
•  Classify file downloads

Classification
Request

Download events
information

Figure 1. Mastino – approach overview.
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Malware Download Detection System (MDD). In this paper, we focus on designing and implementing 

the centralized malware download detection system (depicted in Figure 3) so that it can accurately classify 

malware download events, and respond to download classification requests from clients with minimal 

response latency.

Every time a client downloads an executable file, the DIA agent on the client reports information about 

the event to the malware download detection system, including the full URL from which the file was 

downloaded and detailed information about the downloaded file, such as whether the file is likely packed/

obfuscated, carries a valid signature and size. DIA also collects system-level information about the 

machine that downloaded the file, including information such as the name and hash of the client process 

that initiated the download, the destination name with which the downloaded file is stored on disk, etc.

MDD uses the download events information reported by the DIA agents to build an annotated download 

graph (see simplified example in Figure 2). Essentially, this download graph is a directed tripartite graph, 

G(U, F, M, EU, F, EF, M, Eu, M), where nodes in set U represent URLs, nodes in F are files uniquely identied 

by their SHA1 hash, and set M includes all participating machines, which are identied by an anonymized 

global unique identier (GUID) generated by the DIA agent. A URL u is connected to a file f with a directed 

edge (u ¬ f) if f was downloaded from u. Similarly, a file f is connected to a machine m with a directed 

edge (f ¬ m), if f was downloaded by m. Finally, a URL u is connected to a machine m with an edge (u 

¬ m) if m downloaded an executable file from u (notice that Figure 2 does not show (u ¬ m) edges for 

simplicity). Each node is annotated with intrinsic node information. For example, each file node f € F 

includes information about whether f is likely packed/obfuscated, if it carries a valid digital signature, its 

file size, file name etc. Similarly, a URL node u € U includes information such as IP, the fully qualied domain 

name (FQD) and effective second level domain (e2LD) of the domain portion of u, path and query string 

components of u, and the “age” of URL, FQD, and e2LD. Machine nodes carry information related to their 

malware infection history, such as the processes that initiated the file downloads on the machines, and 

etc.

MDD maintains historic snapshots of the download graph, in which known benign and malicious files and 

URLs are labeled accordingly (e.g., by leveraging existing blacklists, whitelists, and multiple AV engines). 

This historic information is used to build a statistical classifier, which is responsible to satisfy classification 

requests from the DIAs. For instance, let d' = (u'; f'; m') be a new download event tuple (i.e., a new URL, 

file, and machine GUID) reported by one of the participating DIAs to the MDD. The MDD system first 

updates the most recent available graph snapshot by adding the new download event nodes and related 

edges. MDD uses this updated graph to concurrently classify u' and f' (the URL and file nodes) as either 

malicious or benign. If either the URL u' or the file f' is classified as malicious, the related entire download 

event is classified as malware and the classification result is forwarded to the requesting DIA, as shown 

in Figure 3 (see Section 3 for details).
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Figure 2. Example representation of an annotated download graph. Note that edges between URLs and machines 

are not shown, for simplicity.

Non-Goals and Assumptions. The design of the download identication agent (DIA) is outside the scope 

of this paper. We assume that the DIA is capable of accurately detecting executable file download events, 

and can collect the related network- and system-level information (including file download path on disk, 

downloading process information, downloading URL, etc.). In addition, we assume that (i) the DIA is 

capable of quarantining the downloaded files, preventing their execution until a classification response is 

received from our MDD system; (ii) DIA and MDD can authenticate each other; and that (iii) the integrity 

and confidentiality of the communication between each deployed DIA and the MDD are protected (e.g., 

via TLS). We believe these assumptions are reasonable, because most technical challenges related to 

DIAs have already been successfully addressed by a large body of work in both the anti-malware industry 

and academia.

Privacy Considerations. To perform this study we collected data from hundreds of thousands of real-

world clients that run a DIA developed by a leading anti-malware vendor. It is important to notice that the 

data is collected only from clients who voluntarily agree to share information about file download events. 

In addition, the data is provided to us in a fully anonymized form, whereby machine identifiers and other 

potentially sensitive information (e.g., the download path on file-system) are scrambled { via appropriate 

cryptographic primitives. Data privacy is further protected via mutual non-disclosure agreements.

- - -

To be classified Benign Malicious

HTTP HTTP HTTP HTTP HTTP

•  query string
•  effective 2LD
•  IP info
•  ...

Complete URL string

•  File size
•  Is the code likelyobfuscated?
•  Does it carry a valid signature?
•  ...

File's SHA1

•  Past download behavior
•  Process that downloaded file
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•  ...

Global unique ID (GUID)

M

F
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3. System Details
In this section, we describe in details how Mastino’s Malware Download Detection (MDD) module works.

3.1 Graph Node Labeling and Reputations
Each node in the tripartite download graph is assigned a reputation score. These reputation scores are 

utilized to perform inference-based detection of unknown files and URLs based on the associations 

among the download event entities in the graph. Specifically, we defined a badness reputation score, R 

€ [0, 1] where 1 means maximum badness, 0 means maximum goodness, and 0.5 means unknown node 

(details in Section 5.2.1). If a node’s R is above a badness threshold, the node will be labeled as known 

bad, while if the reputation is below a certain threshold, the node will be labeled as known good. In all 

other cases the node will be labeled as unknown. To calculate and assign the reputation score R to nodes 

in the tripartite graph, we leverage a combination of public and private information for files and URLs, such 

as files’ AV labels, URL blacklists and list of top Alexa domains. A machine node’s R is calculated based 

on its download history, system-level information, and R of its neighbors in the graph, since no black or 

whitelist of machines is available. In Section 4.1, we explain in details how file, URL, and machine nodes in 

each layer of the graph receive their R scores and labels. Note that due to our large-scale deployment and 

incompleteness of the black- and whitelists, it is highly challenging to label all nodes, so the majority of 

the nodes will remain unknown, and it will be Mastino’s responsibility to accurately classify these nodes.

Download
server

Client

FILE

DIA

Classification
requests
queue

Update
download

graph

Classify new
download

URL and file

MDDDownload
classification

request

Classification results

Figure 3. High-level overview of classification process.
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3.2 Behavioral Graph-based Classifier
We use statistical classifiers that harness behavioral patterns among the nodes in the graph as well as the 

partially available ground truth from known nodes to detect malware file downloads and malicious URLs. 

Specically, Mastino’s classification system consists of two classifiers, one dedicated to distinguishing 

between malicious and benign URLs, and another dedicated to detecting malicious downloaded files. 

The output of these two classifiers is then reconciled as follows: if either the URL or the downloaded file is 

classified as malicious, then the entire download event is considered a malware download. The classifiers 

in each layer receive as input a statistical feature vector for a to-be-classified node, n, and output a 

badness score. The badness score is checked against an automatically learned detection threshold to 

label n. Each layer’s classifier uses a set of statistical features to enable the detection. The classifier 

features in each layer could be divided into two groups. A set of behavior-based features and a set 

of intrinsic features. Behavioral-based features are the ones that describe the goodness or badness of 

related nodes connected to a to-be-classified node. These features can only be computed by using 

the graph nodes and edges. The intrinsic features, in contrast, are the features that could be computed 

without the graph (e.g., a file’s size).

3.2.1 Intrinsic Features

For files, their node-specific information (see Section 2 and annotated nodes in Figure 3) in the tripartite 

download graph is used as intrinsic features. For example, the lifetime and prevalence of files are two 

of the intrinsic features. Intuitively, files that have been downloaded by many users and were constantly 

observed by DIA for long periods of times are most likely benign software. In contrast, malware usually 

have shorter lifetimes and are downloaded by fewer users, especially, if one considers the impact of 

packing/obfuscating malware binaries. Additionally, file features are packed and they are useful if they 

have a valid signature. The intuition here is that malware are often packed to remain undetected by AVs.

For URLs, we consider the age or recency of the URL itself and its FQD and e2LD as intrinsic features. 

Generally, newly registered domains or not-so-popular URLs and domains are more likely associated 

with malicious content. Table 1 reports the full list of intrinsic features for files and URLs and the intuition 

behind them.

Note that we don’t have a classifier for the machines layer; however, we use machines as a support layer 

in our graph to compute the behavior-based features for the other two layers. In the following section, we 

describe the behavior-based features and explain the role of machines in measuring the features.
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3.2.2 Behavior-based Features

The behavior-based features for nodes in a layer of the download graph, e.g. URLs, are computed based 

on the badness reputation, R, of nodes in the other two layers, e.g. files and machines. This means that 

all the neighbors of an unknown node n have some say in determining the reputation of n. Intuitively, if 

an unknown file f, for example, is downloaded from domains where the majority of them hosted malware 

in the past, and/or from URLs with a specific path component that is associated with malicious file 

downloads,

and/or by vulnerable machines with high R, then it is more likely that f is itself malicious.

URLs Behavior-based Features. To compute these features for a URL, u, we first find the set of all files 

and machines in the graph that are connected to u. Let Fu = {f1, f2, . . . , fh} and Mu {m1, m2, . . . , mk} 

be sets of files and machines nodes connected to u, respectively. Then we compute min, max, average, 

median, and standard deviation of the following:

•	 reputation, R, of all f2 € Fu,

•	 reputation, R, of all mi € Mu, and

•	 number of AVs that labeled each fi € Fu.

These numbers are used as features of u. In essence, these statistics highlight the true nature of the 

neighbors of u. Intuitively, if u’s neighbors have high badness reputation, it is more likely that u itself has 

a high badness reputation as well. Conversely, if on average, neighbors of u are benign nodes (i.e. clean 

machines and benign files), then it is likely that u itself is a benign domain.

However, direct neighbors of a single URL in the tripartite graph might not give us enough information. To 

gather more evidence about u (the URL we want to compute its features), we consider its components, 

such as FQD, e2LD, path, etc. Then we find a set of URLs, Cu, that have at least a component in common 

with u. Finally, we gather larger sets of files, F'u, and machines, M'u, that are connected to URLs in Cu 

and use them to expand features of u in a similar fashion as nodes in Fu and Mu. Figure 4(a) shows how 

the mentioned behavior-based features are computed for a sample URL u. Four files, Fu U F'u, and three 

machines, Mu U M'u, are connected to u and Cu collectively. For simplicity, u and Cu are shown as one 

node. Each file and machine sends some information, shown on edges, to u for feature computations.

Precisely, we consider FQD, e2LD, path, path pattern, query string, query string pattern, IP, and IP/24 

as components of a URL. The path pattern is an advanced regular expression for u’s path. To generate 

it, we identify sequences of letters, digits, and hexadecimal numbers in a path, and generalize them 

while keeping non-alphanumeric characters. For example, if a URL’s path is /sample/123/DA10/foo.exe, 

then the generated path pattern would be /S6/D3/H4/S3.S3, which represents a path with sequences 

of 6 letters, 3 digits, 4 hexadecimal digits, 3 letters, a ‘.’, and 3 letters. The query string is defined and 
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generated in a similar fashion from the query string. The IP and IP/24 are the sets of IPs and IP/24 

networks that u resolved to during the observation time window.

Note that the features explained above help us make better classification decisions. For example, 

consider u is an unknown URL that all of its neighbors are unknown nodes, so they cannot contribute 

meaningfully to classifying u. Nonetheless, if u shares the same URL path with a group of malicious URLs 

(because they were generated by the same kit, for example), and if there are some known malware files or 

infected machines connected to this group of URLs, they will have an impact on accurately labeling u as 

malicious, since their R will be used to compute some features of u. Consider another example when the 

path component of some malicious URLs is generated by an algorithm that randomizes the characters, 

so they might look different. However, it is likely that they share the same path pattern. Now this group of 

malicious URLs will help classifying u, the unknown URL, if u has the same path pattern.

u U Cu

FILE FILE FILE FILE

Each file sends R and
number of AV labels

Each machines sends R

u behavior-based
features = {files stats, machine stats}

compute min, max,
med, avg, and std

compute min, max,
med, avg, and std

(a) URL behavior-based features

f

HTTP HTTP HTTP HTTP

Each URL sends R of itself, plus R of its
FQD, e2LD, path, path pattern, IP, etc.

Each machines sends R

f behavior-based
features = {URL stats, machine stats}

compute min, max,
med, avg, and std

compute min, max,
med, avg, and std

(b) File behavior-based features

Figure 4. Computation of behavior-based features: (a) for URL, u, based on R and other information of neighbor 
files and machines that are connected to either u or Cu; (b) for file, f, based on R of connected URLs and their 

components and machines

Files Behavior-based Features. These are computed in a similar way as in URLs. For example, for a 

file, f, we gather all the connected nodes from the URLs and machines layers to compute the features of 

f. Figure 4(b) shows how these features are computed. Note that the connected URLs to f also send the 

R of their components, such as FQD, path pattern, IP, etc., to f for feature computation. We define the R 

of a URL’s component to be the average of R of all URLs that share the same component. This helps in 

correctly classifying unknown f nodes that their direct URL neighbors are also unknown, but share some 

components with known URLs.
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4. Experimental Setup

4.1 Calculating Badness Reputation and Labeling 
Nodes
The following details how we label nodes of each layer of the tripartite download graph by assigning them 

badness reputation R. As discussed in section 3.1, R is a real number in range [0; 1] that represents how 

much evidence exists towards badness or goodness of nodes in the graph. Generally, values closer to  

R = 1 mean high probability of badness, values closer to R = 0 indicate high goodness possibility, and

R = 0.5 means unknown, i.e. no evidence.

File Intrinsic Features

Feature Explanation

Size

The size of the files. Intuitively, large file sizes are less likely to be malware and mostly 

benign software. However, file size by itself cannot distinguish between benign and 

malware files, since many benign files have small sizes, too.

Extension

This feature tries to capture malware binary downloads that have an unusual 

extension, such as jpg, to deceive users. Note this feature will only be useful, if a file 

has extensions other than exe.

Lifetime

The time difference between the last time and first time of seen date for a file by 

DIA. The intuition here is that usually files with very short lifetime are malware. Also 

considering the impact of packing and obfuscating, malware can have very short 

lifetimes.

Prevalence

The number of downloads of a file by unique machines. Benign and popular software 

are downloaded by many machines around the world, but malware, in contrast, 

usually are downloaded by a very small number of machines. In some extreme cases, 

malware distributors install a unique malware (with new and unseen-before SHA1 

hash) to each machine.

Packed

This feature identifies whether files are packed by a packer or not. As mentioned 

in the description of other features, packing and obfuscation is a technique that is 

mostly used by malwares to avoid detection.

Signed This feature identifies whether files are signed or not.
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File Intrinsic Features

Feature Explanation

Number of countries
The number of unique countries that downloaded the file. Same as the lifetime or 

prevalence features, this feature also tries to capture unpopular files.

Java or Acrobat Reader

If the downloading process of a file is Java (java.exe) or Acrobat Reader (acrord32.

exe) and the download URL is not oracle.com or acrobat.com, then this feature will 

be set to true. The reason is that the downloads that are triggered by the Java or 

Acrobat Reader processes are possibly suspicious.

URL Intrinsic Features

Feature Explanation

URL, FQD, and e2LD 

age

These features determine how long ago the URL, FQD, and e2LD were first seen in 

our data in a time window. In general, new or not very popular URLs and domains are 

more likely to be malicious than benign.

Table 1. Files and URL layers intrinsic features

Files: Ground truth could be collected for some of the files in the tripartite graph using various sources, 

such as VirusTotal. If available, we use the assigned labels of reputable and well-known antivirus 

companies to compute reputation scores for files. We also use a proprietary list of known benign files to 

further enhance the file reputation computation.

Empirically, we identified ten antivirus vendors that provide the most reliable results and are more well-

known and popular according to their market share, and we refer to this list as trusted AVs1. Our confidence 

of a file being bad depends on the number of AVs from the trusted AVs list that label the file as malicious, 

and, therefore, it determines the R for the file. The more trusted AVs have a malicious label for a file the 

higher the badness score will become. An R above a certain threshold translates to a bad label. On the 

other hand, if no AV, either trusted or not, have a malicious label for a file, a low R and consequently a 

good label will be given to the file. In addition, we utilize a proprietary list of known benign files to rene R.

URLs: We leverage black- and whitelists of URLs and domains to gather ground truth regarding URLs. 

While some of the sources that we use are private, the majority are publicly available, such as list of popular 

domains according to Alexa and a blacklist of malicious domains according to Google Safe Browsing 

(GSB) [10]. We use a proprietary list of benign URLs as our whitelist that is combined, conservatively, with 

Alexa list of top 1 million domains to minimize noise as follows. We keep track of domains that consistently 

appeared in Alexa list for about a year. From this list we also filtered out known domains related to cloud 

storage and those that allow their subdomains to be freely registered, such as web hosting or free blog 

services and dynamic DNS providers, as these type of domains might be abused by attackers. The final 

1 Our list of trusted AVs:  Trend Micro, Microsoft, Symantec, McAfee, Kaspersky, AVG, Avast, ESET Nod32,  BitDefender, and Sophos
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list contains ~450K domains which are very unlikely to be malicious. Then from whitelist of URLs, we 

remove those URLs that their e2LD does not appear in our Alexa list. This conservatively filtered whitelist 

of URLs contains minimal noise (see Section 6 for possible limitations). Now if a URL is found to be in our 

filtered whitelist, a low R, i.e. a score close to 0, will be assigned and the URL will be labeled as good. 

Similarly, a conservative approach is followed to label malicious URLs. A URL will be assigned an R close 

to 1 (maximum badness), if GSB and our private blacklist have that URL as a malicious URL. Note that to 

account for possible noise in the black- and whitelists, we don’t set the Rs to absolute 0 or 1. In all other 

cases, R will be a number close to 0.5, and an unknown label will be assigned.

Machines: The reputation computation for machines is somewhat different in terms of meaning from files 

and URLs, as benign and malicious labels for this group of nodes don’t necessarily denote a good or a 

bad machine per se. Instead, a malicious label for a machine represents a machine that tends to be more 

vulnerable to infections, according to historic evidence (e.g., past known infections on that host) and a 

benign label represents a machine that seemed not associated with malicious content when looking at its 

activities in the past.

In a novel approach, we combine the behavioral history of the machines with some system level 

information collected by DIA to compute R of machines as follows. For each machine, in a time window, 

we consider the history of its activities, including downloaded files and visited URLs, as well as the list 

of client processes that initiated the downloads. Since all these entities in machine’s activity history are 

assigned Rs, we can average their combined badness reputations and use it as machine’s R score. The 

intuition is that if a machine, during a time period, does not download bad files, contact bad URLs, or 

run bad processes, it is likely that the machine is a clean one. In contrast, a machine will be assigned a 

high R if in the past downloaded enough bad files, contacted some bad URLs, or had malware processes 

running. In this case, it is likely that this machine is vulnerable and will access malicious content again in 

the future.

4.2 System Operation
In this section we describe how the behavioral classifiers are trained and how the system operates. The 

system provides real-time classification results for files and URLs observed on daily basis. Furthermore, 

by combining the classification results of files and URLs, Mastino enables the classification of the entire 

download events, d = (u, f, m), 3-tuples of URLs, files, and machines. To do so, the system automatically 

classifies new items (files and URLs) on the current day harnessing historical knowledge gathered from the 

previous days in a time window T. The historical knowledge is, in fact, the augmented tripartite download 

graph that associates the items of download events together where all nodes are assigned an R value. 

We keep a sliding window over all the download events and set T = 10 days. That is, the beginning of T 

is set to 10 days before the start of current day, dc. So we are interested in classifying all unknown nodes 

observed on dc using the download graph that is generated by considering all download events during T 
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(see Figure 5). Note the decision on the length of T is set based on our evaluations which are reported in 

Section 5.6.

For any unknown file and URL node in dc, we compute its feature vector by following the procedure 

described in Section 4.1, and feed the feature vector of the unknown node to the related behavioral 

classifier, i.e. an unknown file will be fed to the files classifier and an unknown URL will be fed to the 

URLs classifier. The classifier in return produces a score which will be compared against a previously 

learned detection threshold. If the produced score is above the detection threshold the unknown node 

will be labeled as malicious. Eventually, by combining the classification results for files and URLs, Mastino 

detects malicious download events d = (u, f, m) where u or f were labeled as bad by the classifiers.  

Figure 5 shows how does the system operate by keeping a sliding window over all the download events 

during T and using them to generate a download graph and train behavioral classifiers. The window T 

slides forward to train new classifiers for subsequent dc days and classify new and unknown files and 

URLs.
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4.3 Training the Classifiers
In order to properly train the file and URL behavioral classifiers to be used for detection on current day, 

dc, we use the knowledge from previous days during T in the graph to prepare training datasets of known 

files and URLs. The training dataset for file classifier, for instance, contains labeled feature vectors for 

all known good and bad file nodes in the download graph during training time window T (see Figure 5). 

Section 3.2.2 explains how feature vectors for files and URLs are computed.

Computing Behavior-based Features During Training. Note that for known file and URL nodes that are 

used for training, part of their behavior-based features are based on R of machines connected to them. 

However, the R of machines was computed according to their history, i.e. the files and URLs connected 

to them in the first place (Sect. 3.1). So if we simply use the assigned R of machines to compute the 

behavior-based features for files and URLs during training, we unfairly give the classifier an advantage. 

In machine learning, this phenomenon is known as information leakage. To resolve this issue, before 

we compute behavior-based features for a known node n, to be included in the training dataset, we 

temporarily ignore any impact n had on determining R of machines, as if n was unknown.
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5. Evaluation
We performed numerous experiments to fully evaluate the system. In this section, first, we report some 

statistical information about the data. Second, we explain our train and test experiment. Next, we discuss 

the labeling of download events and evaluating the whole system. Then we present the results of feature 

analysis and efficiency measurements.

Finally, we present a detailed section on analyzing our results and some interesting case studies.

5.1 Data Collection
This work is based on the data collected from December 2013 to August 2014 by the DIA agents from 

customers of Trend Micro. The collected data contains download events d = (u, f, m) and their associated 

network- and system-level information, as explained in Section 4.2. During a time window T and using 

the download events, Mastino generates a tripartite download graph. Table 2 reports statistics about the 

nodes in various tripartite download graphs over multiple T = 10 days for each month of data. Table 3 

reports the number of events that were observed during T as well as the number of edges of the generated 

download graphs. The “Date” column reports the month that the days of the time window belong to.

Date Files URLs Machines

Total Benign Malware Total Benign Malware Total Clean Vulnerable

Jan 144,435 1,976 1,021 124,306 15,121 39,183 121,177 431 19,533

Feb 127,369 2,040 1,668 112,310 12,056 37,266 110,231 956 17,236

Mar 120,584 1,801 1,432 106,041 11,291 34,596 100,098 1,347 13,882

Apr 102,922 1,732 3,744 99,883 12,092 32,594 92,696 780 16,998

May 96,289 1,643 2,904 92,665 12,707 27,174 84,347 877 15,299

Jun 79,310 1,708 1,875 77,401 15,338 23,424 69,881 590 16,544

Jul 74,543 1,622 1,479 73,434 11,591 22,775 65,646 868 13,005

Table 2. Node statistics for download graphs generated during sample T = 10 days for each month of the 
data
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Date Download events Unique Download events Edges

Jan 385,939 190,021 2,916,292

Feb 291,940 168,376 2,590,943

Mar 256,076 154,980 2,402,586

Apr 257,426 142,807 2,167,115

May 253,107 130,570 2,008,174

Jun 182,960 108,014 1,658,350

Jul 189,936 102,649 1,555,636

Table 3. Download events and graph size statistics generated during sample T = 10 days for each month of the data

5.2 Train and Test Experiments
In this section we show the evaluation result of system operation as it was discussed in Section 4.2. To 

this end we have defined a time window, T, which keeps track of all download events that happened 

during T. We are interested in using trained classifiers based on labeled nodes in the download graph 

during T to enable detection of new and unknown nodes on the current day, dc. So dc is our test day. We 

first discuss the preparation of training and test datasets for a single day of experiment and then present 

the results over multiple days of performing the tests.

5.2.1 Training and Test Datasets

First we generate a training dataset using all the known nodes in the graph during training time window 

T by following the procedure detailed in Section 4.2. To prepare the test datasets and to replicate the 

real-world operation of the system we proceed as follows. To evaluate the classifiers, we consider the 

nodes on dc, the test day, that were not present during time window T. This ensures that no information 

regarding the test samples were ever used during training and properly simulates the operative mode of 

the system where we are only interested in labeling new and unknown nodes on dc. We prepare three 

different groups of test datasets for files and URLs using nodes on dc as follows:

New Nodes - Fn and Un: Fn contains all files belonging to download events d = (u, f, m) from test day, dc, 

for which the file f was never seen during training time window, T, but the URL u or machine m appeared 

during T. Similarly, Un is composed of all new URLs from download events on dc, but the file f or machine 

m were seen during T.

New Download Events - Fe and Ue: Fe contains all files belonging to download events d = (u, f, m) observed 

on dc for which none of the nodes were ever appeared during the training period T, however, some ground 

truth exists for the URL u or machine m. For example, Fe might contain a file that is connected to a new 
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URL u and a new machine m where m downloaded some other malicious files from some bad URLs on 

that same test day dc, and, therefore, it was labeled as bad on dc. In a similar fashion, we generate test 

dataset Ue for URLs. 

New Unknown Download Events - Fu and Uu: Fu contains all files belonging to download events d = 

(u, f, m) appeared on dc for which none of the nodes ever observed during the training period T and no 

ground truth is available for the URL u and machine m whatsoever. URLs test dataset Uu is constructed 

similarly.

5.2.2 Multi-day Train and Test Evaluation

We perform train and test experiments to evaluate the generalization capabilities of our behavioral 

classifiers. First, we generate all three groups of test datasets described in Section 5.2.1 for various test 

days. Then we evaluate the performance of our trained classifiers on the test datasets. For example, for a 

single test day dc, we feed all file test samples in Fn, Fe, and Fu to the file classifier and record the prediction 

scores for each file in each test dataset separately. These scores are used to evaluate the performance of 

the classifiers on each specific test dataset on a single test day dc. However, we like to demonstrate that 

the classifier results are consistent for the entire dataset. So we combine the classification scores over 

multiple days and report the aggregate results as follows.
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Figure 6. Multi-day train and test for files (Fn, Fe, Fu) and URLs (Un, Ue, Uu) on seven different testing periods (FP€ 
[0%, 1%])

We choose t testing periods, TPRi, i = 1, 2, . . . , t, each including k consecutive test days, di, j , j = 1, 

2, . . . , k. For a specific testing period, TPRx, we perform train and test experiment for each dx, j , j = 1,  

2, . . . , k. That is, first we train a set of classifiers by building a download graph over the time window, 

T, that ends just before dx, j (e.g., a time window that spans 10 days before dx, j). The classifiers are 

used to produce prediction scores for the test nodes on dx, j . The time window T is then slid forward to 

compute prediction scores for all k days belonging to testing period TPRx. Then we store these prediction 

scores Px, j, j = 1, 2, . . . , k. Finally, we aggregate all the prediction scores for the testing period TPRx and 

report the results. To choose the most suitable classification algorithm for Mastino, we experimented with 

different statistical classifiers and picked Random Forest [7] as it consistently provided the best results. 

Figure 6 shows the results of these experiments for files and URLs using the three groups of test datasets 

for seven (t = 7) testing periods selected at random from various months of our data. Each testing period 

contains 5 consecutive test days (k = 5), resulting in train and test evaluation for 35 days, in total. We 
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compute the ROC curves by varying the detection threshold on the classifier’s output scores. Also note 

that the ROCs show the true positive (TP) rates for false positives (FP) less than 1%.

As it can be observed from the ROCs, the file and URL classifiers perform very well even for very low FPs. 

For example, the file classifier when tested on Fe on average achieved 90% TP while incurring only 0.5% 

FP, and even for FP of 0.1%, average TP is 82.5%. For URLs in Ue the average TP is 86.5% and 96% 

for FPs 0.1% and 0.5%, respectively. Especially, the results of tests on Fu and Uu are remarkably good. 

Remember that test samples of Fu and Uu are files and URLs from download events where all nodes are 

unknown and never seen before. Nonetheless, the classifier can easily detect them. For files and in four 

months, for example, Mastino achieved 100% TP with no FPs (see Figure 6(c)). This is due to the power 

of our tripartite graph layers as well as system-level features that could help in these situations where 

not enough historic information is available. To help the reader better understand how the classifier can 

classify such cases, we provide a few case studies in Section 5.8. Furthermore, as Figure 6 shows, the 

detection results are fairly consistent throughout our dataset.

5.3 Overall Classification of Download Events
In Section 3.2 we evaluated the files and URLs classifiers separately. In this section, we discuss how 

we evaluate the classification system as a single unit to label download events daily. As a reminder, a 

download event is a 3-tuple of files, URLs, and machines. Mastino labels a download event as malicious, 

if the event’s URL, file, or both are labeled as bad by the classifiers. So for evaluation, we consider the test 

samples of one day of train and test experiment. Then we classify the files and URLs with FP set to 0.5%. 

Then we consider all the related download events to test nodes and label them according to the following 

two rules: i) if file is a TP or URL is a TP, the event will be labeled as TP, and ii) otherwise if file is a FP or 

URL is a FP, then event will be labeled as FP. We experimented with various test days spread randomly 

across our dataset. Table 4 reports five of those test days (results of other test days are very similar).

Month of 
Test Day

Events

Test Events TP% FP%

Feb 4,205 96.2 0.4

Mar 4,581 95.4 0.5

Apr 4,163 97.3 0.5

May 4,004 96.1 0.4

Jun 3,856 94.0 0.5

Table 4. Results of labeling download events on five sample test days
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5.4 Feature Analysis
In order to assess the usefulness of various feature groups in our system, we performed extensive feature 

analysis. In particular, in this section we will show that the presence of all three layers are necessary for 

detection of files and URLs. To perform feature analysis, we proceed as follows. We remove all groups 

of features that are related to a specific layer of the graph from the classifiers, perform the train and test 

experiment, and compare the results with the case of having all features present. For example, for files 

classifier, first we can remove the features related to the URLs layers, which essentially means having only 

2 layers of files and machines in the graph and perform a train and test experiment. Then in another train 

and test experiment we can remove the machine layer. In addition, we also remove the intrinsic features 

(system-level features) of the classifiers and compare the result with the case of keeping them to show 

that they are also essential for better detection results. Figure 7(a) shows the feature analysis results for 

the file classifier for a testing period in February which is an aggregate of 5 days (see Section 5.3). While 

the ROC labeled as “All Features” is the detection result of a classifier that benets from all the layers of the 

graph as well as the files intrinsic features, each of the other ROCs are generated by removing one group 

of features at a time. Figure 7(b) shows a similar experiment but for URLs. Clearly, the performance of the 

classifier is the best when all features are used.

Figure 7: Feature analysis results (testing period: February)

5.5 Efficiency
The whole MDD system (Figure 1) would run on a server that receives requests from DIAs. The server 

that we used is actually quite a light machine with only 8GB of RAM and 8 1.2GHz CPUs. We averaged 

the run time for training and testing phases over multiple runs. On average the training phase requires 

about 2 hours and 30 minutes to generate a download graph over a time window of 10 days and train 

the classification models. On a single day, we observe around 21K to 22K nodes (files and URLs) and the 
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total time it takes to compute a classification result for all items is approximately 20 to 30 minutes which 

translates to about 0.08 seconds per node. Consequently, it takes 0.16 seconds to label a download 

event. So Mastino is capable of providing on-line and almost instantaneous responses to clients’ requests. 

Thus, as mentioned in Section 1, the DIA agent needs to quarantine the newly download file for only about 

0.16 seconds (plus some negligible network communication delay) to receive a response from the MDD. 

Considering that the time it takes to actually download files is much larger than 0.16 seconds, Mastino 

will not have a negative impact on users’ experience.

5.6 Selection of Training Time Window T
In our experiments, we set T = 10 days based on our pilot experiments with various time windows ranging 

from 1 to 30 days. In this section, we compare the detection result on a same testing period using various 

T lengths. We demonstrate that our chosen T = 10 days provides a good trade-off between runtime 

efficiency and detection performance. Figure 8 reports the results of a file train-test experiment over a 

testing period for time windows of 1, 5, 10, 20, and 30 days. As it can be seen, by increasing T length 

beyond 10 days, no notable performance gain could be achieved. Furthermore, as the length of time 

window increases, the training time increases as well. On average, the training time for T of 1, 5, 10, 20, 

and 30 days is about 40, 70, 120, 240, and 370 minutes. Similar results apply for URLs, too.

Figure 8: Selection of time window for files - train and test using Fn with various T lengths
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5.7 Analysis of the Classification Results
In this Section, first, we discuss the results of train and test experiment (Section 5.2). Next, we analyze the 

output of our classifier on completely unknown files, i.e. those files for which no ground truth was available 

whatsoever at the time of performing the train and test experiments. Finally, we report a breakdown of 

Mastino’s detected malware families when it was run in the wild.

5.7.1 Download events with Ground Truth

To perform this analysis, we picked a testing period of 5 days (see Section 5.4) and used a threshold 

of 0.5% FP rate for classification. In this experiment, 21 files are identified as false negatives (FN), i.e. 

labeled as benign by our system, but according to AV labels should have been labeled as malware. Out 

of these FNs, none were connected to any malicious URLs (6 were connected to only benign URLs), 15 

FNs did not use any type of code obfuscation techniques, and 17 files were downloaded by machines 

that had a clean history, i.e. they were not labeled as infected in the graph. These observations to some 

extent justifies the decision of the classifier on labeling these files as benign since the majority of them 

were either connected to non-malicious URLs in the graph, or did not exhibit a malicious behavior (e.g., 

downloaded on machines with a clean history and not packed). Further investigation revealed that some 

of FNs were “potentially unwanted applications”, such as adware, bundled with benign software.

Next, we analyzed the FPs. Out of 3 FPs: 1 was downloaded by multiple malicious URLs, another was 

packed and the last was downloaded on a machine with R > 0.7. So even though according to AVs and 

our proprietary whilelist of files, these samples were assigned a benign label, they might very well be 

malware.

5.7.2 Completely Unknown Download Events

We now evaluate our system as deployed in an operational environment, i.e. running on files that are 

unknown to AV vendors at the time of performing the train and test experiment. By evaluating which 

samples are correctly classified prior to any detection by AVs, we show that Mastino can label unknown 

files accurately and ahead of time.

To this end, we performed train and test and used a classifier’s threshold of 0.5% FP rate. Then we 

obtained the most up-to-date labels from VirusTotal, i.e. corresponding to six months after the testing 

period. In between the dates that the experiment was performed and the date that VirusTotal was queried 

again, a portion of the samples that were previously unknown have got some labels. Out of 57,896 

unknown files on test day, 406 were later detected as malicious and 2,774 identied as benign. Overall, 

Mastino correctly classified 84% of future malware on the test day, when they were still unknown to all 

AVs, and incurred 1.2% FPs.
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To understand why Mastino incurred FPs, we further analyzed the characteristics of these files. Looking 

at the download graph, 38% of FPs were connected to malicious URLs, 94% were packed, and 50% of 

FPs were downloaded by machines that had recently downloaded other malware or contacted malicious 

URLs. These are suspicious signs for the classifier.

We also analyzed the FN results (64 out of 406 files). In the graph, most of the FNs were in fact connected 

to either benign or unknown URLs and only 12% of FNs were connected to malicious URLs. Furthermore, 

89% of the FNs were downloaded by machines with clean histories.

5.7.3 Break Down of Detected Malware Families

Here we report examples of malware families that Mastino detected during our testing before any other 

trusted AVs. Among these, a signicant amount is represented by first stage malware like downloaders 

and droppers, e.g. Win32/In stallCore.MI, TrojanDropper:Win32/Rovnix, Downloader.ATW 

and MalSign.InstallC.4DB. Note that downloaders and droppers, in general, represent a signicant 

portion of malware samples because they are often associated with the rst code being downloaded 

and executed on infected machines from malware campaigns. Other families consist of adware, bots, 

banking trojans (bankers) and key-loggers, including, e.g., Rogue:Win32/FakePAV, Win32:Crypt-

QTG, PWS:Win32/Zbot, FakeAV_r.YE, Backdoor.Trojan, and Trojan.FakeAV.

5.8 Case Studies
In Section 5.7, we presented the classification results of test download events for which none of the 

nodes were present during the training time window and no ground truth was available for the nodes. We 

showed that the classifier can detect the majority of such nodes with high accuracy.

Here we report a few case studies of those file nodes.

Case Study 1: E-mail Dropper. A file with the name of file_saw.exe was observed on Feb. 12 and used 

as test sample in Fu because it was downloaded by machines and from URLs for which no ground truth 

was available. However, our classifier successfully assigned a malicious label to this file. Further analysis 

revealed that the sample was a downloader, usually distributed via spam emails and detected as Win32/

Trojan Downloader.Wauchos.A and Win32:Inject-BGK [Trj].

By analyzing the file’s features, we confirm that the features related to the path patterns of the URLs 

helped the classifier in his successful talk2. These features show an average reputation score of 0.72 (i.e., 

malicious), meaning that multiple URLs with the same path pattern have offered malicious files. In total, 

182 files were downloaded from 1,445.

2 URLs with paths /f/1392240240/1255385580/2 and /f/1392240120/4165299987/2, and the path pattern  /H1/D10/D10/D1 offered the file.



27 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

URLs with same path pattern were mostly malware. Other  contributing  features  are the  low number 

of countries that downloaded the file (one in this case), and the low prevalence of the downloaded files: 

about 85% of them had a prevalence less than 2.  Finally, the classified file did not have a valid signer at 

the time of download.

Case Study 2: Somoto. Two files in Fu with similar filenames (FreeZipSetup-[0-9a-zA-Z].exe) 

were downloaded by two unknown machines from unknown URLs.  The files were correctly labeled as 

malware by Mastino. Further investigation revealed that the files belong to an adware campaign called 

Somoto. These files were packed, had short lifetime and prevalence of zero. In addition, although the 

related machines were labeled as unknown, according to the download graph, one of them downloaded 

one malicious file during T. Interestingly, during the same time window, 695 files with very similar names, 

features, and sizes3 were downloaded from several hundred URLs. Mastino classified all of them as  

malicious. By analyzing them, we  confirmed that they are indeed part of the same malware campaign 

and therefore correctly detected as malicious on early phase by our system. However, on the day of 

experiment, only 79 were known by AVs. Six months later, 634 were reported as bad by VirusTotal (the 

remaining 61 are still undetected).

Case Study 3: TTAWinCDM Spyware. This file was classified as malware by Mastino on 

March 19 when no prior AV information was available: the first submission to VirusTotal  

occurred over two months later. Even though this file was identified on one machine with 

R = 0.5 and downloaded from a single URL with R = 0.5 as  well, it was classified correctly. By our analysis, 

the feature that contributed actively on the detection was a mismatch on the downloading process. In 

fact, while the downloading process was identified as Acrobat (i.e., acrord32.exe), the file was not 

downloaded from a URL hosted on the acrobat.com domain. Other contributing factors were a very low 

lifetime, prevalence and number of countries.

3 Varying between 16.5K to 16.9K, due to the effect of packing.
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6. Discussion and Limitations
Mastino’s MDD should run on a server to receive requests from DIAs on clients’ machines. One challenge 

here is to keep the server up and running at all times, so it becomes a single point of failure. Also the 

communication between DIAs and MDD might suffer from small network communication latency. 

However, the idea of centric servers nowadays is used by many systems commercially, which with 

current network infrastructures could run with very high availability rates. In addition, since MDD provides 

almost instantaneous decisions (see Section 5.5), and considering that network latency is negligible when 

compared to actual download time, Mastino could transparently protect users.

Attackers might try to introduce noise to evade Mastino’s behavioral classifiers. For example, an attacker 

might serve a mix of benign and malicious files from their URLs to confuse our system. However, we 

believe this will not trouble Mastino notably. First, considering the way we compute the behavior-based 

features (Section 3.2.2), our system still takes into consideration the aggregate of badness reputations of 

all files served from the attacker’s URLs and could still distinguish these cases. Second, even though the 

attacker could mix some good files in their URLs, they cannot alter the badness reputation and labels of 

machines that contact these URLs, because we assign badness reputation to machines not only based 

on their network-level history, but also according to their system-level activities. Third, this type of evasion 

might have a negative impact on behavior-based features. Intrinsic features of benign and malicious files 

and URLs, however, could still steer Mastino towards correct decisions and play an important role in 

improving our accuracy as it is shown in Section 3.2.1.

Similarly, to evade detection and introduce noise, attackers might try to somehow utilize legitimate and 

popular domains. For example, they might host their malware on cloud storage services. Since the URLs 

of these domains are also used to store legitimate softwares, some amount of noise might be introduced 

when computing behavior-based features for files and URLs. To reduce the amount of noise, we try to 

filter out these types of domains from our whitelist (see Section 4.1). However, due to the number of such 

domains and services, it is difficult to filter all of them out. Despite this, Mastino still achieves very high 

accuracy while incurring very low FP rates. Again, intrinsic features assist us signicantly in these situations 

as well.
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Another challenge is the detection of files and URLs for which no prior information is available in our 

download graph, i.e. the test samples of Fu and Uu (see Section 5.2.2). Mastino, however, performs 

remarkably well on these test datasets by taking full advantage of all the three layers of the download 

graph plus the intrinsic features. We also provided multiple case studies in Section 5.8 to further point out 

how Mastino enables detection in these dicult cases.

We need to compute badness reputation and assign labels for nodes in all three layers of the tripartite 

download graph, including machines. In reality, machines’ true labels might change during training 

window T. So our labels for machines might not be completely accurate during the whole T due to their 

fleeting nature. For example, a machine will be labeled as vulnerable, if it downloaded enough malwares 

during training window T or visited multiple malicious URLs, but it is possible that after visiting those URLs 

and downloading malware files and getting infected, an AV agent disinfected the machine. However, the 

machine’s label will stay as vulnerable in the graph for T. Despite this, we still believe that keeping the 

machine’s label as vulnerable is useful, even if it is cleaned currently, due to the fact that it had a tendency 

of downloading malwares and visiting malicious URLs and it could likely do so again. We also showed in 

Section 5.4 that machines’ reputations are helpful in improving our accuracy.
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7. Related Work
Traditional approaches in malware detection involve analyzing the binaries by statically inspecting the code 

or evaluating their behavior at runtime [4, 5, 15, 20, 23, 25]. Unfortunately, the time to detect malwares is 

quite high in these methods and they simply cannot keep up with thousands of new and unknown files 

observed daily in the wild.

A large corpus of research focus on DNS-based reputation systems [1–3, 6], which primarily focus on 

detecting IP addresses and domain names associated with malicious activities, e.g. hosting C&C servers 

or “drop zones”. Mastino is a different system that not only could detect malicious URLs, it can also 

provide real-time protection against malware files and can label download events using a novel tripartite 

graph mining model.

Graph mining, as a general technique to reason on data modeled as a graph, has been successfully applied 

in different domains of system security. Polonium [8] aims to detect malware files using graphical models. 

While their graph-based approach is similar to ours, we identify the following fundamental differences: 

Polonium employs a very expensive loopy belief propagation algorithm and adopts an offline approach, 

by running the algorithm on the entire (huge) graph, which is very time consuming and costly. As opposite, 

we do real-time detection and proactively detect malware download events so that malware files can be 

immediately quarantined (or removed) to prevent their execution on the client machine; Polonium does 

not consider the URL layer and only classifies files. Our approach extends the analysis to the URL from 

where the file was downloaded, and we concurrently classify files and URLs. In addition, as we showed 

in our evaluation, all layers, including URL layer, are helpful in improving the system overall performance; 

The Polonium’s paper does not reveal how the reputation of machines is computed. On our side, we 

present and describe, in detail, which intrinsic machine’s features, such as the downloading history and 

process, are helpful in improving the results.

Manadhata et al. in [16] also introduce a system that detects malicious domains by constructing a host-

domain graph that runs belief propagation. Relationships between files (e.g., between binaries) have also 

been modeled with graphs in [21] and [24] to detect malware. Recently, authors of [13] also proposed 

a system for detecting malware by following the chains of downloads on individual hosts initiated by 

malware droppers. Mastino is different from these systems as it provides simultaneous detection of 

malicious files, URLs, and download events, in general.
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More recently, authors in [18] build bipartite graphs from passive DNS traffic collected from large ISP 

networks, with the goal of representing who is querying what relationship. They run a graph-based 

behavioral classifier that suggests for domains used in C&C operations. Unlike this work, Mastino is not 

limited to only detecting C&C servers and can deal with all sort of malicious URLs.

Nazca [12] focuses on detecting malware downloads by identifying the network infrastructure (domain, 

IPs, URLs) that support malware installation campaigns (e.g., drive-by download campaigns). Nazca 

is designed to be deployed at the edge of ISP networks, and only inspects network traffic without 

performing any analysis of the file properties or reputation of the downloading client. On the contrary, 

Mastino combines information from URLs, files, and client machines to accurately detect new malware 

downloads in real time.

AMICO [22] and Google’s CAMP [19] distinguish between benign and malicious files by reasoning on 

the download behavior of client machines. However, we identify several fundamental dierences with 

our work. AMICO performs on-the-fly reconstruction of the download from HTTP network traffic. This is 

expensive and limits its adoption to non-encrypted traffic and standard protocols. AMICO, for example, 

cannot detect modern ransomwere like TorrentLocker [14], which hosts the cash-out infrastructure in 

the Tor network { i.e., a series of circuits of encrypted connections as routing relays. In the same way, 

CAMP only detects files as been downloaded from the browser (i.e., Chrome). This makes the system 

ineffective against malware updates (e.g., from botnets), second-stage malware (often employed in large 

malware campaigns), or any file downloaded by a generic client. In addition, as the downloaded file is 

intercepted and reconstructed at browser-level, multi-stage infections (i.e., where the drive-by’s execution 

code downloads the malware in multiple steps) might not been efficiently identified by CAMP, or exploits 

triggering vulnerabilities in the browser might disable the anti-malware solution.

Our system, in addition to overcome the limitation hereby described, aims to protect users’ machine 

independently from their networking conguration. AMICO, for example, collects download information at 

network level and is useful in protecting machines when installed in LANs — but it fails with protecting 

machines like laptops switching across different networks (e.g., wireless or 4G). Another important 

difference in approach is the lack of system-level information about the machine that downloaded the file, 

e.g. about the client process that initiated the download and the destination path where the downloaded 

file is stored. As we showed in our evaluation, these features help in improving our system. Finally, both 

AMICO and CAMP are only able to detect malware files, but Mastino leverages a tripartite download graph 

to enable concurrent detection of bad URLs, malware files, and malicious download events in general.
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8. Conclusion
This paper presented Mastino, a novel system that is cable of efficiently detecting malware download 

events in real time by passively monitoring the download events of users. We developed a proof-of-

concept prototype of the system and evaluated it using real-world data. Our evaluation results show that 

the system can detect malware files and malicious URLs with high accuracy while only incurring less than 

0.5% FPs. We discussed the efficiency of the system and the fact that it only takes a fraction of a second 

to provide accurate classification of files or URLs submitted to the system. We analyzed our classification 

results in details and provided interesting case studies of Mastino’s real-world operation.
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