
Real-Time Detection of Malware
Downloads via Large-Scale
URL¬File¬Machine Graph Mining
Prof. Babak Rahbarinia, Auburn University at Montgomery
Dr. Marco Balduzzi, Trend Micro
Prof. Roberto Perdisci, University of Georgia

TREND MICRO LEGAL DISCLAIMER
The information provided herein is for general information

and educational purposes only. It is not intended and

should not be construed to constitute legal advice. The

information contained herein may not be applicable to all

situations and may not reflect the most current situation.

Nothing contained herein should be relied on or acted

upon without the benefit of legal advice based on the

particular facts and circumstances presented and nothing

herein should be construed otherwise. Trend Micro

reserves the right to modify the contents of this document

at any time without prior notice.

Translations of any material into other languages are

intended solely as a convenience. Translation accuracy

is not guaranteed nor implied. If any questions arise

related to the accuracy of a translation, please refer to

the original language official version of the document. Any

discrepancies or differences created in the translation are

not binding and have no legal effect for compliance or

enforcement purposes.

Although Trend Micro uses reasonable efforts to include

accurate and up-to-date information herein, Trend Micro

makes no warranties or representations of any kind as

to its accuracy, currency, or completeness. You agree

that access to and use of and reliance on this document

and the content thereof is at your own risk. Trend Micro

disclaims all warranties of any kind, express or implied.

Neither Trend Micro nor any party involved in creating,

producing, or delivering this document shall be liable

for any consequence, loss, or damage, including direct,

indirect, special, consequential, loss of business profits,

or special damages, whatsoever arising out of access to,

use of, or inability to use, or in connection with the use of

this document, or any errors or omissions in the content

thereof. Use of this information constitutes acceptance for

use in an “as is” condition.

Contents

Introduction

4

Overview

6

System Details

9

Prof. Babak Rahbarinia
Auburn University
Montgomery, AL 36117, USA
brahbari@aum.edu

Dr. Marco Balduzzi
Forward-looking Threat Research (FTR)
Team Trend Micro Inc.
marco_balduzzi@trendmicro.com

Prof. Roberto Perdisci
University of Georgia
Athens, GA 30602, USA
perdisci@cs.uga.edu

Experimental Setup

13

Evaluation

18

Discussion and Limitations

28

Related Work

30

Conclusion

32

Abstract

In this paper we propose Mastino, a novel defense system to detect malware

download events. A download event is a 3-tuple that identies the action of

downloading a file from a URL that was triggered by a client (machine).

Mastino utilizes global situation awareness and continuously monitors

various network- and system-level events of the clients’ machines across

the internet and provides real time classification of both files and URLs to

the clients upon submission of a new, unknown file or URL to the system. To

enable detection of the download events, Mastino builds a large download

graph that captures the subtle relationships among the entities of download

events, i.e. files, URLs, and machines. We implemented a prototype version

of Mastino and evaluated it in a large-scale real-world deployment. Our

experimental evaluation shows that Mastino can accurately classify malware

download events with an average of 95.5% true positive (TP), while incurring

less than 0.5% false positives (FP). In addition, we show the Mastino can

classify a new download event as either benign or malware in just a fraction

of a second, and is therefore suitable as a real time defense system.

4 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

1. Introduction
Remote malware downloads, e.g., via drive-by exploits, social engineering attacks, second-stage

malware drops, etc., currently represent one of the most effective infection vectors. Unfortunately, existing

defenses that aim to prevent malware downloads, such as anti-virus engines (AVs) and URL blacklists,

are only partially effective because they tend to lag behind the latest threats, thus leaving users exposed

to new malware infections [17]. For instance, AVs are notoriously ineffective against malware code

obfuscation [11], whereas URL blacklists can often be circumvented by distributing malware downloads

from frequently changing domains [9].

In this paper we present Mastino, a novel system for accurate real-time detection of malware download

events. Our system aims to detect malware downloads by determining who is downloading what and

from where, rather than trying to classify the content of the single downloaded files or the specific

download URLs in isolation. To this end, we target a real-world deployment scenario in which a large

number of machines (in the order of hundreds of thousands) run a download identication agent (DIA)

capable of identifying new executable file download events. Each DIA sends information about new

download events to our detection system and temporarily quarantines the file, thus preventing the

operating system from opening or executing a file until a decision is received regarding its nature, as

shown in Figure 1. If Mastino classifies the file as benign, the DIA will allow the downloaded file to run;

otherwise, the file can be permanently blocked or removed.

Based on the download events reported by hundreds of thousands of machines, our system maintains a

large tripartite graph of historic download events (Figure 2), in which nodes represent either a machine,

a downloaded file, or the download URL, and edges between nodes express who (i.e., what machine)

downloaded what file and from what URL. This tripartite graph is further augmented by annotating nodes

with intrinsic features that pertain to each separate node (e.g., file nodes contain information about

whether the downloaded file is packed, carries a valid signature, etc.). We then cast the problem of

accurately detecting new malicious file downloads as an inference problem over this annotated tripartite

graph. In essence, Mastino leverages large-scale situation awareness about web-based software

download events to more accurately detect future malware downloads.

To achieve high detection accuracy, Mastino combines knowledge derived from historic relationships

between machines, files, and URLs, with both system- and network-level properties of each download

5 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

event. This is in contrast with previous works, which attempt to detect malware downloads based

primarily on features derived from network traffic [12, 19, 22] or that only consider the “relationships”

between machines and files [8]. In addition, unlike [19], our system is not limited to detecting browser-

initiated malware downloads (e.g., via drive-by and social engineering attacks), and instead aims to

detect any malware download, including malware updates, second-stage malware drops, pay-per-install

malware downloads, etc. (dierences with previous work are discussed in detail in Section 7).

For instance, given a machine m that downloads an executable file f from a URL u, Mastino takes into

account features such as the name and hash of the process running on m that initiated the download, the

name of the downloaded file as it was rst saved on disk, whether or not m had been previously infected,

etc. These system-level features are further combined with file-based information, such as whether f is

believed to be packed/obfuscated (as determined by the download identication agent), whether the file

carries a valid digital signature, its lifetime (i.e., when was the file first observed by any of the agents),

etc., along with network-level features about the source URL (e.g., the “age” of the download domain,

its effective second-level domain, etc.). In Section 4, we show that combining both system-level and

network-level features signicantly improves detection accuracy.

In summary, we make the following contributions:

•	 We present Mastino, a novel system for accurate real-time detection of web-based malware download

events. Mastino leverages large-scale situation awareness about web-based software download

events, and casts the problem of detecting new malware downloads as an inference problem over

large URL→file→machine relationship graphs.

•	 Unlike previous work, Mastino combines both system-and network-level information related to

executable fille downloads, allowing us to more accurately detect future malware downloads. In

addition, the classification of new download events can be performed in a fraction of a second, thus

enabling real-time malware detection.

•	 We evaluate Mastino over data collected from a real-world deployment across hundreds of thousands

of end-user machines globally distributed across the internet. We show that our system is able to

classify new malware download events with a true positive (TP) rate of 95.5% at less than 0.5% false

positives (FP).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China

© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897918

http://dx.doi.org/10.1145/2897845.2897918

6 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

2. Overview
Problem Definition. Let m be a user’s machine that downloads an executable file f from a remote

download URL u at time t. Our main goal is to concurrently classify f and u to determine in real time

whether they are likely malicious. In other words, we aim to proactively detect malware download events,

so that malware files can be immediately quarantined (or removed) to prevent their execution on the

download client system.

Approach. Our approach leverages large-scale situation awareness to accurately detect new malware

download events in real time. We continuously monitor system and network events on a large number

(hundreds of thousands, in our current deployment) of client machines scattered across the internet, as

shown in Figure 1. Each client runs a download identication agent (DIA), whose main responsibility is to

recognize when an executable file download has occurred and report detailed information about this event

to a centralized malware download detection (MDD) system. MDD collects information about executable

file download events from all participating clients, automatically updates its malware download detection

models, and responds to download classification requests from the clients.

Executable
file download
servers

Clients
that run
Download
Identification
Agent (DIA)

F

U

M

Malware Download Detector (MDD)

• Global situation awareness
• Build/update annotated graphs
• Learn malware detection models
• Classify file downloads

Classification
Request

Download events
information

Figure 1. Mastino – approach overview.

7 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

Malware Download Detection System (MDD). In this paper, we focus on designing and implementing

the centralized malware download detection system (depicted in Figure 3) so that it can accurately classify

malware download events, and respond to download classification requests from clients with minimal

response latency.

Every time a client downloads an executable file, the DIA agent on the client reports information about

the event to the malware download detection system, including the full URL from which the file was

downloaded and detailed information about the downloaded file, such as whether the file is likely packed/

obfuscated, carries a valid signature and size. DIA also collects system-level information about the

machine that downloaded the file, including information such as the name and hash of the client process

that initiated the download, the destination name with which the downloaded file is stored on disk, etc.

MDD uses the download events information reported by the DIA agents to build an annotated download

graph (see simplified example in Figure 2). Essentially, this download graph is a directed tripartite graph,

G(U, F, M, EU, F, EF, M, Eu, M), where nodes in set U represent URLs, nodes in F are files uniquely identied

by their SHA1 hash, and set M includes all participating machines, which are identied by an anonymized

global unique identier (GUID) generated by the DIA agent. A URL u is connected to a file f with a directed

edge (u ¬ f) if f was downloaded from u. Similarly, a file f is connected to a machine m with a directed

edge (f ¬ m), if f was downloaded by m. Finally, a URL u is connected to a machine m with an edge (u

¬ m) if m downloaded an executable file from u (notice that Figure 2 does not show (u ¬ m) edges for

simplicity). Each node is annotated with intrinsic node information. For example, each file node f € F

includes information about whether f is likely packed/obfuscated, if it carries a valid digital signature, its

file size, file name etc. Similarly, a URL node u € U includes information such as IP, the fully qualied domain

name (FQD) and effective second level domain (e2LD) of the domain portion of u, path and query string

components of u, and the “age” of URL, FQD, and e2LD. Machine nodes carry information related to their

malware infection history, such as the processes that initiated the file downloads on the machines, and

etc.

MDD maintains historic snapshots of the download graph, in which known benign and malicious files and

URLs are labeled accordingly (e.g., by leveraging existing blacklists, whitelists, and multiple AV engines).

This historic information is used to build a statistical classifier, which is responsible to satisfy classification

requests from the DIAs. For instance, let d' = (u'; f'; m') be a new download event tuple (i.e., a new URL,

file, and machine GUID) reported by one of the participating DIAs to the MDD. The MDD system first

updates the most recent available graph snapshot by adding the new download event nodes and related

edges. MDD uses this updated graph to concurrently classify u' and f' (the URL and file nodes) as either

malicious or benign. If either the URL u' or the file f' is classified as malicious, the related entire download

event is classified as malware and the classification result is forwarded to the requesting DIA, as shown

in Figure 3 (see Section 3 for details).

8 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

Figure 2. Example representation of an annotated download graph. Note that edges between URLs and machines

are not shown, for simplicity.

Non-Goals and Assumptions. The design of the download identication agent (DIA) is outside the scope

of this paper. We assume that the DIA is capable of accurately detecting executable file download events,

and can collect the related network- and system-level information (including file download path on disk,

downloading process information, downloading URL, etc.). In addition, we assume that (i) the DIA is

capable of quarantining the downloaded files, preventing their execution until a classification response is

received from our MDD system; (ii) DIA and MDD can authenticate each other; and that (iii) the integrity

and confidentiality of the communication between each deployed DIA and the MDD are protected (e.g.,

via TLS). We believe these assumptions are reasonable, because most technical challenges related to

DIAs have already been successfully addressed by a large body of work in both the anti-malware industry

and academia.

Privacy Considerations. To perform this study we collected data from hundreds of thousands of real-

world clients that run a DIA developed by a leading anti-malware vendor. It is important to notice that the

data is collected only from clients who voluntarily agree to share information about file download events.

In addition, the data is provided to us in a fully anonymized form, whereby machine identifiers and other

potentially sensitive information (e.g., the download path on file-system) are scrambled { via appropriate

cryptographic primitives. Data privacy is further protected via mutual non-disclosure agreements.

- - -

To be classified Benign Malicious

HTTP HTTP HTTP HTTP HTTP

• query string
• effective 2LD
• IP info
• ...

Complete URL string

• File size
• Is the code likelyobfuscated?
• Does it carry a valid signature?
• ...

File's SHA1

• Past download behavior
• Process that downloaded file
• Geo-location
• ...

Global unique ID (GUID)

M

F

U

9 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

3. System Details
In this section, we describe in details how Mastino’s Malware Download Detection (MDD) module works.

3.1 Graph Node Labeling and Reputations
Each node in the tripartite download graph is assigned a reputation score. These reputation scores are

utilized to perform inference-based detection of unknown files and URLs based on the associations

among the download event entities in the graph. Specifically, we defined a badness reputation score, R

€ [0, 1] where 1 means maximum badness, 0 means maximum goodness, and 0.5 means unknown node

(details in Section 5.2.1). If a node’s R is above a badness threshold, the node will be labeled as known

bad, while if the reputation is below a certain threshold, the node will be labeled as known good. In all

other cases the node will be labeled as unknown. To calculate and assign the reputation score R to nodes

in the tripartite graph, we leverage a combination of public and private information for files and URLs, such

as files’ AV labels, URL blacklists and list of top Alexa domains. A machine node’s R is calculated based

on its download history, system-level information, and R of its neighbors in the graph, since no black or

whitelist of machines is available. In Section 4.1, we explain in details how file, URL, and machine nodes in

each layer of the graph receive their R scores and labels. Note that due to our large-scale deployment and

incompleteness of the black- and whitelists, it is highly challenging to label all nodes, so the majority of

the nodes will remain unknown, and it will be Mastino’s responsibility to accurately classify these nodes.

Download
server

Client

FILE

DIA

Classification
requests
queue

Update
download

graph

Classify new
download

URL and file

MDDDownload
classification

request

Classification results

Figure 3. High-level overview of classification process.

10 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

3.2 Behavioral Graph-based Classifier
We use statistical classifiers that harness behavioral patterns among the nodes in the graph as well as the

partially available ground truth from known nodes to detect malware file downloads and malicious URLs.

Specically, Mastino’s classification system consists of two classifiers, one dedicated to distinguishing

between malicious and benign URLs, and another dedicated to detecting malicious downloaded files.

The output of these two classifiers is then reconciled as follows: if either the URL or the downloaded file is

classified as malicious, then the entire download event is considered a malware download. The classifiers

in each layer receive as input a statistical feature vector for a to-be-classified node, n, and output a

badness score. The badness score is checked against an automatically learned detection threshold to

label n. Each layer’s classifier uses a set of statistical features to enable the detection. The classifier

features in each layer could be divided into two groups. A set of behavior-based features and a set

of intrinsic features. Behavioral-based features are the ones that describe the goodness or badness of

related nodes connected to a to-be-classified node. These features can only be computed by using

the graph nodes and edges. The intrinsic features, in contrast, are the features that could be computed

without the graph (e.g., a file’s size).

3.2.1 Intrinsic Features

For files, their node-specific information (see Section 2 and annotated nodes in Figure 3) in the tripartite

download graph is used as intrinsic features. For example, the lifetime and prevalence of files are two

of the intrinsic features. Intuitively, files that have been downloaded by many users and were constantly

observed by DIA for long periods of times are most likely benign software. In contrast, malware usually

have shorter lifetimes and are downloaded by fewer users, especially, if one considers the impact of

packing/obfuscating malware binaries. Additionally, file features are packed and they are useful if they

have a valid signature. The intuition here is that malware are often packed to remain undetected by AVs.

For URLs, we consider the age or recency of the URL itself and its FQD and e2LD as intrinsic features.

Generally, newly registered domains or not-so-popular URLs and domains are more likely associated

with malicious content. Table 1 reports the full list of intrinsic features for files and URLs and the intuition

behind them.

Note that we don’t have a classifier for the machines layer; however, we use machines as a support layer

in our graph to compute the behavior-based features for the other two layers. In the following section, we

describe the behavior-based features and explain the role of machines in measuring the features.

11 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

3.2.2 Behavior-based Features

The behavior-based features for nodes in a layer of the download graph, e.g. URLs, are computed based

on the badness reputation, R, of nodes in the other two layers, e.g. files and machines. This means that

all the neighbors of an unknown node n have some say in determining the reputation of n. Intuitively, if

an unknown file f, for example, is downloaded from domains where the majority of them hosted malware

in the past, and/or from URLs with a specific path component that is associated with malicious file

downloads,

and/or by vulnerable machines with high R, then it is more likely that f is itself malicious.

URLs Behavior-based Features. To compute these features for a URL, u, we first find the set of all files

and machines in the graph that are connected to u. Let Fu = {f1, f2, . . . , fh} and Mu {m1, m2, . . . , mk}

be sets of files and machines nodes connected to u, respectively. Then we compute min, max, average,

median, and standard deviation of the following:

•	 reputation, R, of all f2 € Fu,

•	 reputation, R, of all mi € Mu, and

•	 number of AVs that labeled each fi € Fu.

These numbers are used as features of u. In essence, these statistics highlight the true nature of the

neighbors of u. Intuitively, if u’s neighbors have high badness reputation, it is more likely that u itself has

a high badness reputation as well. Conversely, if on average, neighbors of u are benign nodes (i.e. clean

machines and benign files), then it is likely that u itself is a benign domain.

However, direct neighbors of a single URL in the tripartite graph might not give us enough information. To

gather more evidence about u (the URL we want to compute its features), we consider its components,

such as FQD, e2LD, path, etc. Then we find a set of URLs, Cu, that have at least a component in common

with u. Finally, we gather larger sets of files, F'u, and machines, M'u, that are connected to URLs in Cu

and use them to expand features of u in a similar fashion as nodes in Fu and Mu. Figure 4(a) shows how

the mentioned behavior-based features are computed for a sample URL u. Four files, Fu U F'u, and three

machines, Mu U M'u, are connected to u and Cu collectively. For simplicity, u and Cu are shown as one

node. Each file and machine sends some information, shown on edges, to u for feature computations.

Precisely, we consider FQD, e2LD, path, path pattern, query string, query string pattern, IP, and IP/24

as components of a URL. The path pattern is an advanced regular expression for u’s path. To generate

it, we identify sequences of letters, digits, and hexadecimal numbers in a path, and generalize them

while keeping non-alphanumeric characters. For example, if a URL’s path is /sample/123/DA10/foo.exe,

then the generated path pattern would be /S6/D3/H4/S3.S3, which represents a path with sequences

of 6 letters, 3 digits, 4 hexadecimal digits, 3 letters, a ‘.’, and 3 letters. The query string is defined and

12 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

generated in a similar fashion from the query string. The IP and IP/24 are the sets of IPs and IP/24

networks that u resolved to during the observation time window.

Note that the features explained above help us make better classification decisions. For example,

consider u is an unknown URL that all of its neighbors are unknown nodes, so they cannot contribute

meaningfully to classifying u. Nonetheless, if u shares the same URL path with a group of malicious URLs

(because they were generated by the same kit, for example), and if there are some known malware files or

infected machines connected to this group of URLs, they will have an impact on accurately labeling u as

malicious, since their R will be used to compute some features of u. Consider another example when the

path component of some malicious URLs is generated by an algorithm that randomizes the characters,

so they might look different. However, it is likely that they share the same path pattern. Now this group of

malicious URLs will help classifying u, the unknown URL, if u has the same path pattern.

u U Cu

FILE FILE FILE FILE

Each file sends R and
number of AV labels

Each machines sends R

u behavior-based
features = {files stats, machine stats}

compute min, max,
med, avg, and std

compute min, max,
med, avg, and std

(a) URL behavior-based features

f

HTTP HTTP HTTP HTTP

Each URL sends R of itself, plus R of its
FQD, e2LD, path, path pattern, IP, etc.

Each machines sends R

f behavior-based
features = {URL stats, machine stats}

compute min, max,
med, avg, and std

compute min, max,
med, avg, and std

(b) File behavior-based features

Figure 4. Computation of behavior-based features: (a) for URL, u, based on R and other information of neighbor
files and machines that are connected to either u or Cu; (b) for file, f, based on R of connected URLs and their

components and machines

Files Behavior-based Features. These are computed in a similar way as in URLs. For example, for a

file, f, we gather all the connected nodes from the URLs and machines layers to compute the features of

f. Figure 4(b) shows how these features are computed. Note that the connected URLs to f also send the

R of their components, such as FQD, path pattern, IP, etc., to f for feature computation. We define the R

of a URL’s component to be the average of R of all URLs that share the same component. This helps in

correctly classifying unknown f nodes that their direct URL neighbors are also unknown, but share some

components with known URLs.

13 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

4. Experimental Setup

4.1 Calculating Badness Reputation and Labeling
Nodes
The following details how we label nodes of each layer of the tripartite download graph by assigning them

badness reputation R. As discussed in section 3.1, R is a real number in range [0; 1] that represents how

much evidence exists towards badness or goodness of nodes in the graph. Generally, values closer to

R = 1 mean high probability of badness, values closer to R = 0 indicate high goodness possibility, and

R = 0.5 means unknown, i.e. no evidence.

File Intrinsic Features

Feature Explanation

Size

The size of the files. Intuitively, large file sizes are less likely to be malware and mostly

benign software. However, file size by itself cannot distinguish between benign and

malware files, since many benign files have small sizes, too.

Extension

This feature tries to capture malware binary downloads that have an unusual

extension, such as jpg, to deceive users. Note this feature will only be useful, if a file

has extensions other than exe.

Lifetime

The time difference between the last time and first time of seen date for a file by

DIA. The intuition here is that usually files with very short lifetime are malware. Also

considering the impact of packing and obfuscating, malware can have very short

lifetimes.

Prevalence

The number of downloads of a file by unique machines. Benign and popular software

are downloaded by many machines around the world, but malware, in contrast,

usually are downloaded by a very small number of machines. In some extreme cases,

malware distributors install a unique malware (with new and unseen-before SHA1

hash) to each machine.

Packed

This feature identifies whether files are packed by a packer or not. As mentioned

in the description of other features, packing and obfuscation is a technique that is

mostly used by malwares to avoid detection.

Signed This feature identifies whether files are signed or not.

14 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

File Intrinsic Features

Feature Explanation

Number of countries
The number of unique countries that downloaded the file. Same as the lifetime or

prevalence features, this feature also tries to capture unpopular files.

Java or Acrobat Reader

If the downloading process of a file is Java (java.exe) or Acrobat Reader (acrord32.

exe) and the download URL is not oracle.com or acrobat.com, then this feature will

be set to true. The reason is that the downloads that are triggered by the Java or

Acrobat Reader processes are possibly suspicious.

URL Intrinsic Features

Feature Explanation

URL, FQD, and e2LD

age

These features determine how long ago the URL, FQD, and e2LD were first seen in

our data in a time window. In general, new or not very popular URLs and domains are

more likely to be malicious than benign.

Table 1. Files and URL layers intrinsic features

Files: Ground truth could be collected for some of the files in the tripartite graph using various sources,

such as VirusTotal. If available, we use the assigned labels of reputable and well-known antivirus

companies to compute reputation scores for files. We also use a proprietary list of known benign files to

further enhance the file reputation computation.

Empirically, we identified ten antivirus vendors that provide the most reliable results and are more well-

known and popular according to their market share, and we refer to this list as trusted AVs1. Our confidence

of a file being bad depends on the number of AVs from the trusted AVs list that label the file as malicious,

and, therefore, it determines the R for the file. The more trusted AVs have a malicious label for a file the

higher the badness score will become. An R above a certain threshold translates to a bad label. On the

other hand, if no AV, either trusted or not, have a malicious label for a file, a low R and consequently a

good label will be given to the file. In addition, we utilize a proprietary list of known benign files to rene R.

URLs: We leverage black- and whitelists of URLs and domains to gather ground truth regarding URLs.

While some of the sources that we use are private, the majority are publicly available, such as list of popular

domains according to Alexa and a blacklist of malicious domains according to Google Safe Browsing

(GSB) [10]. We use a proprietary list of benign URLs as our whitelist that is combined, conservatively, with

Alexa list of top 1 million domains to minimize noise as follows. We keep track of domains that consistently

appeared in Alexa list for about a year. From this list we also filtered out known domains related to cloud

storage and those that allow their subdomains to be freely registered, such as web hosting or free blog

services and dynamic DNS providers, as these type of domains might be abused by attackers. The final

1 Our list of trusted AVs: Trend Micro, Microsoft, Symantec, McAfee, Kaspersky, AVG, Avast, ESET Nod32, BitDefender, and Sophos

15 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

list contains ~450K domains which are very unlikely to be malicious. Then from whitelist of URLs, we

remove those URLs that their e2LD does not appear in our Alexa list. This conservatively filtered whitelist

of URLs contains minimal noise (see Section 6 for possible limitations). Now if a URL is found to be in our

filtered whitelist, a low R, i.e. a score close to 0, will be assigned and the URL will be labeled as good.

Similarly, a conservative approach is followed to label malicious URLs. A URL will be assigned an R close

to 1 (maximum badness), if GSB and our private blacklist have that URL as a malicious URL. Note that to

account for possible noise in the black- and whitelists, we don’t set the Rs to absolute 0 or 1. In all other

cases, R will be a number close to 0.5, and an unknown label will be assigned.

Machines: The reputation computation for machines is somewhat different in terms of meaning from files

and URLs, as benign and malicious labels for this group of nodes don’t necessarily denote a good or a

bad machine per se. Instead, a malicious label for a machine represents a machine that tends to be more

vulnerable to infections, according to historic evidence (e.g., past known infections on that host) and a

benign label represents a machine that seemed not associated with malicious content when looking at its

activities in the past.

In a novel approach, we combine the behavioral history of the machines with some system level

information collected by DIA to compute R of machines as follows. For each machine, in a time window,

we consider the history of its activities, including downloaded files and visited URLs, as well as the list

of client processes that initiated the downloads. Since all these entities in machine’s activity history are

assigned Rs, we can average their combined badness reputations and use it as machine’s R score. The

intuition is that if a machine, during a time period, does not download bad files, contact bad URLs, or

run bad processes, it is likely that the machine is a clean one. In contrast, a machine will be assigned a

high R if in the past downloaded enough bad files, contacted some bad URLs, or had malware processes

running. In this case, it is likely that this machine is vulnerable and will access malicious content again in

the future.

4.2 System Operation
In this section we describe how the behavioral classifiers are trained and how the system operates. The

system provides real-time classification results for files and URLs observed on daily basis. Furthermore,

by combining the classification results of files and URLs, Mastino enables the classification of the entire

download events, d = (u, f, m), 3-tuples of URLs, files, and machines. To do so, the system automatically

classifies new items (files and URLs) on the current day harnessing historical knowledge gathered from the

previous days in a time window T. The historical knowledge is, in fact, the augmented tripartite download

graph that associates the items of download events together where all nodes are assigned an R value.

We keep a sliding window over all the download events and set T = 10 days. That is, the beginning of T

is set to 10 days before the start of current day, dc. So we are interested in classifying all unknown nodes

observed on dc using the download graph that is generated by considering all download events during T

16 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

(see Figure 5). Note the decision on the length of T is set based on our evaluations which are reported in

Section 5.6.

For any unknown file and URL node in dc, we compute its feature vector by following the procedure

described in Section 4.1, and feed the feature vector of the unknown node to the related behavioral

classifier, i.e. an unknown file will be fed to the files classifier and an unknown URL will be fed to the

URLs classifier. The classifier in return produces a score which will be compared against a previously

learned detection threshold. If the produced score is above the detection threshold the unknown node

will be labeled as malicious. Eventually, by combining the classification results for files and URLs, Mastino

detects malicious download events d = (u, f, m) where u or f were labeled as bad by the classifiers.

Figure 5 shows how does the system operate by keeping a sliding window over all the download events

during T and using them to generate a download graph and train behavioral classifiers. The window T

slides forward to train new classifiers for subsequent dc days and classify new and unknown files and

URLs.

U

F M

Classification
System

FILE

File Classifier

URL Classifier

HTTP

FILE HTTP

Real-time
classification

of
files & URLs

Detection of
Malicious
Download

Events

U

MF

U

MF

U

MF

Start of
time window T

Day 1 Day 2 End of time
window T

(e.g. Day 10)

Current day (dc)

Train Classifiers

Figure 5. System Operation

17 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

4.3 Training the Classifiers
In order to properly train the file and URL behavioral classifiers to be used for detection on current day,

dc, we use the knowledge from previous days during T in the graph to prepare training datasets of known

files and URLs. The training dataset for file classifier, for instance, contains labeled feature vectors for

all known good and bad file nodes in the download graph during training time window T (see Figure 5).

Section 3.2.2 explains how feature vectors for files and URLs are computed.

Computing Behavior-based Features During Training. Note that for known file and URL nodes that are

used for training, part of their behavior-based features are based on R of machines connected to them.

However, the R of machines was computed according to their history, i.e. the files and URLs connected

to them in the first place (Sect. 3.1). So if we simply use the assigned R of machines to compute the

behavior-based features for files and URLs during training, we unfairly give the classifier an advantage.

In machine learning, this phenomenon is known as information leakage. To resolve this issue, before

we compute behavior-based features for a known node n, to be included in the training dataset, we

temporarily ignore any impact n had on determining R of machines, as if n was unknown.

18 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

5. Evaluation
We performed numerous experiments to fully evaluate the system. In this section, first, we report some

statistical information about the data. Second, we explain our train and test experiment. Next, we discuss

the labeling of download events and evaluating the whole system. Then we present the results of feature

analysis and efficiency measurements.

Finally, we present a detailed section on analyzing our results and some interesting case studies.

5.1 Data Collection
This work is based on the data collected from December 2013 to August 2014 by the DIA agents from

customers of Trend Micro. The collected data contains download events d = (u, f, m) and their associated

network- and system-level information, as explained in Section 4.2. During a time window T and using

the download events, Mastino generates a tripartite download graph. Table 2 reports statistics about the

nodes in various tripartite download graphs over multiple T = 10 days for each month of data. Table 3

reports the number of events that were observed during T as well as the number of edges of the generated

download graphs. The “Date” column reports the month that the days of the time window belong to.

Date Files URLs Machines

Total Benign Malware Total Benign Malware Total Clean Vulnerable

Jan 144,435 1,976 1,021 124,306 15,121 39,183 121,177 431 19,533

Feb 127,369 2,040 1,668 112,310 12,056 37,266 110,231 956 17,236

Mar 120,584 1,801 1,432 106,041 11,291 34,596 100,098 1,347 13,882

Apr 102,922 1,732 3,744 99,883 12,092 32,594 92,696 780 16,998

May 96,289 1,643 2,904 92,665 12,707 27,174 84,347 877 15,299

Jun 79,310 1,708 1,875 77,401 15,338 23,424 69,881 590 16,544

Jul 74,543 1,622 1,479 73,434 11,591 22,775 65,646 868 13,005

Table 2. Node statistics for download graphs generated during sample T = 10 days for each month of the
data

19 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

Date Download events Unique Download events Edges

Jan 385,939 190,021 2,916,292

Feb 291,940 168,376 2,590,943

Mar 256,076 154,980 2,402,586

Apr 257,426 142,807 2,167,115

May 253,107 130,570 2,008,174

Jun 182,960 108,014 1,658,350

Jul 189,936 102,649 1,555,636

Table 3. Download events and graph size statistics generated during sample T = 10 days for each month of the data

5.2 Train and Test Experiments
In this section we show the evaluation result of system operation as it was discussed in Section 4.2. To

this end we have defined a time window, T, which keeps track of all download events that happened

during T. We are interested in using trained classifiers based on labeled nodes in the download graph

during T to enable detection of new and unknown nodes on the current day, dc. So dc is our test day. We

first discuss the preparation of training and test datasets for a single day of experiment and then present

the results over multiple days of performing the tests.

5.2.1 Training and Test Datasets

First we generate a training dataset using all the known nodes in the graph during training time window

T by following the procedure detailed in Section 4.2. To prepare the test datasets and to replicate the

real-world operation of the system we proceed as follows. To evaluate the classifiers, we consider the

nodes on dc, the test day, that were not present during time window T. This ensures that no information

regarding the test samples were ever used during training and properly simulates the operative mode of

the system where we are only interested in labeling new and unknown nodes on dc. We prepare three

different groups of test datasets for files and URLs using nodes on dc as follows:

New Nodes - Fn and Un: Fn contains all files belonging to download events d = (u, f, m) from test day, dc,

for which the file f was never seen during training time window, T, but the URL u or machine m appeared

during T. Similarly, Un is composed of all new URLs from download events on dc, but the file f or machine

m were seen during T.

New Download Events - Fe and Ue: Fe contains all files belonging to download events d = (u, f, m) observed

on dc for which none of the nodes were ever appeared during the training period T, however, some ground

truth exists for the URL u or machine m. For example, Fe might contain a file that is connected to a new

20 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

URL u and a new machine m where m downloaded some other malicious files from some bad URLs on

that same test day dc, and, therefore, it was labeled as bad on dc. In a similar fashion, we generate test

dataset Ue for URLs.

New Unknown Download Events - Fu and Uu: Fu contains all files belonging to download events d =

(u, f, m) appeared on dc for which none of the nodes ever observed during the training period T and no

ground truth is available for the URL u and machine m whatsoever. URLs test dataset Uu is constructed

similarly.

5.2.2 Multi-day Train and Test Evaluation

We perform train and test experiments to evaluate the generalization capabilities of our behavioral

classifiers. First, we generate all three groups of test datasets described in Section 5.2.1 for various test

days. Then we evaluate the performance of our trained classifiers on the test datasets. For example, for a

single test day dc, we feed all file test samples in Fn, Fe, and Fu to the file classifier and record the prediction

scores for each file in each test dataset separately. These scores are used to evaluate the performance of

the classifiers on each specific test dataset on a single test day dc. However, we like to demonstrate that

the classifier results are consistent for the entire dataset. So we combine the classification scores over

multiple days and report the aggregate results as follows.

21 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

Figure 6. Multi-day train and test for files (Fn, Fe, Fu) and URLs (Un, Ue, Uu) on seven different testing periods (FP€
[0%, 1%])

We choose t testing periods, TPRi, i = 1, 2, . . . , t, each including k consecutive test days, di, j , j = 1,

2, . . . , k. For a specific testing period, TPRx, we perform train and test experiment for each dx, j , j = 1,

2, . . . , k. That is, first we train a set of classifiers by building a download graph over the time window,

T, that ends just before dx, j (e.g., a time window that spans 10 days before dx, j). The classifiers are

used to produce prediction scores for the test nodes on dx, j . The time window T is then slid forward to

compute prediction scores for all k days belonging to testing period TPRx. Then we store these prediction

scores Px, j, j = 1, 2, . . . , k. Finally, we aggregate all the prediction scores for the testing period TPRx and

report the results. To choose the most suitable classification algorithm for Mastino, we experimented with

different statistical classifiers and picked Random Forest [7] as it consistently provided the best results.

Figure 6 shows the results of these experiments for files and URLs using the three groups of test datasets

for seven (t = 7) testing periods selected at random from various months of our data. Each testing period

contains 5 consecutive test days (k = 5), resulting in train and test evaluation for 35 days, in total. We

22 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

compute the ROC curves by varying the detection threshold on the classifier’s output scores. Also note

that the ROCs show the true positive (TP) rates for false positives (FP) less than 1%.

As it can be observed from the ROCs, the file and URL classifiers perform very well even for very low FPs.

For example, the file classifier when tested on Fe on average achieved 90% TP while incurring only 0.5%

FP, and even for FP of 0.1%, average TP is 82.5%. For URLs in Ue the average TP is 86.5% and 96%

for FPs 0.1% and 0.5%, respectively. Especially, the results of tests on Fu and Uu are remarkably good.

Remember that test samples of Fu and Uu are files and URLs from download events where all nodes are

unknown and never seen before. Nonetheless, the classifier can easily detect them. For files and in four

months, for example, Mastino achieved 100% TP with no FPs (see Figure 6(c)). This is due to the power

of our tripartite graph layers as well as system-level features that could help in these situations where

not enough historic information is available. To help the reader better understand how the classifier can

classify such cases, we provide a few case studies in Section 5.8. Furthermore, as Figure 6 shows, the

detection results are fairly consistent throughout our dataset.

5.3 Overall Classification of Download Events
In Section 3.2 we evaluated the files and URLs classifiers separately. In this section, we discuss how

we evaluate the classification system as a single unit to label download events daily. As a reminder, a

download event is a 3-tuple of files, URLs, and machines. Mastino labels a download event as malicious,

if the event’s URL, file, or both are labeled as bad by the classifiers. So for evaluation, we consider the test

samples of one day of train and test experiment. Then we classify the files and URLs with FP set to 0.5%.

Then we consider all the related download events to test nodes and label them according to the following

two rules: i) if file is a TP or URL is a TP, the event will be labeled as TP, and ii) otherwise if file is a FP or

URL is a FP, then event will be labeled as FP. We experimented with various test days spread randomly

across our dataset. Table 4 reports five of those test days (results of other test days are very similar).

Month of
Test Day

Events

Test Events TP% FP%

Feb 4,205 96.2 0.4

Mar 4,581 95.4 0.5

Apr 4,163 97.3 0.5

May 4,004 96.1 0.4

Jun 3,856 94.0 0.5

Table 4. Results of labeling download events on five sample test days

23 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

5.4 Feature Analysis
In order to assess the usefulness of various feature groups in our system, we performed extensive feature

analysis. In particular, in this section we will show that the presence of all three layers are necessary for

detection of files and URLs. To perform feature analysis, we proceed as follows. We remove all groups

of features that are related to a specific layer of the graph from the classifiers, perform the train and test

experiment, and compare the results with the case of having all features present. For example, for files

classifier, first we can remove the features related to the URLs layers, which essentially means having only

2 layers of files and machines in the graph and perform a train and test experiment. Then in another train

and test experiment we can remove the machine layer. In addition, we also remove the intrinsic features

(system-level features) of the classifiers and compare the result with the case of keeping them to show

that they are also essential for better detection results. Figure 7(a) shows the feature analysis results for

the file classifier for a testing period in February which is an aggregate of 5 days (see Section 5.3). While

the ROC labeled as “All Features” is the detection result of a classifier that benets from all the layers of the

graph as well as the files intrinsic features, each of the other ROCs are generated by removing one group

of features at a time. Figure 7(b) shows a similar experiment but for URLs. Clearly, the performance of the

classifier is the best when all features are used.

Figure 7: Feature analysis results (testing period: February)

5.5 Efficiency
The whole MDD system (Figure 1) would run on a server that receives requests from DIAs. The server

that we used is actually quite a light machine with only 8GB of RAM and 8 1.2GHz CPUs. We averaged

the run time for training and testing phases over multiple runs. On average the training phase requires

about 2 hours and 30 minutes to generate a download graph over a time window of 10 days and train

the classification models. On a single day, we observe around 21K to 22K nodes (files and URLs) and the

24 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

total time it takes to compute a classification result for all items is approximately 20 to 30 minutes which

translates to about 0.08 seconds per node. Consequently, it takes 0.16 seconds to label a download

event. So Mastino is capable of providing on-line and almost instantaneous responses to clients’ requests.

Thus, as mentioned in Section 1, the DIA agent needs to quarantine the newly download file for only about

0.16 seconds (plus some negligible network communication delay) to receive a response from the MDD.

Considering that the time it takes to actually download files is much larger than 0.16 seconds, Mastino

will not have a negative impact on users’ experience.

5.6 Selection of Training Time Window T
In our experiments, we set T = 10 days based on our pilot experiments with various time windows ranging

from 1 to 30 days. In this section, we compare the detection result on a same testing period using various

T lengths. We demonstrate that our chosen T = 10 days provides a good trade-off between runtime

efficiency and detection performance. Figure 8 reports the results of a file train-test experiment over a

testing period for time windows of 1, 5, 10, 20, and 30 days. As it can be seen, by increasing T length

beyond 10 days, no notable performance gain could be achieved. Furthermore, as the length of time

window increases, the training time increases as well. On average, the training time for T of 1, 5, 10, 20,

and 30 days is about 40, 70, 120, 240, and 370 minutes. Similar results apply for URLs, too.

Figure 8: Selection of time window for files - train and test using Fn with various T lengths

25 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

5.7 Analysis of the Classification Results
In this Section, first, we discuss the results of train and test experiment (Section 5.2). Next, we analyze the

output of our classifier on completely unknown files, i.e. those files for which no ground truth was available

whatsoever at the time of performing the train and test experiments. Finally, we report a breakdown of

Mastino’s detected malware families when it was run in the wild.

5.7.1 Download events with Ground Truth

To perform this analysis, we picked a testing period of 5 days (see Section 5.4) and used a threshold

of 0.5% FP rate for classification. In this experiment, 21 files are identified as false negatives (FN), i.e.

labeled as benign by our system, but according to AV labels should have been labeled as malware. Out

of these FNs, none were connected to any malicious URLs (6 were connected to only benign URLs), 15

FNs did not use any type of code obfuscation techniques, and 17 files were downloaded by machines

that had a clean history, i.e. they were not labeled as infected in the graph. These observations to some

extent justifies the decision of the classifier on labeling these files as benign since the majority of them

were either connected to non-malicious URLs in the graph, or did not exhibit a malicious behavior (e.g.,

downloaded on machines with a clean history and not packed). Further investigation revealed that some

of FNs were “potentially unwanted applications”, such as adware, bundled with benign software.

Next, we analyzed the FPs. Out of 3 FPs: 1 was downloaded by multiple malicious URLs, another was

packed and the last was downloaded on a machine with R > 0.7. So even though according to AVs and

our proprietary whilelist of files, these samples were assigned a benign label, they might very well be

malware.

5.7.2 Completely Unknown Download Events

We now evaluate our system as deployed in an operational environment, i.e. running on files that are

unknown to AV vendors at the time of performing the train and test experiment. By evaluating which

samples are correctly classified prior to any detection by AVs, we show that Mastino can label unknown

files accurately and ahead of time.

To this end, we performed train and test and used a classifier’s threshold of 0.5% FP rate. Then we

obtained the most up-to-date labels from VirusTotal, i.e. corresponding to six months after the testing

period. In between the dates that the experiment was performed and the date that VirusTotal was queried

again, a portion of the samples that were previously unknown have got some labels. Out of 57,896

unknown files on test day, 406 were later detected as malicious and 2,774 identied as benign. Overall,

Mastino correctly classified 84% of future malware on the test day, when they were still unknown to all

AVs, and incurred 1.2% FPs.

26 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

To understand why Mastino incurred FPs, we further analyzed the characteristics of these files. Looking

at the download graph, 38% of FPs were connected to malicious URLs, 94% were packed, and 50% of

FPs were downloaded by machines that had recently downloaded other malware or contacted malicious

URLs. These are suspicious signs for the classifier.

We also analyzed the FN results (64 out of 406 files). In the graph, most of the FNs were in fact connected

to either benign or unknown URLs and only 12% of FNs were connected to malicious URLs. Furthermore,

89% of the FNs were downloaded by machines with clean histories.

5.7.3 Break Down of Detected Malware Families

Here we report examples of malware families that Mastino detected during our testing before any other

trusted AVs. Among these, a signicant amount is represented by first stage malware like downloaders

and droppers, e.g. Win32/In stallCore.MI, TrojanDropper:Win32/Rovnix, Downloader.ATW

and MalSign.InstallC.4DB. Note that downloaders and droppers, in general, represent a signicant

portion of malware samples because they are often associated with the rst code being downloaded

and executed on infected machines from malware campaigns. Other families consist of adware, bots,

banking trojans (bankers) and key-loggers, including, e.g., Rogue:Win32/FakePAV, Win32:Crypt-

QTG, PWS:Win32/Zbot, FakeAV_r.YE, Backdoor.Trojan, and Trojan.FakeAV.

5.8 Case Studies
In Section 5.7, we presented the classification results of test download events for which none of the

nodes were present during the training time window and no ground truth was available for the nodes. We

showed that the classifier can detect the majority of such nodes with high accuracy.

Here we report a few case studies of those file nodes.

Case Study 1: E-mail Dropper. A file with the name of file_saw.exe was observed on Feb. 12 and used

as test sample in Fu because it was downloaded by machines and from URLs for which no ground truth

was available. However, our classifier successfully assigned a malicious label to this file. Further analysis

revealed that the sample was a downloader, usually distributed via spam emails and detected as Win32/

Trojan Downloader.Wauchos.A and Win32:Inject-BGK [Trj].

By analyzing the file’s features, we confirm that the features related to the path patterns of the URLs

helped the classifier in his successful talk2. These features show an average reputation score of 0.72 (i.e.,

malicious), meaning that multiple URLs with the same path pattern have offered malicious files. In total,

182 files were downloaded from 1,445.

2 URLs with paths /f/1392240240/1255385580/2 and /f/1392240120/4165299987/2, and the path pattern /H1/D10/D10/D1 offered the file.

27 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

URLs with same path pattern were mostly malware. Other contributing features are the low number

of countries that downloaded the file (one in this case), and the low prevalence of the downloaded files:

about 85% of them had a prevalence less than 2. Finally, the classified file did not have a valid signer at

the time of download.

Case Study 2: Somoto. Two files in Fu with similar filenames (FreeZipSetup-[0-9a-zA-Z].exe)

were downloaded by two unknown machines from unknown URLs. The files were correctly labeled as

malware by Mastino. Further investigation revealed that the files belong to an adware campaign called

Somoto. These files were packed, had short lifetime and prevalence of zero. In addition, although the

related machines were labeled as unknown, according to the download graph, one of them downloaded

one malicious file during T. Interestingly, during the same time window, 695 files with very similar names,

features, and sizes3 were downloaded from several hundred URLs. Mastino classified all of them as

malicious. By analyzing them, we confirmed that they are indeed part of the same malware campaign

and therefore correctly detected as malicious on early phase by our system. However, on the day of

experiment, only 79 were known by AVs. Six months later, 634 were reported as bad by VirusTotal (the

remaining 61 are still undetected).

Case Study 3: TTAWinCDM Spyware. This file was classified as malware by Mastino on

March 19 when no prior AV information was available: the first submission to VirusTotal

occurred over two months later. Even though this file was identified on one machine with

R = 0.5 and downloaded from a single URL with R = 0.5 as well, it was classified correctly. By our analysis,

the feature that contributed actively on the detection was a mismatch on the downloading process. In

fact, while the downloading process was identified as Acrobat (i.e., acrord32.exe), the file was not

downloaded from a URL hosted on the acrobat.com domain. Other contributing factors were a very low

lifetime, prevalence and number of countries.

3 Varying between 16.5K to 16.9K, due to the effect of packing.

28 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

6. Discussion and Limitations
Mastino’s MDD should run on a server to receive requests from DIAs on clients’ machines. One challenge

here is to keep the server up and running at all times, so it becomes a single point of failure. Also the

communication between DIAs and MDD might suffer from small network communication latency.

However, the idea of centric servers nowadays is used by many systems commercially, which with

current network infrastructures could run with very high availability rates. In addition, since MDD provides

almost instantaneous decisions (see Section 5.5), and considering that network latency is negligible when

compared to actual download time, Mastino could transparently protect users.

Attackers might try to introduce noise to evade Mastino’s behavioral classifiers. For example, an attacker

might serve a mix of benign and malicious files from their URLs to confuse our system. However, we

believe this will not trouble Mastino notably. First, considering the way we compute the behavior-based

features (Section 3.2.2), our system still takes into consideration the aggregate of badness reputations of

all files served from the attacker’s URLs and could still distinguish these cases. Second, even though the

attacker could mix some good files in their URLs, they cannot alter the badness reputation and labels of

machines that contact these URLs, because we assign badness reputation to machines not only based

on their network-level history, but also according to their system-level activities. Third, this type of evasion

might have a negative impact on behavior-based features. Intrinsic features of benign and malicious files

and URLs, however, could still steer Mastino towards correct decisions and play an important role in

improving our accuracy as it is shown in Section 3.2.1.

Similarly, to evade detection and introduce noise, attackers might try to somehow utilize legitimate and

popular domains. For example, they might host their malware on cloud storage services. Since the URLs

of these domains are also used to store legitimate softwares, some amount of noise might be introduced

when computing behavior-based features for files and URLs. To reduce the amount of noise, we try to

filter out these types of domains from our whitelist (see Section 4.1). However, due to the number of such

domains and services, it is difficult to filter all of them out. Despite this, Mastino still achieves very high

accuracy while incurring very low FP rates. Again, intrinsic features assist us signicantly in these situations

as well.

29 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

Another challenge is the detection of files and URLs for which no prior information is available in our

download graph, i.e. the test samples of Fu and Uu (see Section 5.2.2). Mastino, however, performs

remarkably well on these test datasets by taking full advantage of all the three layers of the download

graph plus the intrinsic features. We also provided multiple case studies in Section 5.8 to further point out

how Mastino enables detection in these dicult cases.

We need to compute badness reputation and assign labels for nodes in all three layers of the tripartite

download graph, including machines. In reality, machines’ true labels might change during training

window T. So our labels for machines might not be completely accurate during the whole T due to their

fleeting nature. For example, a machine will be labeled as vulnerable, if it downloaded enough malwares

during training window T or visited multiple malicious URLs, but it is possible that after visiting those URLs

and downloading malware files and getting infected, an AV agent disinfected the machine. However, the

machine’s label will stay as vulnerable in the graph for T. Despite this, we still believe that keeping the

machine’s label as vulnerable is useful, even if it is cleaned currently, due to the fact that it had a tendency

of downloading malwares and visiting malicious URLs and it could likely do so again. We also showed in

Section 5.4 that machines’ reputations are helpful in improving our accuracy.

30 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

7. Related Work
Traditional approaches in malware detection involve analyzing the binaries by statically inspecting the code

or evaluating their behavior at runtime [4, 5, 15, 20, 23, 25]. Unfortunately, the time to detect malwares is

quite high in these methods and they simply cannot keep up with thousands of new and unknown files

observed daily in the wild.

A large corpus of research focus on DNS-based reputation systems [1–3, 6], which primarily focus on

detecting IP addresses and domain names associated with malicious activities, e.g. hosting C&C servers

or “drop zones”. Mastino is a different system that not only could detect malicious URLs, it can also

provide real-time protection against malware files and can label download events using a novel tripartite

graph mining model.

Graph mining, as a general technique to reason on data modeled as a graph, has been successfully applied

in different domains of system security. Polonium [8] aims to detect malware files using graphical models.

While their graph-based approach is similar to ours, we identify the following fundamental differences:

Polonium employs a very expensive loopy belief propagation algorithm and adopts an offline approach,

by running the algorithm on the entire (huge) graph, which is very time consuming and costly. As opposite,

we do real-time detection and proactively detect malware download events so that malware files can be

immediately quarantined (or removed) to prevent their execution on the client machine; Polonium does

not consider the URL layer and only classifies files. Our approach extends the analysis to the URL from

where the file was downloaded, and we concurrently classify files and URLs. In addition, as we showed

in our evaluation, all layers, including URL layer, are helpful in improving the system overall performance;

The Polonium’s paper does not reveal how the reputation of machines is computed. On our side, we

present and describe, in detail, which intrinsic machine’s features, such as the downloading history and

process, are helpful in improving the results.

Manadhata et al. in [16] also introduce a system that detects malicious domains by constructing a host-

domain graph that runs belief propagation. Relationships between files (e.g., between binaries) have also

been modeled with graphs in [21] and [24] to detect malware. Recently, authors of [13] also proposed

a system for detecting malware by following the chains of downloads on individual hosts initiated by

malware droppers. Mastino is different from these systems as it provides simultaneous detection of

malicious files, URLs, and download events, in general.

31 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

More recently, authors in [18] build bipartite graphs from passive DNS traffic collected from large ISP

networks, with the goal of representing who is querying what relationship. They run a graph-based

behavioral classifier that suggests for domains used in C&C operations. Unlike this work, Mastino is not

limited to only detecting C&C servers and can deal with all sort of malicious URLs.

Nazca [12] focuses on detecting malware downloads by identifying the network infrastructure (domain,

IPs, URLs) that support malware installation campaigns (e.g., drive-by download campaigns). Nazca

is designed to be deployed at the edge of ISP networks, and only inspects network traffic without

performing any analysis of the file properties or reputation of the downloading client. On the contrary,

Mastino combines information from URLs, files, and client machines to accurately detect new malware

downloads in real time.

AMICO [22] and Google’s CAMP [19] distinguish between benign and malicious files by reasoning on

the download behavior of client machines. However, we identify several fundamental dierences with

our work. AMICO performs on-the-fly reconstruction of the download from HTTP network traffic. This is

expensive and limits its adoption to non-encrypted traffic and standard protocols. AMICO, for example,

cannot detect modern ransomwere like TorrentLocker [14], which hosts the cash-out infrastructure in

the Tor network { i.e., a series of circuits of encrypted connections as routing relays. In the same way,

CAMP only detects files as been downloaded from the browser (i.e., Chrome). This makes the system

ineffective against malware updates (e.g., from botnets), second-stage malware (often employed in large

malware campaigns), or any file downloaded by a generic client. In addition, as the downloaded file is

intercepted and reconstructed at browser-level, multi-stage infections (i.e., where the drive-by’s execution

code downloads the malware in multiple steps) might not been efficiently identified by CAMP, or exploits

triggering vulnerabilities in the browser might disable the anti-malware solution.

Our system, in addition to overcome the limitation hereby described, aims to protect users’ machine

independently from their networking conguration. AMICO, for example, collects download information at

network level and is useful in protecting machines when installed in LANs — but it fails with protecting

machines like laptops switching across different networks (e.g., wireless or 4G). Another important

difference in approach is the lack of system-level information about the machine that downloaded the file,

e.g. about the client process that initiated the download and the destination path where the downloaded

file is stored. As we showed in our evaluation, these features help in improving our system. Finally, both

AMICO and CAMP are only able to detect malware files, but Mastino leverages a tripartite download graph

to enable concurrent detection of bad URLs, malware files, and malicious download events in general.

32 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

8. Conclusion
This paper presented Mastino, a novel system that is cable of efficiently detecting malware download

events in real time by passively monitoring the download events of users. We developed a proof-of-

concept prototype of the system and evaluated it using real-world data. Our evaluation results show that

the system can detect malware files and malicious URLs with high accuracy while only incurring less than

0.5% FPs. We discussed the efficiency of the system and the fact that it only takes a fraction of a second

to provide accurate classification of files or URLs submitted to the system. We analyzed our classification

results in details and provided interesting case studies of Mastino’s real-world operation.

33 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

REFERENCES
1.	 M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building a dynamic reputation system for dns. In USENIX

security symposium, pages 273–290, 2010.

2.	 M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II, and D. Dagon. Detecting malware domains at the upper dns hierarchy. In
USENIX Security Symposium, page 16, 2011.

3.	 M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou II, S. Abu-Nimeh, W. Lee, and D. Dagon. From throw-away traffic to bots:
Detecting the rise of dga-based malware. In USENIX Security Symposium, pages 491–506, 2012.

4.	 U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool for analyzing malware. na, 2006.

5.	 J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, N. Tawbi, et al. Static detection of malicious code in executable
programs. Int. J. of Req. Eng, 2001(184-189):79, 2001.

6.	 L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding malicious domains using passive dns analysis. In NDSS,
2011.

7.	 L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

8.	 D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos. Polonium: Tera-scale graph mining for malware detection.
In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2010.

9.	 M. Felegyhazi, C. Kreibich, and V. Paxson. On the potential of proactive domain blacklisting. In Proceedings of the 3rd
USENIX conference on Large-scale exploits and emergent threats: botnets, spyware, worms, and more, pages 6–6. USENIX
Association, 2010.

10.	 Google. Google Safe Browsing. https://www.google.com/transparencyreport/safebrowsing/.

11.	 F. Guo, P. Ferrie, and T.-C. Chiueh. A study of the packer problem and its solutions. In Recent Advances in Intrusion Detection,
pages 98–115. Springer, 2008.

12.	 L. Invernizzi, S. Miskovic, R. Torres, S. Saha, S. Lee, M. Mellia, C. Kruegel, and G. Vigna. Nazca: Detecting malware distribution
in large-scale networks. In Proceedings of the Network and Distributed System Security Symposium (NDSS), 2014.

13.	 B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras. The dropper effect: Insights into malware distribution with downloader
graph analytics. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages
1118–1129. ACM, 2015.

14.	 K. Lab. Torrentlocker ransomware. https://www.kaspersky.com/resource-center/threats/torrentlocker-malware, 2015.

15.	 W.-J. Li, K. Wang, S. J. Stolfo, and B. Herzog. Fileprints: Identifying file types by n-gram analysis. In Information Assurance
Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC, pages 64–71. IEEE, 2005.

16.	 P. Manadhata, S. Yadav, P. Rao, and W. Horne. Detecting malicious domains via graph inference. In Proceedings of the 2014
Workshop on Artificial Intelligent and Security Workshop, pages 59–60. ACM, 2014.

17.	 J. Oberheide, E. Cooke, and F. Jahanian. Cloudav: N-version antivirus in the network cloud.

18.	 B. Rahbarinia, P. Roberto, and M. Antonakakis. Segugio: Efficient Behavior-Based Tracking of Malware-Control Domains in
Large ISP Networks. DSN ’15 (45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks), (3),
2015.

19.	 M. A. Rajab, L. Ballard, N. Lutz, P. Mavrommatis, and N. Provos. Camp: Content-agnostic malware protection. In NDSS, 2013.

20.	 N. Solutions. Norman sandbox whitepaper, 2003. [21]

21.	 A. Tamersoy, K. Roundy, and D. H. Chau. Guilt by association: large scale malware detection by mining file-relation graphs. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1524–1533.
ACM, 2014.

22.	 P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, and M. Antonakakis. Measuring and detecting malware downloads in live network
traffic. In Computer Security–ESORICS 2013, pages 556–573. Springer, 2013.

https://www.google.com/transparencyreport/safebrowsing/
https://www.kaspersky.com/resource-center/threats/torrentlocker-malware

34 | Real-Time Detection of Malware Downloads via Large-Scale URL¬File¬Machine Graph Mining

23.	 C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using cwsandbox. IEEE Security & Privacy,
(2):32–39, 2007.

24.	 Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdulhayoglu. Combining file content and file relations for cloud
based malware detection. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’11, pages 222–230, New York, NY, USA, 2011. ACM.

25.	 H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: capturing system-wide information flow for malware detection
and analysis. In Proceedings of the 14th ACM conference on Computer and communications security, pages 116–127. ACM,
2007.

©2017 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro

t-ball logo are trademarks or registered trademarks of Trend Micro, Incorporated. All other

product or company names may be trademarks or registered trademarks of their owners.

TREND MICROTM

Trend Micro Incorporated, a global cloud security leader, creates a world safe for exchanging digital information with its Internet content security and

threat management solutions for businesses and consumers. A pioneer in server security with over 20 years experience, we deliver top-ranked client,

server, and cloud-based security that fits our customers’ and partners’ needs; stops new threats faster; and protects data in physical, virtualized, and

cloud environments. Powered by the Trend Micro™ Smart Protection Network™ infrastructure, our industry-leading cloud-computing security technology,

products and services stop threats where they emerge, on the Internet, and are supported by 1,000+ threat intelligence experts around the globe.

For additional information, visit www.trendmicro.com.

