) TREND.

o

Exploring Control Flow Guard in
Windows 10

Jack Tang, Trend Micro Threat Solution Team

Trend Micro | Exploring Control Flow Guard in Windows 10

As operating system developers are always keen on improving exploit mitigation technology,
Microsoft has enabled a new mechanism in Windows 10 and in Windows 8.1 Update 3
(released last November) by default. This technology is called Control Flow Guard (CFG).

Like other exploit mitigation mechanisms, such as address space layout randomization
(ASLR), and data execution prevention (DEP), it will be successful in making exploitation of
vulnerabilities more difficult. Beyond doubt, it will greatly change the attacker’s exploit
technology. It’s like that ALSR results in heap spray techniques showing up and DEP results
in return-oriented-programming (ROP) techniques showing up in the exploit code.

To explore this particular technology, I used the Windows 10 Technical Preview (build
0.4.9841), with test applications built using the Visual Studio 2015 Preview. Because the
CFG implementation of the latest Windows 10 technical preview build (10.0.9926) has a
slight change at that same point, I will point out the difference.

To fully implement CFG, both the compiler and the operating system must support it
properly. As an exploit mitigation mechanism in the system level, the CFG implementation
requires cooperation from the compiler, the operating system user mode library, and the
kernel mode module. A blog post on MSDN outlined the steps that developers need to do
to support CFG.

Microsoft’s implementation of CFG is focused on indirect call protection. Consider the

tfollowing code in the test program I created:

Trend Micro | Exploring Control Flow Guard in Windows 10

typedef int(*fun_t)({int);
Jint foo(int a)

1
printf({"hello jack: #d\n", a);
return a;
L}
Jclass CTargetObject
1
public:
fun_t _fun;
BE
Jint _tmain(int argc, _TCHAR* argv[])
1

int 1 = 8;

CTargetObject* o_array = new CTargetObject[5];

for (1 = 8; 1 < 1leea; i++)
Searcaylddfun=foo,

[_0 ar‘r‘;y[@]. fun(l); _]

return @;

¥

Figure 1. Code of test application

Let’s take a look at what the encircled code compiles into if CFG is not enabled.

nou ecx, JEBh
rep stosd

mov esl, [_E'Slj
push 1

call esi

add esp, 4

Zor eax, eax

Figure 2. Assembly code of test program

In the above figure, there is one type of indirect call. Its target address is not decided at
compilation and is instead decided at runtime. An exploit can abuse this as follows:

mou EEH; 3E8h Pointer to fake object
rep stosd constructed by attacker
mou esi, [esi]

push 1

call esi Call to the 1lst stage
add esp, 4 shellcode

®or eax, eax

Trend Micro | Exploring Control Flow Guard in Windows 10

Figure 3. How to abuse the indirect call

Microsoft’s implementation of CFG focuses on mitigating problems if the indirect call is
exploited and an invalid target is called. (In an exploit, this would be to first stage shell code,
(e.g.,stack pivot gadget).

The invalid target has a distinguishing characteristic: in most cases it is not a valid function
starting address. Microsoft’s CFG implementation is based on the idea that an indirect call’s
target must be the start of a valid function. What is the resulting assembly code if CFG is
enabled?

mov ecx, JE8h

rep stosd

mou esl, [esl]

mouv ecx, esi ; Target

push 1

call @ quard check icall@4 ; quard check icall{z}
call esi

add esp, 4

Xor eax, eax

Figure 4. Assembly code, with CFG enabled

Before the indirect call, the target address is passed to the _guard_check_icall function, which
is where CFG is actually implemented. In versions of Windows without CFG support, this
function does nothing. In Windows 10, which does have CFG support, it points to

ntdlllLdrpV alidateUserCallTarget. This function takes a target address as argument and does the
tfollowing:

1. Access a bitmap (called CFGBitmap) which represents the starting location of all
the functions in the process space. The status of every 8 bytes in the process space
corresponds to a bit in CFGBitmap. 1f there is a function starting address in each
group of 8 bytes, the corresponding bit in CFGBitnap is set to 1; otherwise it is set
to 0. The figure below is an example of a portion of CFGBitmap:

Trend Micro | Exploring Control Flow Guard in Windows 10

Figure 5. Representation of CFGBitmap

2. Convert the target address to one bit in CFGBitmap. Let’s take 00b01030 as

example:

00000000 10110000 00010000)(00110000

Figure 6. Target address

The highest 3 bytes (the 24 bits encircled in blue) is the offset for CFGBitap (unit is
4 bytes/32 bits). In this example, the highest three bytes are equal to to 0xb010.
Therefore, the pointer to a four byte unit in CFGBitmap is the base address of
CEFGBitmap plus 0xb010.

Meanwhile, the fourth bit to the eighth bit is (the five bits encircled in red) have the
value X. If target address is aligned with 0x10 (target address & Oxtf == 0), then X is
the bit offset value within the unit. If the target address is not aligned with 0x10
(target address & Oxf != 0), the X | Ox1 is the bit offset value.

In this example, the target address is 0x00b01030. X has the value of six. The formula
0x00b01030 & Oxfhas a result of zero; this means the bit offset is also six.

3. We look at the bit identified in Step 2. If the bit is equal to 1, it means the indirect
call target is valid because it is a function’s starting address. If the bit is 0, it means
the indirect call target is invalid because it is not a function’s starting address. If
the indirect call target is valid, the function will do nothing and let it go. If the

indirect call target is invalid, an exception will be raised which should prevent

further exploit code from running.

Trend Micro | Exploring Control Flow Guard in Windows 10

00000100 00000000 00000000 OUUOU

Figure 7. Value in CEGBitmap

The value X is from the 4th bit to the 8th bit is (five bits in red circle). If the target
address is aligned with 0x10 (target address & Oxf == 0), the X is the bit offset value
in the unit. If the target address is not aligned with 0x10 (target address & Oxf |= 0),
the X | Ox1 is the bit offset value in the above 4 bytes. In this example, the target
address is 0x00b01030, with X as 6 (red citcle patt in Figure 6). 0x00601030 & Oxf
==0, so the bit offset is 6.

At Step 2, the bit offset is 6. Taking the Figure 7 as the example, the sixth bit (in red
circle) is 1. It’s mean the indirect call target is a valid function address.

Now, we have got a general idea of the workings of CFG. But this still raises the following
questions:

1. Where is the bit information of CFGBitmap from?
2. When and how is the CFGBiitzmap generated?

3. How does the system handle the exception, which is caused by invalid indirect call
target?

Looking into CFG Implementation

We can find additional CFG information in the PE file, which is compiled by VS§2015 with
CFG enabled. ILet’s take a look at the information of the PE file whose code can be seen in

Figure.1. The information is dumped by VS2015’s dumpbin.exe. 1n the PE file’s Load Config
Table part, we can find following content:

Trend Micro | Exploring Control Flow Guard in Windows 10

A84828D4 [Guard CF address of check-function pointer
AWHBHAAN Heserwed
HW48218H8 Guard GCF runction tahle
11 Guard CF function count
AWAB3588 Guard Flags

CF Instrumented
FID table present
Protect delayload IAI

Delayload IAl in its own zection

Figure 8. PE information

« Guard CF address of check-function pointer: the address of _guard_check_icall
(seen in Figure.4). On the Windows 10 preview, when the PE file is loaded,
_guard_check_icall will be modified and point to n#/Ldrpl alidateUserCallT arget.

* Guard CF function table: pointer to list of functions’ relative virtual address
(RVA), which the application’s code contains. Every function RVA will be
converted to a “1” bit in the CFGBiitmap. 1n other words, the CEFGBitmap’s bit
information will come from the Guard CF function table.

+ Guard CF function count: the list count of function’s RVA.

« CF Instrumented: indicates CFG is enabled for this application.

Here, the compiler does his entire job for CFG. What remains is the OS’ support allowing

the CFG mechanism to work.

1.

In the OS boot phase, the first called CEFG-related function is MilnitializeCfg. The
process is system. The call stack is as follows:

ChildEEF Retiddr Args to Child

oo
01
02
03
04
05
06

801=236b0 B81b5713a 808fb373 B08fL378 00000001 ntlMilnitializeCfg (FPO: [0,3.4])

80123728 B81b5Y06c 808fbL378 c00000bb 00000000 nt!MiInitSystem+Oxb4 (FPO: [0.25.4]1)
80123738 81b51bf3 00000000 80263540 00000000 nt!MmnInitSystem+Ox66 (FPO: [0.0.4])

801a3c24 581978f£66 00000000 801a3c70 81669583 ntlPhasellnitializationDiscard+0x6oc (FPO: [
801a3c30 81669583 808fb3738 cebf9ack 00000000 ntl!Phasellnitializationtlxe (FPO: [1.0.4])
801a3c70 B8171£9b5 81978£58 808fL378 00000000 nt!PspSvstemThreadStartup+l=Sh (FPO: [SEH])
801a3c?c 00000000 ooOO0O0O0O00 fffff£fff 000000ff nt!KiThreadStartup+0=lE

Figure 9. Call stack

The primary job of the function MilnitializeCfg is to create shared memory to
contain CFG Bitmap. The calling timing can be found in the N'T kernel phase 1

Trend Micro | Exploring Control Flow Guard in Windows 10

initialization’s memory manager component initialization (MnzlnitSystem). As you
know, during the initialization of N'T kernel phase 1, it will call MwzlnitSystem twice.
The first MmInitSystem call will go to MilnitializeCfg. What will MilnitializeCfg do?

A.Registry value for mitigation i
enable

B. MmEnableCfg =1

C. MmEnableCfg '=0

D. Create and ssign 2 global variable:
1. MiCfgBitMapSection: share memory section object for CFG Bitmap
2. MiSectionControlArea: pointer to the share section object’s _Control_Area

A

A
End

Figure 10. Function’s main logic

Step A: the registry value is from
HKEY 1.OCAL. MACHINE\SYSTEM\ CurrentControlSet\ Control\ Session
Manager\ kernel: MitigationOptions

Step B: MmEnableCfg is a global variable that is used to indicate whether the system
enables CFG function

Step C: MiCfgBitMapSection's Desired Access allows all access; its allocation type is
“reserve.” The shared memory size is different in build 10.0.9926 from build
0.4.9841. For build 6.4.9841, it is calculated from user mode space size. The detail
formula is size = User Mode Space Size >> 6. (>> X : right shift X bits). For build
10.0.9926, the size is 0x3000000. It means the CFG bitmap can represent the entire

Trend Micro | Exploring Control Flow Guard in Windows 10

user mode space. The MiCfgBitMapSection is a core component in the CFG
implementation, because it is used to contain CFGbitmap.

2. Get the functions compressed RVA list information and save to the image’s

Control_Area structure.

A PE image loaded into the system the first time. The NT kernel will call
MiRelocatelmage to relocate. MiRelocateImage will call MiParselmageCfgBits. In the
tunction MiParselmageCfgBits, the PE image’s compressed RVA list is calculated and
saved into the PE image section’s Control_Area data structure. This only happens one
time for one PE image during one system booting.

When the PE is once again loaded into a process, the N'T kernel will call
MiRelocatelmageAgain. Because its compressed RVA list is already saved (and does 7oz
need to be calculated again), MiRelocatelmageAgain doesn’t need call
MiParselmageCfgBits, saving some processing time. MiParselmageCfgBits is used to
calculate the compressed RVA list for the PE image in order to save the RAV list
within a small space. Microsoft takes the time and space performance into
consideration for CFG implementation. In the MiRelocatelmage, its CFG-related part
can be describe simply as following:

MiRelocatelmage (X,X,X,X,X)
{

MiParselmageCfgBits();

//Save compressed function’s RVA list into the image section‘s Control_Area structure
[//for 6.4.9841 build

_Control_Area ->SelmageStub->[+4]->[+24h] = Compressed function’s RVA list

//for 10.0.9926 build

_Control_Area ->SelmageStub->[+0]->[+24h] = Compressed function’s RVA list

MiSelectimageBase(); //Itis ALSR core implement function

MiUpdateCfgSystemWideBitmap();

Trend Micro | Exploring Control Flow Guard in Windows 10

// modify the image’s relocate information reference to the new loaded base

}

MiParselmageClgBits is used to calculate the compressed RVA list from the module
which is compiled with CFG enabled. Before diving into the function, we will look at
the context of calling this function. The function MiParselnageCfgBits will be called in
MiRelocatelmage function.

The function MiParselmageCfgBits has five arguments:
a. Pointer to the image section’s Control_Area structure
b. Pointer to the image file content
c. The image size
d. Pointer to a structure which contain part of PE Optional Header
e. Output pointer to a compressed CFG function RVA list
The main jobs of MiParselmageCfgBits are the following:

a. Get the function RVA list from the image’s “Load Config Table” part,
which I have described in the previous part

b. Use the compression algorithm to compress the list in order to save this list

with small space
c. Create the compressed RVA list as its output

3. After the CFGBitmap shared memory section object is created, the CFGBitmap
shared memory section object will be mapped for two uses:

a. For writing bits for shared module (DLL files, etc.). This mapping is
temporary; after the bits writing is finished, the mapping will be released.
The bits information written by this mapping is shared, meaning it can be
read from all processes on this system. The mapping happens in the
MiUpdateCfgSystemWideBitmap function. The call stack is as follows:

Trend Micro | Exploring Control Flow Guard in Windows 10

ChildEEP
9c7d973c
9c7d97fc
9c7d98a8
9c7d9948
9c7d9a08
9c7d9a74
9=7d%ec
9c7d9b9¢
9c7d9c30
9c7d9c70
9=7d9c7c

Retiddr
81dEedfd
81473678
8lcfrd3s
Blcfrd 3l
Blefhieh
8145899
81458535
8la=209f
8lac3583
81b799B5
oooaooaca

Args to Child

col?6fadl 98daf893
oooooilz4 pooooooo
goooooo? pooooooo
0oooooon 9c¥dvads
9=7d%=s8c 00000005
9=7d%==0 00000005
9c7d9%7c cidied90
9c7d9z30 8las2lZ3
8lchelal 98dafilf
8laslesl 8lceclal
0ooaooon oooooooo

col9ddel
poopanooa
9=7d99£n
popapoo?
9=7d%asd
9=7d%asd
oooaonooi
asc9d2{0
naoanaooa
oooaoooa
oaoaoooa

nt IHilUpdateCfigSystenlideBitmnap (FFPO:

nt IMiRelocatelnage+0x25d (FPO: [SEH])
nt IMiCreatelewSection+0xloe (FPO: [6,35,47)
nt IMiCreateSection+0x8es (FPO: [8,65,4])

nt |MnCreateSection+0x258 (FPO: [8.2.0])

nt INtCreateSection+0x14b (FPO: [SEH])
nt |PfSnGetSectionObject+0x158 (FPO: [
nt |IPfSnPopulateReadlist+0=x2es (FPO: [
nt |ExpWorkerThread+0x1bf (FEO: [1,29
nt | PspSystemThreadStartup+i=th (FPO:

nt |KiThreadStartup+0=15

[1.14.4])

.18,
L33,
1
[SEH])

7.1
1.3
4]}

Figure 11. Call stack for writing bits for shared module

b. For writing private bits and reading bits for checking indirect call target.
The bits written by this mapping is private, which means it can only be read
within the current process. This mapping’s life cycle is as long as the
process’ life cycle. The mapping occurs in the function MiCfglnitializeProcess.
The call stack is as follows:

ChildEBP Retiddr Args to Child

00 a0bl0240 81d574eb 00000000 00000000 bibbboch ot !MiCigInitializeProcess (FFO: [0,7.41)

01 a0b10278 B1d56df8 00c10000 00000000 00000000 nt!MiMapProcessEzecutable+0x131 (FPO: [2.9.471)

02 a0bl02f0 B1d4b519 c42911b8 a0bl04cO 00000000 nt!MnInitializeProcessiddressSpace+0xl36 (FPO: [3.23.4])

03 a0bl04al B1d48fae 00000000 00000000 00000000 nt!PsphllocateProcess+0xB39 (FPO. [SEH])

04 alblObel B1b74fe? 00e?edBd 00e?ed38 02000000 nt!NtCreatelUserProcess+0z444 (FPO: [SEH])

05 albl0bel 77862240 00eledBd 00e7eddd 02000000 nt!KiSystemServicePostCall (FPO: [0.3] TrapFrame @ albllcld)

Figure 12. Call stack for writing private bits and reading bits

Based on the call stack, we know that it is mapped at an initializing process.
The mapped size is different for builds 10.0.9926 and 6.4.9841. For build
0.4.9841, the size is calculated based onuser mode space size. The detail
formula is size = User Mode Space Size >> 6. (>> X : right shift X bits). For
build 10.0.9926, the size is 0x3000000. The mapped space always exists during
the process’ life cycle. The mapped base address and length will be saved to a
global structure which type is MI_CFG_BITMAP_INFO and address is fixed
(For build 6.4.9841, the base address is 0xC0802144. For build 10.0.9926, the
base address is 0xC080214C). I will discuss how we write private bits into the
mapped space later on. Below is the structure of MI_CFG_BITMAP_INFO:

{
Void* BaseAddress,

UINT32 RegionSize,
void* VadBaseAddress,
_MMVAD* BitmapVad

}

//mapped base address in current process
//mapped length

//the VAD’s base address

//the VAD for the mapped address

Trend Micro | Exploring Control Flow Guard in Windows 10

4. Once the PE image RVA list is ready and the CFGBitznap section is mapped, it’s
time to translate the RVA list into bits in the CFGBitynap.

Write shared bits in CFGBitmap

Mt e mm s mm s m s e s m s mm s e mm s mm e mm s mm = s mm s mm s mm e mm s = s = s e s = s e s m s = s e s = s e = -~

¥ Process Initialization

MiMarkPrivatelmageCfgBits

MiMapViewOflmageSection

MiMapViewOfDataSection

1
1
I
. . . 1
MiCommitVadCfgBits MiMarkPrivateOpenClgBits X
I
1

VM operation MiMarkSharedimageCfgBits

Write private bits in CFGBitmap

Figure 13. Updating bits into CFGBitmap

The progress differs in several scenarios:

In the Reladlmage/ ReloadlmageAgain, writing bits for shared module for
shared module (etc. dll) by MiUpdateCfgSystemWideBitmap

« Writing bits for private module (EXE files, etc.) in the process
initialization phase

+ Writing bits for VM (virtual memory) operation
« Writing bits for view mapping for image and data section

Before we take a closer look at each scenario, we need to make clear some
background information. In each process view, the space which contains
CFGBitmap can be divided into two parts: shared and private.

MiCfgBitMapSection is a shared memory section object that contains CFGBitmap’s
shared bitmap content. It is shared with every process. Each process sees the
same content in the shared section when it maps MiCfgBitMapSection in its process
virtual memory space. The shared module (DLL files, etc.) bitmap information
will be written by the mapping method described in Section 3.a.

Trend Micro | Exploring Control Flow Guard in Windows 10

However, each process requires a part in the CEFGBitmap that is not shared among
all processes. It needs to write some of the module’s bitmap information into the
CEGBitmap as private. The private part will not be shared to all processes. The
EXE module’s bitmap information will be written using the mapping method in
Section 3.b. The figure below shows a common scenatio.

MiCfgBitMapSection

Process A Process B Process C

Figure 14. Three processes with the shared part bitmap content in the
M:iCfgBitMapSection and their private sections

a. In the Reladlmage/ReloadlmageAgain, writing bits for shared module for shared
module (DLL files, etc.) by M:UpdateCfgSystenW ideBitmap.

As seen in Section 2, after getting the image’s function RVA compressed list and
saving it to the image’s Contro/_Area data structure (In build 6.4. 9841 :
_Control_Area ->SelmageStub->[+4]->[+24h]; in build 10.0.9926:
_Control_Area ->SelmageStub->[+0]->[+24h)]), it will call MiSelectlmageBase. The
tunction is the core function of ASLR implementation. It returns the final
selected base address. The selected base address is very important for writing bit
information into CFGBitmap. After getting the final decided base address, it will
call M:UpdateCfgS'ystenWideBitmap.

The main task of MiUpdateCfaSystemWideBitmap is to translate compressed RVA
list to “1” bit in the CFGBitmap. The bitmap content which is written by this

Trend Micro | Exploring Control Flow Guard in Windows 10
function is shared and will be shared by all processes in the system. The function
only works for shared module (DLL files, etc.).
MiUpdateCfgSystemWideBitmap takes 3 arguments:
o Pointer to the image’s Contro/_Area structure.
o The image’s selected base address
o Pointer to compressed RVA list

MiUpdateCfgSystemW ideBitmap’s main logic is as follows:

A. Is EXE

B. Map MiCfgBitMapSection into the process

.|

-

C. Decompress current unit in the compressed
RVA list

D. Set bit in the MiCfgBitMapSection mapping

space

E. Current unit pointer to next unit

. Is current unit is ending o
ompressed RVA list

Figure 15. Main logic of MiUpdateCfgSystemWideBitmap

In Step B, it maps the CFGBitmap shared memory into the system process space.
It doesn’t map all of the shared memory’s total size. It converts the selected
image’s base address to CEGBitmap’s offset and use the converted result as the

starting offset of the mapping. The conversion is as follows:

Trend Micro | Exploring Control Flow Guard in Windows 10

Offset in bitmap = Image selected base address >> 6. In like manner, the mapping size is
the image size >> 6.

The function also is called when the image need to be relocated again
(ReloadlmageAgain function).

b. Writing bits for private modules (EXE files, etc.) in the process initialization
phase. It calls the function M:iCommitl”adCfgBits, which is a dispatcher function.
You may use Figure 13 as a reference. Itis called in certain scenarios. The
function’s primary job is to write bits for the space that is described by the input
Virtual Address Descriptor (VAD). The main logic is as follows:

he input VAD indicate the space
is NOT belong to image

e input VAD indicate the space
is NOT shared module

Call MiMarkPrivateOpenCfgBits

he input VAD indicate the space
is shared module

Call MiMarkPrivatelmageCfgBits

Error

Call MiMarkSharedimageCfgBits

Figure 16. MiMarkPrivatelmageCfgBits function handle for writing bits for private
module

The function MiMarkPrivatelmageCfeBits implements writing bit information into
CFG Bitmap for private modules (EXE files, etc.). When the system maps a view
of the EXE image section or starts a process, the function is being called.

The function takes two arguments:

1. Address of global variable for CFGBitmap information

2. The VAD for the image space

Trend Micro | Exploring Control Flow Guard in Windows 10

The VAD (Virtual Address Descriptor) is a structure which is used to describe a
range of virtual memory space.

The function’s primary job is to convert the input VAD’s related compressed
RVA list to the bitmap information, and write bits privately in the CFGBitmap.
The main logic is as follows:

'

A. Get the VAD compressed RVA list

A

B.Unextract bitmap information into a

allocated result buffer

A

C. Copy the result buffer into mapped
CFGBitmap space privately

Figure 17. Main logic for MiMarkPrivatelmageClgBits

At step A, the related compressed RVA list can be retrieved from the input
VAD’s related Control_Area structure, which is saved in the MiRelocatelmage (see
Section 2).

This function’s main step is Step C. It implements writing privately the
MiCfgBitMapSection32 section mapped space, which I described in Section 3.b. The
mapping for write private bits is read-only. How do we write bits into the mapped
space? Its key steps are the following:

1. Get the target mapped space address’s physical address (PFN:
Physical Frame Number)

ii. Apply a blank Page Table Entry (PTE) and fill the PTE with the
physical address, which was acquired from the previous step. The
new PTE will be mapped to the same physical page that includes the
target MiCfgBitMapSection32 mapped virtual address.

Trend Micro | Exploring Control Flow Guard in Windows 10

iii. Copy the resulting buffer (Figure 12) into the new PTE represent
virtual address. The physical page thus contains the resulting buffer

content.
iv. Release the new PTE.

After the steps mentioned above, the bitmap information is copied to the
current process virtual memory space. But this will have no impact on

MiCfgBitMapSection. In other words, MiCfgBitMapSection will not know the
bitmap is changed. Other processes will not see changes; the newly added

bitmap information is private for the current process.

c. Writing bits for virtual memory (VM) operations. If a process has a virtual
memory operation, it may impact their bits status in CEFGBitmap’s bitmap.
From the scenario in Figure 13, it will call MiMarkPrivateOpenCfgBits. The
function’s primary job is to copy pages full of “1” or “0” to the CFGBitmap
space privately.

1. For the NtAllocV irtualMemory function

If a process calls the N£ANocl irtualMemory tunction to allocate
virtual memory with executable attributes, the N'T kernel will set
all relative bit to “1” in CFGBitmap privately. But if the allocated
memory’s protect mask has SEC_WRITECOMBINE, the NT
kernel will use “0” to set the bitmap.

ii. For the MiProtectV irtualMemory function

If a process calls MzProtectV irtuallMemory to change the range of
virtual memory’s protection to “executable,” the N'T kernel will set
all relative bit to “1” in CFGBitmap privately.

d. Writing bits for view mapping for image and data section.

1. For mapping view for image section (DLL, .EXE, etc.), if the image
not shared, the handling process is that of Section 4.b. If the image
is shared, it will be handled by the MiMarkSharedlnmageClgBits
function (Figure 13). It traverses each page in the mapping space
and converts the page address to the offset in the CFGBitmap.

Trend Micro | Exploring Control Flow Guard in Windows 10

i. If the offset in the CFGBitmap is not backed by PrototypePTE,
the related bits information will be copied onto the
CEFGBitmap space privately.

ii. If the offset in the CFGBitmap already has bitmap
information, the part of the CFGBitznap will be changed to
read-only.

ii. For mapping view for the data section, the handling is the same as in
Section 4.c.1.

5. The steps mentioned above occur in the kernel mode. But for the user mode, the
CEFGBitmap needs access to the LdrplalidateUserCalll arget function, which 1
described in the previous portion. How will the user mode be made aware of the
CEFGBitmap mapped address? When creating a process, the NT kernel calls the
PspPrepareSystemDInitBlock function to write the CFGBitap mapped address and
length to a global variable’s fields, whose data structure is the PspSysternD//InitBlock
structure. The PspSystemDIInitBlock is the tixed address and can be accessed from
both the user mode and kernel mode code.

ChildEBF Retiddr Args to Child

00 b9cbchec 8lcedead 00000000 bOed7a80 00000Z2aa nt!PspPrepareSystemnDllInitBlock (FPO: [SEH])

01 b9=5c634 81lcebb89 b9c25c794 b9cEcbhbdl 9bai?8bc nt!|PspSetuplUserProcessiddressSpace+0xzl10d (FPO: [2,13.4])

02 b9cEc?el 8lceffas 00000000 00000000 OOOOQOOO0 nt!PspillocateProces=+0x%a% (FPO: [SEH])

03 b9=5cfZ0 81bldfe? 000beckc 000becz20 02000000 nt!HtCreatelUserProces=+0x444 (FPO: [SEH])

04 b9cScfz0 774f{e240 000beckc 000becz0 02000000 nt!KiSystemServicePostCall (FPO: [0.3] TrapFrame @ b9cbcibd)

Figure 18. Call stack

The user mode code can access the PspSystenzD//InitBlock global variable’s
CEGBitmap field by hard code.

6. In Figure 4, the _guard_check_icall function pointer will point to
LdpValidateUserCalllarget in ntdll.dll. When and how does this occur? The
LdrpClgProcessIoadConfig function performs this job. The process creating progress
will call LdrpClgProcessl_oadConfig in user mode.

ChildEBP Retiddr Args to Child

00 oovdfed4 774c95bl 7748b308 7£144000 008el680 ntdll!ILdrplfigProcessloadConfig (FPO: [Hon-Fpol)

01 007d£700 7753185 6cdfl2c? 7£1d44000 00000000 ntdll!LdrpProcessMappedModule+0x117? (FPO: [0.5.41)
02 007df904 774cdB8fb 6cdf1297 00000000 00000000 ntdll!LdrpInitializeProcess+0xdaf (FPO: [SEH])

03 007df954 774cd9a0 00000000 00000000 007df970 ntdll! ILdrplnitiali=e+0=zal (FPO: [Hon-Fpol)

04 007df95c 00000000 0074d€£970 774830000 00000000 ntdll!IdrInitializeThunk+0x10 (FFO: [2.0.0]1)

Figure 19. In this function, it will call modify _guard check_icall ‘s value to pointer
to LdrplalidateUserCallT arget

Trend Micro | Exploring Control Flow Guard in Windows 10

7. After all preparations are set, if the indirect call’s target address’s related bit is not
“1” in the CFGBitmap, it violates CFG. The process will take action to handle the
violation. The handle function is R#pHandlelnvalidUserCalll arget. The function
takes the indirect call target as the only argument. The function’s main logic is as
follows:

A.The process’s flags contain
ExecuteEnable

B.The process’s flags contain
ExecuteDisable

C.The process’s flags contain
DisableThunkEmulation

D-Is Indirect Call Target address’i
executable

A 4

E. INT 29

v
End

Figure 20. Main logic of R#pHandlelnvalidUserCalll arget

The function’s main job is to check the Data Execution Prevention (DEP) status
and raise znterrupt 29, the kernel interrupt handle routine KiRaiseSecurityCheckFailure.
Its behavior is stopping the process.

If an indirect call target address’s related bit location in the CFGBitnap cannot be
accessed (e.g., out of range of CFGBitmap space), it means that the target address
is invalid. The system will throw the access violation exception. When the
exception goes back to the user mode handle function KiUserExceptionDispatcher, it
will call RTT.DispatchExeption. In RTI.DispatchExeption, it will check the
exception’s happen address. If the address is for instruction to access CFGBitmap,
it will go to RepHandlelnvalidUserCallT arget too.

Trend Micro | Exploring Control Flow Guard in Windows 10

8. If a process needs to customize its CFGBitmap, it can call
NiSetlnformationV irtuaMemory in ntdll.dll. The kernel implements the feature in the
tunction MiCfgMarkV alidEntries. MiCfgMarkl alidEntries take a buffer and its
length. Every unit in the buffer is eight bytes. The first four bytes is the target
address, which wants to set the related bit in CFGBitznap, and the last four bytes is
the flag to set the bit to “0” or “1.” MiCfgMarkl alidEntries customizes the
CEGBitmap privately, which is only seen by the current process.

9. If an attacker needs to change the CFGBitmap content from the user mode code, it
could be impossible. This is because the CEFGBitmap is mapped read-only, which
was discussed in Section 3.b. Either the changing the space protection or writing
value to the space will fail.

Weaknesses of CFG

Of course, this mechanism is not without some weak points. We have outlined some of the
weaknesses of CFG.

« The CFGBitmap space’s base address is stored in a fixed addres,s which can be
retrieved from user mode code. This was described in the implementation of
CFG. This is important, security data but however, it can be easily gotten.

« If the main executable is not enabled for CFG, the process is not protected by
CFG even if it loaded a CFG-enabled module.

+ Based on Figure 20, if a process’s main executable has disabled DEP (the
process’s ExecuteEnable is enabled by compiled with /NXCOMPAT:NO), it
will bypass the CFG violation handle, even if the indirect call target address is
invalid.

« Every bit in the CFGBitmap represents eight bytes in the process space. So if
an invalid target call address has less than eight bytes from the valid function
address, the CFG will think the target call address is “valid.”

« If the target function generated is dynamic (similar to JIT technology), the
CFG implement doesn’t protect it. This is because N£A/ocl irtualMenory will

Trend Micro | Exploring Control Flow Guard in Windows 10

set all “1” in CFGBitmap for allocated executable virtual memory space
(described in 4.c.i). It’s possible that customizing the CEFGBitmap via
MiCfgMark 1 alidEntries can address this issue.

Trend Micro Incorporated, a global leader in security software, strives to make the
world safe for exchanging digital information. Our innovative solutions for consumers,
businesses and governments provide layered content security to protect information
on mobile devices, endpoints, gateways, servers and the cloud. All of our solutions
are powered by cloud-based global threat intelligence, the Trend Micro™ Smart
Protection Network™, and are supported by over 1,200 threat experts around the
globe. For more information, visit www.trendmicro.com.

©2015 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend
Micro t-ball logo are trademarks or registered trademarks of Trend Micro,
Incorporated. All other product or company names may be trademarks or registered
trademarks of their owners.

™

) MICRDO
-

225 E. John Carpenter Freeway

Suite 1500

Irving, Texas

75062 U.S.A.

Phone: +1.817.569,8900

