
Automatic 
Classifying of 
Mac OS X Samples
Spencer Hsieh, Pin Wu and Haoping Liu
Trend Micro Inc., Taiwan



TREND MICRO LEGAL DISCLAIMER
The information provided herein is for general information 

and educational purposes only. It is not intended and 

should not be construed to constitute legal advice. The 

information contained herein may not be applicable to all 

situations and may not reflect the most current situation. 

Nothing contained herein should be relied on or acted 

upon without the benefit of legal advice based on the 

particular facts and circumstances presented and nothing 

herein should be construed otherwise. Trend Micro 

reserves the right to modify the contents of this document 

at any time without prior notice.

Translations of any material into other languages are 

intended solely as a convenience. Translation accuracy 

is not guaranteed nor implied. If any questions arise 

related to the accuracy of a translation, please refer to 

the original language official version of the document. Any 

discrepancies or differences created in the translation are 

not binding and have no legal effect for compliance or 

enforcement purposes.

Although Trend Micro uses reasonable efforts to include 

accurate and up-to-date information herein, Trend Micro 

makes no warranties or representations of any kind as 

to its accuracy, currency, or completeness. You agree 

that access to and use of and reliance on this document 

and the content thereof is at your own risk. Trend Micro 

disclaims all warranties of any kind, express or implied. 

Neither Trend Micro nor any party involved in creating, 

producing, or delivering this document shall be liable 

for any consequence, loss, or damage, including direct, 

indirect, special, consequential, loss of business profits, 

or special damages, whatsoever arising out of access to, 

use of, or inability to use, or in connection with the use of 

this document, or any errors or omissions in the content 

thereof. Use of this information constitutes acceptance for 

use in an “as is” condition.

Contents

Introduction

4

Mac OS X Samples Dataset

6

Classification of Mach-O Files

10

Spencer Hsieh 
Trend Micro Inc., Taiwan 
spencer_hsieh@trendmicro.com

Pin Wu 
Trend Micro Inc., Taiwan 
pin_wu@trendmicro.com

Haoping Liu 
Trend Micro Inc., Taiwan 
haoping_liu@trendmicro.com

Malware Families

11

Conclusion

15



Abstract

Thanks to the rapidly increasing volume of malware, the security industry 

has been struggling to improve automatic malware classification for many 

years. Many recent market research reports have suggested that the 

growth of Apple’s Mac OS X has outpaced PC platforms for several years. 

This shifting trend is attracting more malware authors to develop malware 

for Mac OS X. In this paper, we present a study of classifying Mac OS X 

malware with a set of features extracted from Mach-O metadata and its 

derivatives in a sample collection from VirusTotal.

Like the PE format for Windows, the Mach-O format provides a variety 

of features for classification. We collected more than 300,000 Mach-O 

samples submitted to VirusTotal during 2015–16, and filtered out irrelevant 

samples, such as samples for iOS and PowerPC. We then generated 

metadata from the Mach-O files using tools like nm, otool and strings. Meta 

information from sample files, such as segment and section structures, 

imported functions of dynamic libraries, printable strings, etc., were used 

as features for classifying Mac OS X samples. Additionally, we included 

derivative numerical features created from meta information, which have 

been introduced into learning-based malware classification widely in recent 

research studies, e.g. function call distribution, structure complexity, etc.

This study summarizes the statistical change in view of Mac OS X malware 

families, and the structure trending between benign and malicious samples 

between 2015 and 2016. With our collection of more than 300,000 files 

and over 4,000 malicious samples, our feature evaluation is based on 

composition analysis of different malware families in both aspects of meta 

and derivative features. This work uses a variety of classification algorithms 

to generate predictive models with the 2015 dataset, and to analyse the 

test results with the 2016 samples and their difference from AV vendors’ 

detections on VirusTotal. We also discuss the effectiveness of selected 

features, by ranking their importance levels in a predictive model among 

our classification tests with the 2015–16 dataset.



4 | Automatic Classifying of Mac OS X Samples

Introduction
In the early days, anti-virus tools were designed to detect malware by recognizing a fingerprint of a given 

file. However, because the number of malware patterns is prone to grow with the number of malware 

samples, signature-based detection had difficulty in coping with the exponential growth in malware 

samples. Some non-signature based approaches were developed to deal with this issue. Because of the 

prevalence of Windows operating systems, most research has focused on the PE executable format of 

Windows. However, the success of Apple in the personal computer market in recent years has attracted 

an increasing number of malware authors to create new malware for Mac OS X. In this paper, we describe 

our study of automated processing of the VirusTotal sample collection, including parsing Mach-O meta 

attributes, classification tests, and data processing for malware analysis tasks.

In the rest of Section 1, we will provide an overview of the Mach-O format and discuss other work of 

relevance to our studies. In Section 2, we present the statistics of our collection and the changes between 

the sample sets taken at different times. In Section 3, we show the results of testing predictive models 

for classification tasks. In Section 4, we study the malware families in the sample collection. Finally, we 

address discussions and our conclusions in Section 5.

Mach-O format
The format of executable files for Mac OS X is Mach-O [1], which is similar in many ways to the PE format 

for Windows [2] and the ELF format for Linux.

A Mach-O file can be divided into three parts: a header at the beginning of the fi le, load commands, and 

data in segments. The header contains only a few fields, e.g. the magic number for identification, fi le type, 

CPU type, and number of load commands.

In PE format, information about the memory layout and file structure are described in the optional header 

and section table. In Mach-O format, all of this type of information, as well as information about how to 

load an executable fi le into memory, such as the dynamic linked libraries needed for execution, and the 

entry point, are all described in load commands. In other words, load commands provide a variety of 

features for classification.



5 | Automatic Classifying of Mac OS X Samples

The actual data of a program reside in segments. Similar to the PE format, the ‘_TEXT’ segment usually 

contains the code for execution, and program data resides in the ‘_DATA’ segment.

Although Mach-O format is pretty similar to PE format, there are some major differences between them. 

Several Mach-Os can be combined into a single file, i.e. fat binary file, and these Mach-Os may have 

totally different behaviors. Therefore, we may need to consider them as different instances in classifying.

Another difference is that many PE files have a resource section, which may contain icons, cursors, 

pictures, and other kinds of resources needed for the executable file. For Mach-O most of these resources 

reside in separate files.

Related work
While there have been some studies on non-signature-based malware detection or classification, most of 

them focus on the Windows PE executable format.

In [3], the authors present a system that extracts 189 features from a PE file and describe how they 

used these features to detect malware. Although some of these features are extracted from the resource 

section of a PE file, most of the others are extracted directly from the headers of a PE file, and most of 

them have corresponding features in Mach-O format. They also used as features the DLLs referenced by 

a PE file. Mach-O files have similar information regarding the libraries referenced by an executable file.

There are other pieces of research that have tried to figure out the effectiveness of these features [4], but 

they are also based on similar features extracted from the headers of a PE file, or a combination of these 

features.

Besides the PE format, Shahzad and Farooq [5, 6] proposed a system for the ELF format of Linux. They 

used a similar approach and extracted 383 features from the ELF headers.



6 | Automatic Classifying of Mac OS X Samples

Mac OS X Samples Dataset
All of our samples were collected from VirusTotal between September 2014 and March 20161. We 

downloaded samples tagged ‘macho’ and their reports every day and fed them into our pre-processing 

system. We stored the SHA256 of each fi le with its filename, and filtered out any corrupted samples. 

Because we were only interested in samples for modern Mac OS X, any samples that were not for I386 or 

X86_64 were discarded. After that, we used some scripts and built-in tools, such as otool, nm and strings, 

to extract structure information and features from the downloaded samples.

In our study, VirusTotal samples represent real malware data from security vendors. As shown in Figure 

1, we collected Mac OS X samples from VirusTotal at an average rate of 2243.68 samples per day across 

489 fetch days.

Figure 1. VirusTotal sample fetch logs



7 | Automatic Classifying of Mac OS X Samples

Stats
After we had sifted out irrelevant samples and corrupted files, we were left with 626,900 samples and over 

4,000 malicious files for analysis. As shown in Table 1, half of the sample collection were x86_64 type and 

the other half were i386 type. In Table 2, we present the statistics of the fi le types in the collection, and in 

Table 3 we give the statistics for all malicious samples in the collection, including mean, standard variation 

and percentiles, and each sample is described in eight Mach-O attribute features: number of commands, 

number of segments, number of load dylibs, signed, number of uncommon segments, number of segment 

names, number of sections and number of section names. We use the malware detections of primary anti-

virus vendors in VirusTotal to identify malicious samples.

CPU type Samples (%)

i386 313,630 (50.02%)

x86_64 313,270 (49.97%)

Table 1. CPU type statistics.

File type Samples Percentage

MH_EXECUTE 238,028 37.97%

MH_DYLIB 224,537 35.82%

MH_BUNDLE 132,434 21.13%

MH_OBJECT 25,541 4.07%

MH_DYLIB_STUB 4,829 0.77%

MH_DSYM 1,480 0.24%

MH_DYLINKER 41 0.01%

MH_CORE 7 0.00%

MH_PRELOAD 3 0.00%

Table 2. File type statistics



8 | Automatic Classifying of Mac OS X Samples

#:4200 mean std min 25% 50% 75% max

n_cmds 23.0 6.2 2 20 23 26 56

LC_SEGMENT 4.1 0.6 1 4 4 4 7

LC_LOAD_DYLIB 9.9 4.8 0 7 10 12 39

signed 0.5 0.5 0 0 1 1 1

n_uncommon_segms 1.3 0.5 1 1 1 2 4

n_segnames 4.1 0.6 1 4 4 4 7

n_sections 26.2 8.0 1 22 29 33 40

n_sectnames 25.5 7.7 1 22 28 32 38

Table 3. Statistics of malicious samples

As we go deeper into the samples, we extract and summarize the referenced library names in the Mach-O 

metadata across each sample set. A list of the most commonly referenced libraries is shown in Table 4 – 

we can see that the same libraries were commonly used across both of the batches.

In our data exploration stage, we observe a significant difference in scale between the malicious and non-

malicious portions in our collection, that is approximately 4,000 versus 600,000. We also discover the 

fact that malicious and non-malicious samples have great overlaps in the feature space of basic Mach-O 

attributes.

Batch 1 Batch 2

libSystem libSystem

libobjc CoreFoundation

CoreFoundation libobjc

libstdc++ Foundation

Cocoa libgcc_s

libgcc_s AppKit

Foundation libstdc++

ExceptionHandling CoreServices

CoreServices Cocoa

AppKit ApplicationServices

libnspr4 Security

AudioToolbox Carbon

ApplicationServices libz

Table 4. Most referenced libraries



9 | Automatic Classifying of Mac OS X Samples

Our experiment strategy turns to using known malware samples as clues for classifying new malware or 

unknown samples, and we shift our focus to the malicious samples in our collection. As shown in Figure 2, 

we apply a dimension reduction method [7] to investigating the distribution of Mach-O attribute features 

that are associated with malicious samples, and visualize the malicious samples in a two-dimensional 

reduced space of descriptive features.

Figure 2. Illustration of malware family distribution in reduced space



10 | Automatic Classifying of Mac OS X Samples

Classification of Mach-O Files

Mach-O meta features
In our classification task, we start with a traditional predictive model scenario. The sample set Batch 1 

is used as training data, and the newer sample set, Batch 2, represents testing data. We adopt the eight 

descriptive features used to calculate data stats.

Effectiveness analysis
We tested the effectiveness of applying statistical predictive models to the classification of Mac OS X 

samples using Mach-O attributes. As shown in Table 5, we used three classic predictive models: Naïve 

Bayes, nearest neighbour, and decision tree classifiers for the experiment. The results show that statistical 

methods merely reach recall rates of 30% to 60% with Mach-O meta information. However, in further 

statistical analysis, we observed that the current performance barrier is based on information limitation. 

Too many of these Mach-O meta features are seen in both malicious and non-malicious samples, making 

them unsuitable for predicting the nature of an unknown file.

Classifier Recall rate

Naïve Bayes 60.0%

Nearest neighbors 35.2%

Decision tree 33.1%

Table 5. Prediction performance of three classification algorithms in testing



11 | Automatic Classifying of Mac OS X Samples

Malware Families
Different anti-virus companies use different ways of naming malware. However, in most cases the family 

name is the same. We unite the malware family labels of several primary vendors provided on VirusTotal, 

and perform a statistical analysis of selected malware groups with the united malware family labels in 

perspectives of time change and basic meta information of Mach-O for further analysis.

Statistics change
The Mac OS X samples uploaded to VirusTotal have changeable distributions of malware family. In our 

collection, over 20,000 raw detection names are grouped into 200 united malware family labels. As shown 

in Table 6, there is some similarity in the top 11 malware family labels appearing in the two sample sets. 

Over two different time frames, six malware groups have reappeared in all top-most places: VSearch, 

Genieo, InstallCore, SpiGot, MacKeeper and Yontoo, which indicates that each of these malware families 

constantly has a considerable number of new samples appearing in VirusTotal. In contrast, some of 

the malware families in the top 11 list appeared only in the 2016 sample set, e.g. TuneupMyMac, AMC 

(Advanced MacCleaner) and Tinyv, which are probably a new focus of Mac OS X samples.



12 | Automatic Classifying of Mac OS X Samples

Batch 1 (#:2760)

Name Count Percentage

Bundlore 611 22%

VSearch 421 15%

Genieo 263 10%

InstallCore 222 8%

SpiGot 147 5%

MacKeeper 77 3%

Refog 70 3%

KeyLogger 69 3%

Morcut 63 2%

Downloader 61 2%

Yontoo 60 2%

Batch 2 (#:1440)

Name Count Percentage

Genieo 197 14%

InstallCore 167 12%

MacKeeper 160 11%

Tinyv 157 11%

TuneupMyMac 123 9%

AMC 94 7%

Yontoo 65 5%

VSearch 63 4%

SpiGot 57 4%

GetShell 52 4%

Elite 42 3%

Batch 1+2 (#:4200)

Name Count Percentage

Bundlore 646 15%

VSearch 484 12%

Genieo 460 11%

InstallCore 389 9%

MacKeeper 237 6%

SpiGot 204 5%

TuneupMyMac 180 4%

Tinyv 157 4%

Yontoo 125 3%

GetShell 102 2%

AMC 94 2%

Table 6. Top malware families in sample set

Composition
Among the united malware families, we select 13 notable malware groups: Bundlore, Flashback, Genieo, 

GetShell, InstallCore, MacKeeper, Morcut, Ocean-Lotus, Refog, SpiGot, TuneupMyMac, VSearch and 

Yontoo, and then make a statistical study of their Mach-O attribute features. Table 7 shows that some 

statistical consistency can be observed in the Mach-O features of the two batches of malware, suggesting 

that, by looking at many attributes, it will be possible to statistically distinguish malware from non-malware.

Bundlore
#: 

611
Genieo

#: 
263

Refog
#:
70

SpiGot
#: 

147
VSearch

#: 
421

Yontoo
#:
60

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

ncmds 23.47 3.87 23.20 4.21 33.24 11.48 24.16 2.75 20.19 3.05 22.27 2.80

LC_

SEGMENT
4.02 0.41 4.21 0.58 4.36 0.51 4.25 0.44 4.24 0.66 3.93 0.55

LC_LOAD_

DYLIB
10.62 2.91 10.87 3.75 17.56 9.92 10.03 2.81 6.98 1.97 7.83 2.53

signed 0.17 0.38 0.77 0.42 0.90 0.30 0.97 0.16 0.38 0.49 0.75 0.44

n_

uncommon_

segms

1.10 0.30 1.33 0.47 1.39 0.49 1.25 0.44 1.48 0.50 1.12 0.32

n_segnames 4.02 0.41 4.21 0.58 4.36 0.51 4.25 0.44 4.24 0.66 3.93 0.55

n_sections 30.28 6.67 25.31 7.71 27.57 6.02 23.99 4.90 26.63 4.00 27.75 7.05

n_sectnames 29.34 6.54 24.94 7.40 26.91 5.57 23.66 5.37 25.97 3.74 27.23 6.81



13 | Automatic Classifying of Mac OS X Samples

Bundlore
#:
35

Genieo
#: 

197
Refog

#:
19

SpiGot
#:
57

VSearch
#:
63

Yontoo
#:
65

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

ncmds 23.63 1.19 24.16 3.65 38.84 17.19 26.04 4.63 21.19 4.29 21.97 2.60

LC_

SEGMENT
4.09 0.28 4.00 0.63 4.47 0.51 4.23 0.42 4.27 0.65 3.72 0.57

LC_LOAD_

DYLIB
8.77 1.46 12.04 3.34 23.63 15.17 11.95 4.84 7.65 3.33 7.06 1.96

signed 0.94 0.24 0.88 0.32 0.79 0.42 0.93 0.26 0.44 0.50 0.97 0.17

n_

uncommon_

segms

1.09 0.28 1.34 0.47 1.47 0.51 1.23 0.42 1.52 0.50 1.06 0.24

n_segnames 4.09 0.28 4.00 0.63 4.47 0.51 4.23 0.42 4.27 0.65 3.72 0.57

n_sections 33.09 0.28 25.72 6.93 27.84 7.56 28.70 2.88 26.89 4.00 27.02 5.76

n_sectnames 32.09 0.28 25.13 6.65 27.26 7.13 28.12 2.69 26.16 3.72 26.42 5.55

Table 7. Malware families in Batch 1 and Batch 2

In Table 8, signed and unsigned code samples both exist in several malicious or ‘unwanted-ware’ families. 

There may be the opportunity to use the signatures of code-signed malicious samples for identification.

Flash 
back

#:
28

Get 
Shell

#:
50

Install 
Core

#:
222

Mac 
Keeper

#:
77

Ocean 
Lotus

#:
63

Tuneup 
MyMac

#:
57

Morcut
#:
63

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ncmds 15.68 1.63 11.56 0.91 24.09 1.59 24.75 6.87 17.55 0.51 25.91 1.26 23.17 5.76

LC_

SEGMENT
3.89 0.31 4.72 0.45 4.00 0.00 3.92 0.70 4.55 0.51 4.51 0.50 3.98 0.85

LC_LOAD_

DYLIB
5.89 1.79 1.72 0.45 9.91 1.71 11.94 4.11 5.00 0.00 11.93 0.26 10.94 5.74

signed 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.03 0.18

n_

uncommon_

segms

1.00 0.00 1.72 0.45 1.00 0.00 1.51 0.50 1.55 0.51 1.51 0.50 1.63 0.58

n_segnames 3.89 0.31 4.72 0.45 4.00 0.00 3.92 0.70 4.55 0.51 4.51 0.50 3.98 0.85

n_sections 13.68 2.31 5.96 3.17 30.15 2.71 27.68 4.09 16.77 4.10 31.51 1.45 26.37 8.10

n_sectnames 13.54 2.01 5.96 3.17 29.15 2.71 27.12 3.67 16.77 4.10 30.51 1.45 25.86 7.91



14 | Automatic Classifying of Mac OS X Samples

Flash 
back

#:
6

Get 
Shell

#:
52

Install 
Core

#:
167

Mac 
Keeper

#:
160

Ocean 
Lotus

#:
9

Tuneup 
MyMac

#:
123

Morcut
#:
2

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ncmds 13.67 3.39 11.46 0.85 24.73 1.48 24.01 5.92 18.44 0.53 27.28 0.69 20.00 22.63

LC_

SEGMENT
3.67 0.52 4.77 0.43 4.00 0.00 3.90 0.70 4.44 0.53 4.52 0.50 3.00 2.83

LC_LOAD_

DYLIB
4.33 2.88 1.77 0.43 10.39 1.89 11.10 3.50 6.00 0.00 12.76 0.48 11.00 15.56

Signed 0.00 0.00 0.00 0.00 0.99 0.08 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

n_

uncommon_

segms

1.33 0.52 1.77 0.43 1.00 0.00 1.51 0.50 1.44 0.53 1.52 0.50 1.50 0.71

n_segnames 3.67 0.52 4.77 0.43 4.00 0.00 3.90 0.70 4.44 0.53 4.52 0.50 3.00 2.83

n_sections 14.00 3.58 5.62 2.98 30.34 3.32 27.73 3.15 15.11 1.05 32.63 0.48 18.50 19.09

n_sectnames 13.67 3.27 5.62 2.98 29.34 3.32 27.12 2.83 15.11 1.05 31.63 0.48 18.00 18.38

Table 8. Malware families in Batch 1 and Batch 2 (code signed or unsigned)

As shown in Figure 3, we visualize the distribution of the samples of the selected 13 malware families in a 

2-D space reduced from eight-dimensional original space. As indicated by the distribution of same-colour 

clusters in different regions, it shows that samples within a malware family can be aggregated closely to 

several central samples, and also within the malware family, the samples are variant in group and similar 

within subgroup.

Figure 3. Illustration of sample distribution of selected 13 malware families in reduced space.



15 | Automatic Classifying of Mac OS X Samples

Conclusion
By observing the dataset, we can figure out that the number of pieces of Mach-O malware is still pretty 

small compared to the number of pieces of PE malware. Among the Mach-O malware, the most common 

malware families by number are adware (e.g. Bundlore, VSearch and Genieo). Because of the nature 

of adware, these pieces of malware are also more likely to have signatures of code compared to the 

backdoor malware used in targeted attacks, like Morcut or OceanLotus.

In comparison with PE, we speculate that the lack of a resource section in Mach-O files could limit the 

ability to describe the difference between malicious and normal samples at the meta information level. Our 

work will look for further effective representation of Mac OS X samples for classification tasks in future.



16 | Automatic Classifying of Mac OS X Samples

REFERENCES
1. OS X ABI Mach-O File Format Reference. https://web.archive.org/web/20090901205800/http:/developer.apple.com/mac/

library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html.

2. Portable Executable and Object File Format Specification. https://web.archive.org/web/20160418132427/https:/download.
microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/pecoff.doc.

3. Shafi q, M. Z.; Tabish, S. M.; Mirza, F.; Farooq, M. PE-miner: Mining structural information to detect malicious executables in 
real time. Recent advances in intrusion detection, pp.121–141. Springer Berlin Heidelberg, 2009.

4. Raman, K. Selecting features to classify malware. InfoSec Southwest 2012 (2012).

5. Shahzad, F.; Farooq, M. ELF-Miner: using structural knowledge and data mining methods to detect new (Linux) malicious 
executables. Knowledge and information systems 30, no. 3 (2012): 589–612.

6. Liao, Y. PE-Header-Based Malware Study and Detection. Retrieved from the University of Georgia: http://www.cs.uga.
edu/~liao/PE_Final_Report.pdf.

7. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research 9, no. 2579–2605 (2008): 
85.

https://web.archive.org/web/20090901205800/http:/developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://web.archive.org/web/20090901205800/http:/developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://web.archive.org/web/20160418132427/https:/download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/pecoff.doc
https://web.archive.org/web/20160418132427/https:/download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/pecoff.doc
http://www.cs.uga.edu/~liao/PE_Final_Report.pdf
http://www.cs.uga.edu/~liao/PE_Final_Report.pdf


©2017 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro 

t-ball logo are trademarks or registered trademarks of  Trend Micro, Incorporated. All other 

product or company names may be trademarks or registered trademarks of their owners.

TREND MICROTM

Trend Micro Incorporated, a global cloud security leader, creates a world safe for exchanging digital information with its Internet content security and 

threat management solutions for businesses and consumers.  A pioneer in server security with over 20 years experience, we deliver top-ranked client, 

server, and cloud-based security that fits our customers’ and partners’ needs; stops new threats faster; and protects data in physical, virtualized, and 

cloud environments. Powered by the Trend Micro™ Smart Protection Network™ infrastructure, our industry-leading cloud-computing security technology, 

products and services stop threats where they emerge, on the Internet, and are supported by 1,000+ threat intelligence experts around the globe. 

For additional information, visit www.trendmicro.com.


