
Exploring the Long Tail of
(Malicious) Software Downloads

Prof. Babak Rahbarinia, Auburn University at Montgomery
Dr. Marco Balduzzi, Forward-Looking Threat Research Team, Trend Micro
Prof. Roberto Perdisci, University of Georgia

TREND MICRO LEGAL DISCLAIMER
The information provided herein is for general information

and educational purposes only. It is not intended and

should not be construed to constitute legal advice. The

information contained herein may not be applicable to all

situations and may not reflect the most current situation.

Nothing contained herein should be relied on or acted

upon without the benefit of legal advice based on the

particular facts and circumstances presented and nothing

herein should be construed otherwise. Trend Micro

reserves the right to modify the contents of this document

at any time without prior notice.

Translations of any material into other languages are

intended solely as a convenience. Translation accuracy

is not guaranteed nor implied. If any questions arise

related to the accuracy of a translation, please refer to

the original language official version of the document. Any

discrepancies or differences created in the translation are

not binding and have no legal effect for compliance or

enforcement purposes.

Although Trend Micro uses reasonable efforts to include

accurate and up-to-date information herein, Trend Micro

makes no warranties or representations of any kind as

to its accuracy, currency, or completeness. You agree

that access to and use of and reliance on this document

and the content thereof is at your own risk. Trend Micro

disclaims all warranties of any kind, express or implied.

Neither Trend Micro nor any party involved in creating,

producing, or delivering this document shall be liable

for any consequence, loss, or damage, including direct,

indirect, special, consequential, loss of business profits,

or special damages, whatsoever arising out of access to,

use of, or inability to use, or in connection with the use of

this document, or any errors or omissions in the content

thereof. Use of this information constitutes acceptance for

use in an “as is” condition.

Contents

Introduction

4

Data Collection and Labeling

6

Dataset Overview

10

Prof. Babak Rahbarinia
Auburn University
Montgomery, AL 36117, USA
brahbari@aum.edu

Dr. Marco Balduzzi
Forward-looking Threat Research (FTR)
Team Trend Micro Inc.
marco_balduzzi@trendmicro.com

Prof. Roberto Perdisci
University of Georgia
Athens, GA 30602, USA
perdisci@cs.uga.edu

Analysis of Software
Download Events

13

Downloading Processes and
Machines

22

Exploring and Labeling
Unknown Files

30

Discussion

38

Related Work

41

Conclusions

43

Acknowledgments

44

Abstract

In this paper, we present a large-scale study of global trends in software

download events, with an analysis of both benign and malicious downloads

and a categorization of events for which no ground truth is currently

available. Our measurement study is based on a unique, real-world dataset

collected at Trend Micro containing more than 3 million in-the-wild web-

based software download events involving hundreds of thousands of

internet machines over a period of seven months.

Somewhat surprisingly, we found that despite our best efforts and the use

of multiple sources of ground truth, more than 83% of all downloaded

software files remain unknown, i.e. cannot be classified as benign or

malicious, even two years after they were first observed. If we consider the

number of machines that have downloaded at least one unknown file, we

find that more than 69% of the entire machine/user population downloaded

one or more unknown software file. Because the accuracy of malware

detection systems reported in the academic literature is typically assessed

only over software files that can be labeled, our findings raise concerns on

their actual effectiveness in large-scale real-world deployments and their

ability to defend the majority of internet machines from infection.

To better understand what these unknown software files might be, we

perform a detailed analysis of their properties. We then explore whether it

is possible to extend the labeling of software downloads by building a rule-

based system that automatically learns from the available ground truth, and

can be used to identify many more benign and malicious files with very high

confidence. This allows us to greatly expand the number of software files

that can be labeled with high confidence, thus providing results that can

benefit the evaluation of future malware detection systems.

4 | Exploring the Long Tail of (Malicious) Software Downloads

1. Introduction
Most modern malware infections are caused by web-driven software download events, such as infections

via drive-by exploits [6] or social engineering attacks [11]. In response to the growth of infections via

software downloads, the security community has conducted a wealth of research, the majority of which

is dedicated to detection and remediation efforts [2, 7, 14-16, 20]. Some recent studies focused on

measuring specific infection vectors. For instance, Caballero et al. [1] studied the business infrastructure

of malware distribution networks, while Rossow et al. [17] and Kwon et al. [10] focused their attention

towards malware droppers and provided detailed measurements to better understand how dropper-

driven infections work.

In this paper, we aim to provide a broader, large-scale study of global trends in software download events,

with an analysis of both benign and malicious downloads, and a categorization of events for which no

ground truth is currently available. Our measurement study is based on a unique, real-world dataset we

obtained from Trend Micro – a leading anti-malware vendor (which we refer to as AMV). This dataset

contains detailed (anonymized) information about 3 million in-the-wild web-based software download

events involving over a million internet machines, collected over a period of seven months. Each download

event includes information such as a unique (anonymous) global machine identifier, detailed information

about the downloaded file, the process that initiated the download, and the URL from which the file

was downloaded. To label benign and malicious software download events and study their properties,

we make use of multiple sources of ground truth, including information from VirusTotal.com and AMV’s

private resources. This ground truth was collected over several months, both at a time close to the

software download events as well as many months after the collection of our dataset, to account for the

time typically needed by anti-malware vendors to develop new malware signatures.

Somewhat surprisingly, we found that despite our best efforts, we were only able to label less than

17% of the 1,791,803 software files contained in our dataset. In other words, more than 83% of all

downloads remain unknown, even two years after they were first observed. Most of these files have very

low prevalence. Namely, when considered independently from one another, each file is downloaded by

only one (or few) machines overall. Therefore, one may think that these files are uninteresting, and the fact

that they remain unknown is understandable since they would impact a negligible number of machines

if they were malicious. However, if we consider the number of machines that have downloaded at least

5 | Exploring the Long Tail of (Malicious) Software Downloads

one unknown file, we find that more than 69% of the entire machine population downloaded one or more

unknown software file(s) during our observation period. This result is significant, in that it highlights a major

challenge faced by the malware research community. In fact, most malware detection and classification

systems proposed in the scientific literature are naturally evaluated only on samples (i.e., executable files)

for which ground truth is available. Unfortunately, because the accuracy of these systems can only be

assessed over a small minority of in-the-wild software downloads, this raises concerns on their actual

effectiveness in large-scale real-world deployments, and on their ability to defend the majority of internet

machines from infection.

To better understand what these unknown software files may look like, we performed a detailed analysis

of their properties. We then explored whether it is possible to extend the labeling of software downloads

by building a rule-based system that automatically learns from the available ground truth. Specifically,

we aim to generate human-readable classification rules that can accurately identify benign and malicious

software using a combination of simple features, while keeping the false positive rate to a low target

rate of 0.1%, which is a common threshold in the anti-malware industry. For instance, we show that

features such as software signing information can be leveraged to improve file labeling. In particular,

unlike studies that focus primarily on potentially unwanted programs [8, 9, 19], we show that software

signing information is present in other types of malware, contrast them with signed benign programs, and

leverage this information for labeling purposes. These automatically extracted rules allow us to increase

the number of samples labeled by 233% (a 2.3x increase) with high confidence, compared to the available

ground truth. Furthermore, each newly labeled sample can be traced back to the human-readable rule

that assigned the label, thus providing a way for analysts to interpret and verify the results. By providing a

way to expand the labeling of software files significantly, our rule-based system can benefit the evaluation

of future malware detection systems.

In summary, our paper makes the following contributions:

•	 We explore trends in the software downloads collected in-the-wild from over a million machines from a

leading anti-malware provider and study the proprieties of benign, malicious, and unknown software.

•	 We report on the importance of considering low prevalence files, which in aggregate are run by almost

70% of the monitored machines and whose true nature tends to remain unknown to AV vendors even

two years after they were first observed.

•	 We present a novel rule-based classification system that learns human-readable file classification

rules from easily measured features, such as the process used to download a file and the software file

signer. We then show that this system can be used to significantly increase the number of software

files that can be labeled, compared to the available ground truth, thus providing results that can

benefit the evaluation of future malware detection systems.

6 | Exploring the Long Tail of (Malicious) Software Downloads

2. Data Collection and Labeling

2.1. Software Download Events
To collect in-the-wild software download events, we monitor more than a million machines of a well-known

leading anti-malware vendor (we only monitor download events from customers who have approved

sharing this information with AMV). Each customer machine runs a monitoring software agent (SA), which

is responsible for identifying web-based software downloads and reporting these events to a centralized

data collection server (CS). Each download event is represented by a 5-tuple, (f, m, p, u, t), where f is

the downloaded file, m is the machine that downloaded f, p is the process on the machine that initiated

the download, u is the download URL, and t is a timestamp. The downloaded files and client processes

are uniquely identified by their respective file hash, whereas the machines are uniquely identified by

an anonymized global unique ID (generated by AMV’s software agent installation). We also have the

(anonymized) path on disk — including file names — of every download process and downloaded file.

While each SA captures all web-based download events observed on the system, only events considered

of interest are reported to the CS for efficiency reasons. Specifically, our dataset contains only software

download events that satisfy the following conditions:

•	 The newly downloaded file is executed on the user’s machine. Namely, software files that are

downloaded from the web but remain “inactive” (i.e., not executed on the system) are not reported.

•	 The current prevalence of the downloaded file is below a predefined threshold, σ. For instance,

consider a newly downloaded software file f observed by a monitored machine m at time t. This new

event is reported by m to the CS only if the number of distinct machines that downloaded the same

file (as determined based on its hash) before time t is less than σ.

•	 The URL from which the file is downloaded is not whitelisted. For instance, software updates from

Microsoft or other major software vendors were not collected.

Overall, the rules described above aim to reduce the system-overhead and bandwidth consumption

needed to transfer the download events from millions of monitoring agents to the collection server.

7 | Exploring the Long Tail of (Malicious) Software Downloads

During our data collection period, σ was set to 20. Each file could be reported up to 20 times if it occurred

in up to 20 different download events. It is possible that a file will reach a true prevalence higher than 20,

though this will not be reflected in the dataset we analyze. At the same time, if the final prevalence of a file

(i.e., at the end of the collection period) is less than 20, this means that the file was actually downloaded

by less than 20 of the monitored machines, as reported in our measurements. Of all the files we observed,

we found that 99.75% have a prevalence of less than 20. Namely, our prevalence measurements were

capped at 20 for only less than 0.25% of all the downloaded files we observed (see Section 4.1 for more

details).

2.2. File Labeling
For every software file, we gather related ground truth using multiple sources. Specifically, we used a large

commercial whitelist and NIST’s software reference library1 to label benign software files. Note that this

information is gathered from both downloaded files and downloading processes. We also make use of

VirusTotal.com (VT). Specifically, given a software file f, we query VT both close to the time of download

and then again almost two years after the data collection. We let this large amount of time pass before

re-querying VT, to give plenty of time for VT to collect and process (via crowdsourced submissions) files

that we observed, and for anti-virus applications to develop new detection signatures.

We label a file as benign if it matches our whitelists or if all anti-virus engines (AV) on VT still classify the file

as benign, even after almost two years from collection. We label a file as likely benign if it is classified as

benign by VT but the time difference between first and last scans is less than 14 days. To label malicious

files, we adopted the following approach. Of the more than 50 anti-virus (AV) engines on VT, we consider

two groups: a group of “trusted” AVs that includes ten of the most popular AV vendors (i.e., Symantec,

McAfee, Microsoft, Trend Micro, etc.), and a group containing all other available AVs, which tend to

produce somewhat less reliable detection results. Then we label a file as malicious if at least one of the

ten “trusted” AVs assigns it an AV label. On the other hand, if none of the ten “trusted” AV vendors assigns

an AV label to the file but at least one of the remaining less popular AVs detects the file as malicious, we

assign a likely malicious label. The downloading processes are also labeled similarly. Files (processes)

for which no ground truth can be found were labeled as unknown. For every file, including unknown files,

we obtain additional details, such as their file size, their prevalence across all machines of AMV, if the file

carries a valid software signature, if it is packed and with what packer, etc.

To label the URLs from which files are downloaded, we use AMV’s internal URL whitelists and blacklists, the

list of most popular domains according to Alexa.com, and Google Safe Browsing (GSB) [5]. Specifically, to

label a URL as benign, we maintain a list of domains that consistently appeared in the top one million Alexa

sites for about a year. To further mitigate possible noise in the Alexa list, we consult multiple whitelists and

1 http://www.nsrl.nist.gov

http://www.nsrl.nist.gov

8 | Exploring the Long Tail of (Malicious) Software Downloads

adjust the labels as follows. If the effective second-level domain (e2LD) of a URL appears in the Alexa.

com list and the URL also matches our private curated whitelist (provided by Trend Micro), the URL will

be labeled as benign. On the other hand, a URL will be labeled as malicious if it matches GSB and our

private URL blacklist.

2.3. Malicious File Types
To shed light on the type of malware were involved with the software download events we observed, we

attempt to group known malicious files into types. To this end, for each malicious file we use multiple AV

labels to derive their behavior type (e.g., fakeAV, ransomware, dropper, etc.) and their family (e.g., Zbot,

CryptoLocker, etc.). While we acknowledge that AV labels are often noisy and sometimes inconsistent, we

use a best effort approach, similar to previous work [12, 18]. For instance, to derive the family labels from

AV labels, we simply use a recently proposed system called AVclass [18]. As we are not aware of any

similar tool that can derive the behavior type, we developed the labeling scheme described below, which

is based on AV label mappings provided by Trend Micro and our own empirical experience.

To determine the behavior type (or simply type, for brevity) of a malicious file, we consider the AV

labels assigned to the file by a subset of five leading AV engines2, for which we have obtained a “label

interpretation map” provided by Trend Micro (ref. Table 2). By leveraging this map, we identified a set of

behavior type keywords used by these leading AVs, such as fake-av, ransomware, bot, etc. For instance,

an AV label such as TROJ_FAKEAV.SMU1 assigned by Trend Micro indicates a fake-av malware type.

However, because different AVs may disagree on the label to be assigned to a specific malicious file, we

designed a set of simple rules to resolve such conflicts:

1.	 Voting: Given a malicious file f, we first map each label into its respective type. We then assign to f

the type label with the highest count. In case of two or more type labels receive an equal number of

votes, we break the tie using the second rule.

2.	 Specificity: If among the types considered for a malicious file, there is one type that is more “specific”

than the rest, that specific type is assigned. For example, if AV labels for a file report conflicting types,

such as banker and trojan, we will select banker as the final label because it identifies a more specific

type keyword than trojan (notice that AV engines often use trojan or generic to flag malicious files with

an unknown behavior/class).

In some rare cases where these two rules still cannot be used to resolve a conflict, we derive the final type

via manual analysis.

As an example of the results given by rule 1), consider a malicious file with four AV labels (i.e., one out of

the five leading AVs we consider for type labeling did not report the file as being malicious):

2 Microsoft, Symantec, Trend Micro, Kaspersky, and McAfee

9 | Exploring the Long Tail of (Malicious) Software Downloads

Symantec=Trojan.Zbot, McAfee=Downloader-FYH!6C7411D1C043, Kaspersky=Trojan-Spy.

Win32.Zbot.ruxa, and Microsoft=PWS:Win32/Zbot. The type banker can be derived from three of the

AV labels (Zbot is programmed to steal banking information3), while McAfee’s AV label indicates a dropper

(i.e., Downloader is mapped to the dropper behavior type). In this case, the final type we assign will be

banker. Now consider an example of rule 2) where the following AV labels are assigned to a malicious

file: Kaspersky=Trojan-Downloader.Win32.Agent.heqj and McAfee=Artemis!DEC3771868CB.

In this case, Kaspersky’s label indicates a dropper behavior, while McAfee’s label is a generic one (Artemis

refers to a heuristics-based detection approach). Since dropper indicates a more specific behavior, we

assign it as the final type.

For 44% of all malicious downloaded files and client processes, we were able to assign a type label

without encountering any conflicts (i.e., the AVs fully agreed on the type). In about 28% of cases, the type

label was assigned using the Voting rule, whereas the Specificity rule was applied in 23% or the cases. In

the remaining 5% of the cases, the type label was resolved via manual analysis. To foster reproducibility

of these results, we provide our malicious type extractor tool as an open source tool at gitlab.com/

pub-open/AVType.

3 https://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99

https://www.symantec.com/security_response/writeup.jsp?docid=2010-011016-3514-99

10 | Exploring the Long Tail of (Malicious) Software Downloads

3. Dataset Overview
In this section, we provide an overview of our dataset, including the exact number of machines we

monitored during the data collection period, the number of software download events we observed, how

many of these events we were able to label, the malware types and families included in the dataset, etc.

More detailed measurements are provided in Sections 4 and 5.

Our observation period spans seven months, from January 2014 to August 2014. During this time, we

observed 3,073,863 software download events triggered by 1,139,183 machines. The software files were

downloaded from 1,629,336 distinct URLs, across 96,862 different domain names. Out of 1,791,803

downloaded files, we labeled 9.9% as malicious and 2.3% as benign. We also labeled 4.8% as either

likely benign or malicious. Note that although some ground truth is available for likely benign and likely

malicious files, we excluded them from the rest of our study due to our lack of confidence in determining

if they are truly benign or malicious, and the possibility that they introduce noise into results.

The remaining 83% of downloaded files were unknown, i.e., no ground truth exists for them. The software

download events were initiated by 141,229 different download processes (identified by their hash). Of

these processes, 18.5% were labeled as malicious and 7.6% as benign.

Month
of

Machines

of
Download

Events

Download Processes

Total Benign
Likely

Benign
Malicious

Likely
Malicious

January 292,516 578,510 27,265 15.8% 8.4% 16.2% 4.8%

February 246,481 470,291 25,001 15.4% 8.2% 16.8% 4.8%

March 248,568 493,487 25,497 15.7% 9.1% 16.2% 4.6%

April 215,693 427,110 23,078 16.3% 9.3% 19.4% 4.5%

May 180,947 351,271 20,071 17.3% 9.5% 19.3% 4.7%

June 176,463 351,509 23,799 14.3% 8.1% 20.9% 3.8%

July 157,457 323,159 26,304 12.2% 7.2% 16.6% 3.3%

Overall 1,139,183 3,073,863 141,229 7.6% 6.6% 18.5% 3.1%

11 | Exploring the Long Tail of (Malicious) Software Downloads

Month

Downloaded Files Download URLs

Total Benign
Likely

Benign
Malicious

Likely
Malicious

Total Benign Malicious

January 366,981 2.9% 2.8% 7.9% 2.8% 318,834 30.2% 11.6%

February 296,362 3.1% 3.1% 8.9% 3.1% 258,410 30.0% 12.2%

March 312,662 3.0% 3.1% 9.6% 2.9% 282,179 33.0% 12.3%

April 258,752 3.6% 3.4% 12.6% 3.2% 250,634 31.8% 11.3%

May 218,156 3.7% 3.5% 12.5% 3.2% 206,095 29.9% 18.9%

June 206,309 3.8% 3.4% 14.0% 3.5% 201,920 29.5% 23.0%

July 188,564 4.0% 3.7% 12.6% 3.6% 187,315 29.3% 17.9%

Overall 1,791,803 2.3% 2.5% 9.9% 2.3% 1,629,336 29.8% 15.1%

Table 1. Monthly summary of data collected by the anti-malware vendor (AMV)

These results are summarized in Table 1, whereas Figure 1 and Table 2 summarize the distribution of

malware families and types, respectively, for the downloaded files that were labeled as malicious. As

mentioned in Section 2, we obtained the malware family names in Figure 1 by running AVclass [18] on

our dataset of known malicious files. The figure only shows the top 25 families by number of samples.

Overall, our dataset contains malware from 363 different families, according to AVclass. However, for

58% of the samples, AVclass was unable to derive a family name. We also provide a brief description of

malware types in our dataset in Table 2. Among all malware types, droppers were the most common type

in our dataset. Also note the “undefined” type, which refers to those malicious files that were assigned

generic AV labels (e.g., Artemis by McAfee) or labels for which we did not have any mappings available.

Type Total Description

 Droppers 22.7% Malware specialized in dropping other files like second-stage malware

 PUPs 16.8% Potentially unwanted program that is distributed as bundled in a benign

application

Adware 15.4% Malicious software specialized in rendering ads without the consent of

the user

Trojan 11.3% Generic name for malware that disguises as benign application and does

not propagate

Bankers 0.9% Malware targeting online banking and specialized in stealing banking

credentials

 Bots 0.6% Remotely controlled malware

FakeAVs 0.5% Malware distributed in the form of concealed antivirus software

12 | Exploring the Long Tail of (Malicious) Software Downloads

Type Total Description

Ransomware 0.3% Malware specialized in locking an endpoint (or files) and on asking for a

ransom

Worms 0.1% Malware that auto-replicates and propagates through a victim network

Spyware 0.04% Malicious software specialized in monitoring and spying on the activity of

users

Undefined 31.3% Generic or unclassified malicious software

Table 2. Breakdown of downloaded malicious files per type

addlyrics

autoit

kovter

fareit

necurs

vittalia

pcmega

ibryte

speedingupmypc

eorezo

installmonetizer

mywebsearch

midia

browsefox

installiq

netfilter

opencandy

zbot

outbrowse

softonic

amonetize

installcore

firseria

bettersurf

somoto

236

242

250

279

317

356

378

391

425

589

755

879

1,193

1,242

1,654

1,716

1,742

1,988

2,602

3,954

7,101

8,516

11,082

12,543

13,091

Figure 1. Distribution of malware families (top 25)

13 | Exploring the Long Tail of (Malicious) Software Downloads

4. Analysis of Software
Download Events
In this section, we present an in-depth analysis of the trends we observed in our collection of software

download events. We will focus mainly on which files were downloaded, and from where, leaving a more

detailed analysis of how files are downloaded (i.e., by what downloading processes and machines) to

Section 5.

4.1. File Prevalence
Figure 2 reports the prevalence of the downloaded files. We define the prevalence of a downloaded file

as the total number of distinct machines that downloaded the file. The results show that the prevalence

distribution for all downloaded files has a very long tail. It should be noted that this is partly due to the fact

that highly popular (i.e., high-prevalence) software files are not collected by AMV’s software agents, as

discussed in Section 2.1. The section also explains that file download events are reported only until their

prevalence exceeds 20 and if they are executed.

Figure 2. Prevalence of the downloaded software files

14 | Exploring the Long Tail of (Malicious) Software Downloads

Nonetheless, it is remarkable that only one machine downloaded and executed almost 90% of all

downloaded files. We can notice from Figure 2 that the long-tail of the prevalence distribution is driven by

unknown files (i.e., files for which no ground truth is available), which have an extremely low prevalence

compared to benign and known malicious files. We also explored the distribution of different malware

types and found that they are very similar to each other.

In aggregate, these unknown files have been downloaded and run by 69% of the 1.1 million machines we

monitored. Clearly, if a large percentage of the unknown files are malicious, it would affect a very large

fraction of machines. It is therefore important to study this long tail, given the large number of machines

involved.

4.2. Analysis of Download URLs
Table 3 reports the most contacted effective second-level domains (e2LDs) from which software files were

downloaded, according to different criteria. Here we define the popularity of a domain by the total number

of unique machines that contacted the domain to download a file. The “Overall” column reports the

most popular domains in general, while the “Benign” and “Malicious” columns report the most popular

domains from which benign and malicious files were downloaded, respectively.

 Overall
of

Machines

softonic.com 64,300

inbox.com 49,481

humipapp.com 30,966

bestdownload-manager.com 30,376

freepdf-converter.com 25,858

cloudfront.net 20,065

soft32.com 18,241

amazonaws.com 17,702

driverupdate.net 17,505

arcadefrontier.com 15,738

Benign
of

Machines

softonic.com 64,300

inbox.com 49,481

cloudfront.net 20,065

amazonaws.com 17,702

driverupdate.net 17,505

arcadefrontier.com 15,738

mediafire.com 14,336

uptodown.com 13,431

ziputil.net 12,972

rackcdn.com 12,893

Malicious
of

Machines

softonic.com 64,300

inbox.com 49,481

humipapp.com 20,065

freepdf-converter.com 17,702

cloudfront.net 17,505

soft32.com 15,738

amazonaws.com 14,336

arcadefrontier.com 13,431

free-fileopener.com 12,972

mediafire.com 12,893

Table 3. Domains with highest download popularity

Table 3 shows that many file hosting services, such as softonic.com, cloudfront.com, and

mediafire.com, are used for distributing legitimate software and abused by malware distributors. This

represents a challenge for malware detection systems that rely on a notion of reputation for the download

server/URL (e.g., CAMP [16] and Amico [20]), because the mixed the reputation of the domains/IPs

15 | Exploring the Long Tail of (Malicious) Software Downloads

that serve both benign and malicious downloads could cause a significant number of false positives or

negatives.

Also, from Table 4, which reports the domains in our dataset that serve the highest number of unique

downloaded benign and malicious files, we can see that there is again a notable overlap among

the domains listed under different columns. For example, domains such as softonic.com and

mediafire.com host the highest number of both benign and malicious files. This suggests that files

downloaded from these software hosting websites are not entirely trustworthy. In fact, the comparison

of the distribution of the Alexa ranks of domains from which benign and malicious files are downloaded

(shown in Figure 3) suggests that malicious files aggressively use higher Alexa ranked domains for

distribution.

Benign downloads # of Files

cnet.com 1,574

sourceforge.net 1,357

mediafire.com 774

informer.com 749

softonic.com 569

wildgames.com 503

lenovo.com 432

naver.net 361

ricoh.com 327

tistory.com 305

Malicious downloads # of Files

softonic.com 21,355

nzs.com.br 8,009

cloudfront.net 7,416

baixaki.com.br 4,564

cdn77.net 4,043

mediafire.com 3,857

softonic.com.br 3,251

files-info.com 2,559

v47installer.com 2,545

downloadaixeechahgho.com 2,266

Table 4. Number of files served per domain (top 10 domains)

16 | Exploring the Long Tail of (Malicious) Software Downloads

Figure 3. Distribution of the Alexa ranks of domains hosting benign and malicious files

Table 5 reports a break-down by malicious file type of the number of files served per domain. From Table

5, we can make some interesting observations. Some malicious file types, such as dropper, rely heavily

on file hosting services to spread, while other types, such as bot, seem to employ other sources for their

distribution. Also, we can see that domains used to distribute fakeavs, such as 5k-stopadware2014.

in, sncpwindefender2014.in, webantiviruspro-fr.pw, etc., embed social engineering tactics in the

domain name themselves. Another interesting point, which seems to confirm findings reported in [13],

is that adware usually spreads by utilizing free live streaming services, such as media-watch-app.com,

trustmediaviewer.com, vidply.net, etc.

Bot # of Files

mediafire.com 70

4shared.com 35

naver.net 34

ge.tt 23

sharesend.com 13

co.vu 12

gulfup.com 11

hinet.net 10

wipmsc.ru 10

f-best.biz 9

Dropper # of Files

softonic.com 4,599

files-info.com 2,072

mediafire.com 845

softonic.com.br 732

d0wnpzivrubajjui.com 601

vitkvitk.com 489

cloudfront.net 414

softonic.fr 356

softonic.jp 334

downloadnuchaik.com 302

17 | Exploring the Long Tail of (Malicious) Software Downloads

Adware # of Files

media-watch-app.com 1,936

media-buzz.org 1,911

trustmediaviewer.com 1,620

media-view.net 1,608

pinchfist.info 1,080

media-viewer.com 919

dl24x7.net 848

zrich-medi-view.com 749

vidply.net 722

mediaply.net 654

FakeAV # of Files

rackcdn.com 685

5k-stopadware2014.in 4

sncpwindefender2014.in 3

webantiviruspro-fr.pw 3

12e-stopadware2014.in 3

zeroantivirusprojectx.nl 3

wmicrodefender27.nl 3

qwindowsdefender.nl 3

updatestar.com 3

alphavirusprotectz.pw 3

Table 5. Popular download domains per type of malicious file

4.3. File Signers and Packers
The use of a simple static analysis of the downloaded files can, in some cases, provide valuable information

about their true nature. In this section, we explore if downloaded software is typically signed and by what

signers4. Furthermore, we analyze what files are packed, and with what packing software. The information

about software signatures and packer identification have been obtained from both VirusTotal.com as well

as from AMV’s internal software analysis infrastructure.

Table 6 reports the percentage of signed benign, unknown, and malicious files. According to Table 6,

some malicious file types, such as dropper and pup, tend to carry a valid software signature, while some

others, such as bot and banker, are rarely signed. This might be because malware types such as dropper

and pup are usually the initiators of infections and are often directly downloaded via a web browser with

user consent (e.g., via social engineering attacks). Signing these malicious files may be a way to persuade

the users about their legitimacy, and perhaps also to thwart AV detection. To verify this intuition, the “From

Browsers” column reports the percentage of signed files that are downloaded via popular web browsers.

A row by row comparison reveals that malicious files that are directly downloaded by browsers are more

likely to be signed. This is also true for benign and unknown files.

Another interesting observation is the percentage of signed malicious files is much higher than signed

benign software. This again may be due to the fact that malware distributors try hard to trick users into

running their software and evade AV detection.

4 https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx

18 | Exploring the Long Tail of (Malicious) Software Downloads

Table 7 shows the number of unique signers that signed different types of malicious files. We also compare

the signers of different types of malicious files with benign files. The “In common with benign” column

shows the number of common signers between malicious and benign files. For example, out of 248

signers that signed different droppers, 46 also signed some benign files and consequently 202 exclusively

signed malicious files only. We further provide examples of these signers in Table 8. The “Top Signers”

column lists the names of the top 3 signers for each type of file. For different types of malware, the table

reports the top 3 signers that are in common with benign files as well as top 3 signers that exclusively

signed malware files. Similar information is also provided for benign files. One interesting case is the

droppers’ top signer being “Softonic International,” which shows that some popular software download

websites may distribute bundled applications that include malicious software. Table 8 also shows some of

the top signers that exclusively signed either malware or benign files, as well as the number of files signed

by each signer. Note that file signer information could be utilized to gain more insight into the true nature

of completely unknown files. In Section 6, we present a system that uses signers data (alongside other

information) to label unknown files.

Figure 4 provides a detailed view of the common signers of malicious and benign files. The figure includes

a count of malicious/benign files signed by each signer. Among the interesting results are malicious files

that are signed by seemingly reputable signers such as AVG Technologies and BitTorrent, which further

manual analysis revealed to be mostly PUPs.

Figure 4. Common signers between malicious and benign files

19 | Exploring the Long Tail of (Malicious) Software Downloads

Type
Overall From Browsers

of Files Signed # of Files Signed

Trojan 22,413 59.9% 12,827 81.3%

Dropper 43,423 85.6% 33,820 95.4%

Ransomware 563 44.4% 313 68.7%

Bot 1,092 1.5% 268 2.2%

Worm 201 5.5% 57 12.3%

Spyware 80 21.2% 40 25.0%

Banker 1,719 1.2% 272 1.8%

FakeAV 987 2.8% 446 4.5%

Adware 29,345 43.1% 8,792 91.8%

PUP 31,018 76.0% 21,792 79.6%

Undefined 60,609 65.1% 42,614 71.3%

Benign 43,601 30.7% 30,346 32.1%

Unknown 1,626,901 38.4% 1,227,241 42.1%

Malicious 191,450 66% 121,241 81%

Table 6. Percentage of signed benign, unknown, and malicious files

Type # of Signers
In common
with Benign

Trojan 426 71

Dropper 248 46

Ransomware 14 4

Banker 11 2

Bot 15 3

Worm 7 1

Spyware 9 4

FakeAV 14 4

Adware 532 77

PUP 691 108

Undefined 1,025 339

Total 1,870 513

Table 7. Common signers among malicious file types

20 | Exploring the Long Tail of (Malicious) Software Downloads

Type Top signers
Top common signers with

benign files
Top signers exclusive to

malware files

trojan Somoto Ltd., Somoto Israel,

RAPIDDOWN

Open Source Developer, Binstall,

Rspark LLC

Somoto Ltd., Somoto Israel,

RAPIDDOWN

dropper Softonic International, Somoto

Israel, Sevas-S LLC

Softonic International, RBMF

Technologies LLC, Open Source

Developer

Somoto Israel, Sevas-S LLC,

SecureInstall

ransomware ISBRInstaller, WorldSetup,

UpdateStar GmbH

WorldSetup, UpdateStar GmbH,

AppWork GmbH

ISBRInstaller, Trusted Software

Aps, The Nielsen Company

bot Benjamin Delpy, Supersoft, Flores

Corporation

Nir Sofer Benjamin Delpy, Supersoft,

Flores Corporation

worm 70166A21-2F6A-4CC0-822C-

607696D8F4B7, JumpyApps,

Xi’an Xinli Software Technology

Co.

70166A21-2F6A-4CC0-822C-

607696D8F4B7, JumpyApps,

Xi’an Xinli Software Technology

Co.

spyware Refog Inc., R-DATA Sp. z o.o.,

Mipko OOO

Refog Inc., Video Technology,

Valery Kuzniatsou

R-DATA Sp. z o.o., Mipko OOO,

Ts Security System - Seguranca

em Sistemas Ltda

banker WEBPIC DESENVOLVIMENTO DE

SOFTWARE LTDA, JDI BACKUP

LIMITED, Wallinson

Open Source Developer, TLAPIA WEBPIC DESENVOLVIMENTO

DE SOFTWARE LTDA, JDI

BACKUP LIMITED, Wallinson

fakeav UpdateStar GmbH, Webcellence

Ltd., ISBRInstaller

UpdateStar GmbH, The Phone

Support Pvt. Ltd., 2345.com

Webcellence Ltd., ISBRInstaller,

William Richard John

adware Apps Installer SL, SITE ON SPOT

Ltd., Open Source Developer

SITE ON SPOT Ltd., Open Source

Developer, Binstall

Apps Installer SL, Tuto4PC.com,

ClientConnect LTD

pup Binstall, Somoto Ltd., SITE ON

SPOT Ltd.

Binstall, SITE ON SPOT Ltd.,

Perion Network Ltd.

Somoto Ltd., Amonetize ltd.,

Firseria

undefined ISBRInstaller, JumpyApps,

Somoto Israel

Binstall, UpdateStar GmbH,

BoomeranGO Inc.

ISBRInstaller, JumpyApps,

Somoto Israel

malicious (total) Softonic International, Binstall,

Somoto Ltd.

Softonic International, Binstall,

SITE ON SPOT Ltd.

Somoto Ltd., ISBRInstaller,

Somoto Israel

Type Top signers
Top common signers with

malware files
Top signers exclusive to

benign files

benign

Lenovo Information Products

(Shenzhen) Co., MetaQuotes

Software Corp., Rare Ideas

Lenovo Information Products

(Shenzhen) Co., MetaQuotes

Software Corp., Rare Ideas

TeamViewer, Blizzard

Entertainment, Lespeed

Technology Ltd.

Table 8. Top signers of different file types

21 | Exploring the Long Tail of (Malicious) Software Downloads

Benign # of Files

TeamViewer 209

Blizzard Entertainment 77

Lespeed Technology Ltd. 71

Hamrick Software 66

Dell Inc. 59

Google Inc 59

NVIDIA Corporation 58

Softland S.R.L. 52

Adobe Systems Incorporated 48

Recovery Toolbox 43

Malware # of Files

Somoto Ltd. 5,652

ISBRInstaller 5,127

Somoto Israel 5,062

Apps Installer SL 5,049

SecureInstall 2,694

Firseria 2,474

Amonetize ltd. 1,932

JumpyApps 1,896

ClientConnect LTD 1,761

Media Ingea SL 1,671

Table 9. Top signers that exclusively signed benign or malicious files

We also investigated file packers. Interestingly, our analysis found that downloaded benign and malicious

files were equally packed, with 54% of the benign files and 58% of the malicious files found processed

with a known packing software. Similar to the signers, many packers are used to concurrently pack

both benign and malicious software: out of 69 unique packers adopted by our collection of software

downloads, more than half of them (35) are equally used in both benign and malicious cases. For example,

we observed many benign and malicious files that are packed by INNO, UPX, AutoIt, etc. This makes

detection systems that solely rely on packing information fall short in terms of accuracy. Among the

packers that are exclusively used on malicious files, we observed Molebox, NSPack, and Themida, for

example. In addition, a simple breakdown of packers per type of malicious files does not reveal any

discriminating factor among them because the files appear to be commonly packed by similar software.

22 | Exploring the Long Tail of (Malicious) Software Downloads

5. Downloading Processes
and Machines
In this section, we study the type of files that different processes typically download. For instance, we

are interested in answering questions such as: What category of processes (e.g. browsers, windows

processes, etc.) contribute more to malicious downloads? What files are typically downloaded by benign

software?, and etc.

5.1. Analysis of Benign Processes that Download
Executables
For our first measurements in this section, we focus on different categories of file download processes.

We group the client processes into five broad classes, namely browsers, windows processes, Java

processes (i.e., Java runtime environment software), Acrobat Reader processes, and all other processes.

We consider Java and Acrobat Reader processes separately because these two software are notoriously

vulnerable and have been exploited by malware distributors many times in the past (e.g., via exploit kits

like Nuclear, Fiesta or Angler5).

To label a process according to the above labels, we leverage the name of the executable file on disk from

which the process was launched. For instance, any process with the name of firefox.exe is labeled as

the Firefox web browser. To this end, we compiled a list of different file names observed in the wild for

each process category. At the same time, we had to take into account the fact that malware may, in some

cases, disguise itself as a legitimate process. Therefore, our measurements only focused on the download

behavior of known benign processes whose related executable file hash matched our whitelist.

5 https://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-evolution-of-exploit-kits.pdf

https://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-evolution-of-exploit-kits.pdf

23 | Exploring the Long Tail of (Malicious) Software Downloads

Processes Machines
Downloaded files Infected

Machines
Malware type of downloaded

malicious filesUnknown Benign Malicious

Browsers

1,342 799,342 1,120,855 28,265 113,750 24.44% dropper=28.05%, pup=18.55%,

trojan=10.48%, adware=7.36%,

fakeav=0.35%, ransomware=0.27%,

banker=0.23%, bot=0.22%,

worm=0.05%, spyware=0.03%

(undefined=34.43%)

Windows Processes

587 429,593 368,925 23,059 68,767 27.71% dropper=25.42%, pup=17.75%,

trojan=11.75%, adware=5.80%,

banker=1.23%, bot=0.73%,

ransomware=0.37%, fakeav=0.11%,

worm=0.08%, spyware=0.06%

(undefined=36.7%)

Java

173 2,977 227 25 488 33.36% trojan=45.29%, bot=15.78%,

dropper=12.30%, banker=6.97%,

ransomware=4.30%, pup=1.02%,

worm=0.82% (undefined=12.54%)

Acrobat Reader

9 1,080 264 0 696 78.52% trojan=39.51%, dropper=23.71%,

banker=15.80%, bot=8.19%,

ransomware=3.74%, fakeav=1.44%,

spyware=0.43%, worm=0.29%

(undefined=6.89%)

All other processes

8,714 112,681 68,334 5,642 15,440 31.24% pup=22.57%, dropper=17.22%,

trojan=11.34%, adware=8.38%,

fakeav=5.03%, banker=1.20%,

bot=0.79%, ransomware=0.44%,

worm=0.30%, spyware=0.02%

(undefined=32.71%)

Table 10. Download behavior of benign processes (divided by process category)

24 | Exploring the Long Tail of (Malicious) Software Downloads

Table 10 reports each category, the number of distinct process versions (counted as the number of distinct

hashes for the files from which the processes are launched), the overall number of machines used to run

these processes, the number of executable files downloaded (and executed) by those processes, the

number of machines that became infected due to malicious file downloads initiated by the processes, and

the distribution of malicious types for the downloaded file.

From Table 10, we can immediately notice that most files downloaded by Java and Acrobat Reader are

in fact malicious, and cause the related downloading machines to become infected. Specifically, of the

1,080 machines that ran an instance of Acrobat Reader that was observed to initiate an executable file

download, 78.52% downloaded and executed at least one of the 696 malicious files, thus becoming

infected. We can also see that none of the executable files downloaded by Acrobat Reader processes

could be labeled as benign, and that 264 files could not be labeled with existing ground truth, thus

remaining unknown. However, it is likely that the vast majority (if not all) of these files are also malicious.

Similarly, Java processes mostly download malicious files. The 25 benign downloads shown in Table 10

appear to be outliers, which we investigated more closely. A closer look revealed that these appeared to

be legitimate bundled software like Java applets for sound recording or custom calendars.

Windows system processes can also initiate the download (and execution) of new malicious files. As

mentioned earlier, we only consider known benign processes. We suspect that the malicious downloads

are due to these processes being exploited (either remotely or locally). The number of machines affected

by these malicious downloads is quite significant. In fact, of the 429,593 machines on which an executable

file download was initiated by a Windows process, 27.71% downloaded and executed at least one of the

68,767 malicious files we observed overall. This tends to suggest that a consistent number of Windows

machines seem to run Windows processes that weren't properly patched, representing then a primary

form of infection.

As expected, web browsers initiated the vast majority of web-based executable file downloads (see

“Browsers” in Table 10). Table 11 reports the number and type of files downloaded by popular browsers.

Somewhat surprisingly, these results revealed that Internet Explorer (IE) could be considered as the “safest”

browser, based on the percentage of malicious downloads it initiated and the percentage of infected

machines. In fact, of the 411,138 machines that used IE to download one or more executable files, only

18% became infected due to an IE-initiated malicious file download. On the other hand, of the 344,994

machines that were observed using Chrome to download an executable file, 31.92% became infected,

which represents the highest rate of infection across all popular browsers. We should note, though, that

these results are based on the known malicious files, and that the large number of unknown file downloads

by both Chrome and IE could tilt the scale if complete ground truth was available. Nonetheless, it is

significant that known malicious software tends to affect more Chrome users than IE users.

25 | Exploring the Long Tail of (Malicious) Software Downloads

Browser
of

Processes
of

Machines
Unknown

Files
Benign Files

Malicious
Files

Infected
Machines

Firefox 378 86,104 104,237 7,411 21,443 26.00%

Chrome 528 344,994 460,214 17,623 73,806 31.92%

Opera 91 4,337 4,749 534 1,567 27.83%

Safari 17 1,762 2,579 117 422 18.56%

IE 307 411,138 561,769 13,801 48,206 18.09%

Table 11. Download behavior of benign browser processes

From Table 10 we can also see that droppers is the most represented malicious file type (if we exclude

undefined malicious files) downloaded by browsers. This can be explained by the fact that droppers

are first-stage malware, which are typically used to download additional malware once the machine is

infected. This observation matches the results we presented in Table 6, which shows that 85.6% of

droppers have a valid software signature, which is likely used as a way to evade current malware defenses

and persuade users into running the software.

5.2. Analysis of Malicious Processes
To extend our experiments that explore the download behavior of processes, we turned our attention

to the download behavior of malicious processes. In particular, we categorize the malicious processes

according to their malware types and demonstrate what is typically downloaded by each malware type.

Table 12 has a similar structure to Table 10, but instead of process categories, it explores different

malware types. In this case, the “Processes” column reports the number of processes associated with

each malware type.

Processes Machines
Downloaded files Malware type of downloaded

malicious filesUnknown Benign Malware

Trojan

3,442 11,042 1,265 73 4,168 trojan=51.90%, adware=11.80%,

dropper=10.94%, pup=8.25%,

banker=4.25%, bot=0.89%,

ransomware=0.34%, fakeav=0.12%,

worm=0.10% (undefined=11.42%)

26 | Exploring the Long Tail of (Malicious) Software Downloads

Processes Machines
Downloaded files Malware type of downloaded

malicious filesUnknown Benign Malware

Dropper

4,242 10,453 1,565 267 2,992 dropper=39.10%, trojan=16.78%,

pup=10.26%, adware=8.46%,

banker=7.59%, bot=1.34%,

ransomware=0.47%, worm=0.30%,

fakeav=0.20%, spyware=0.07%

(undefined=15.44%)

Ransomware

136 332 7 0 147 ransomware=80.95%, trojan=9.52%,

dropper=3.40%, banker=1.36%

(undefined=4.76%)

Bot

323 689 81 2 394 bot=64.72%, trojan=15.99%,

dropper=4.57%, banker=4.31%,

pup=2.54%, ransomware=1.27%,

worm=0.51%, adware=0.25%,

fakeav=0.25% (undefined=5.58%)

Worm

64 164 4 0 69 worm=72.46%, banker=8.70%,

trojan=4.35%, dropper=4.35%,

bot=1.45%, pup=1.45%

(undefined=7.25%)

Spyware

7 19 2 1 6 spyware=66.67%, trojan=16.67%

(undefined=16.67%)

Banker

 484 1,146 47 5 525 banker=76.00%, trojan=14.48%,

dropper=4.00%, worm=0.57%,

fakeav=0.38%, ransomware=0.19%,

bot=0.19%, adware=0.19%

(undefined=4.00%)

Fakeav

43 81 1 0 53 fakeav=56.60%, trojan=22.64%,

banker=9.43%, dropper=7.55%

(undefined=3.77%)

27 | Exploring the Long Tail of (Malicious) Software Downloads

Processes Machines
Downloaded files Malware type of downloaded

malicious filesUnknown Benign Malware

Adware

 2,862 16,509 2,934 98 6,078 adware=66.24%, pup=9.97%,

trojan=6.65%, dropper=2.91%,

banker=0.13%, bot=0.03%

(undefined=14.07%)

PUP

5,597 32,590 6,757 199 16,957 adware=58.64%, pup=22.91%,

trojan=6.30%, dropper=4.57%,

ransomware=0.02%, bot=0.01%,

banker=0.01%, fakeav=0.01%

(undefined=7.54%)

Undefined

8,905 29,216 6,343 499 8,329 adware=6.52%, pup=5.53%,

dropper=3.77%, trojan=3.36%,

banker=0.36%, bot=0.22%,

worm=0.06%, ransomware=0.04%,

spyware=0.04%, fakeav=0.01%

(undefined=80.09%)

Overall

26,108 93,644 18,473 1,044 36,402 adware=39.04%, pup=14.18%,

trojan=10.97%, dropper=7.14%,

banker=1.94%, bot=0.90%,

ransomware=0.39%, worm=0.18%,

fakeav=0.11%, spyware=0.02%

(undefined=25.13%)

Table 12. Download behavior of different types of malicious processes

The results in Table 12 indicate that processes of a specific malware type download other malwares of

the same type in majority of cases. However, some malware types had some unexpected download

behaviors. For example, many malware types, even the most specific ones, such as ransomware, fakeav,

etc., seem to download completely different malware types. The reason behind this depends on how the

malware operates on the system and its intention. For example, a fakeav could lure victims into buying

other things, but it could simultaneously drop another piece of malware to take full advantage of the

victim. One thing that is clear, however, is that if a machine is initially infected with a somewhat less-

dangerous malware such as adware and PUP applications, there is a good chance that the machine gets

infected with more aggressive and damaging malware.

28 | Exploring the Long Tail of (Malicious) Software Downloads

From Adware/PUP to Malware

Adware and PUPs are often considered “less damaging” malware. In fact, PUP stands for potentially

unwanted program (also known as potentially unwanted application, or PUA). However, some studies

(e.g., [21]) have suggested that running adware/PUPs increases the chances that a machine will be

later infected with more damaging malware (e.g., ransomware, bots, etc.). In this section, we provide

measurements that aim to support this suspicion quantitatively.

First, we analyze the results reported in Table 12, which shows that both adware and PUP processes

tend to mostly download other adware or PUP software. However, it also shows that more than 6% of

the downloaded executable files for both adware and PUP processes are trojans. In addition, almost 3%

of the files downloaded by adware are droppers, whereas the same figure goes up to 4.57% for PUPs.

Furthermore, both adware and PUPs in some cases directly download ransomware, bankers, and other

dangerous malware.

Besides direct downloads, adware/PUP process could also be the cause of indirect infections. For

instance, adware processes often display ads from low-reputation ad networks, thus exposing users to

malvertisements [21]. Consequently, if a user clicks on a malicious ad, she may be redirected, via her

default web browser, to downloading other malware [11]. To include these indirect downloads into our

analysis, we proceed as follows. Let m be a machine that has downloaded and executed an adware/PUP

at time t1. We then check if, after t1, m downloads and executes other types of malicious software (thus

excluding other adware, PUP, and undefined malicious files). We repeat this process for each machine m

that ran adware/PUP software and compute the time delta between the adware/PUP infection and the

download of other types of malware. Figure 5 shows a CDF for the obtained results. As we can see, more

than 40% of these machines download and execute other malware on the same day (day 0) in which they

downloaded and executed the adware/PUP software. After only five days from the execution of adware/

PUP, the number of those machines infected with other malware types exceed 55%. On the contrary,

let’s consider the same measurements for machines that at a given time t1 download a benign software

(and was not observed to have downloaded malicious files in the past). What we aim to show is that if a

machine does not run adware/PUPs, it is much less likely to download malware in the immediate future.

On the same Figure (“benign” line), after five days from the benign software download event, only 20% of

the machines downloaded malicious files (excluding adware and PUPs, for comparison with “PUP” and

“adware” lines).

29 | Exploring the Long Tail of (Malicious) Software Downloads

Figure 5. Time delta between downloading benign/adware/pup/dropper and other malware

Dropper-driven Malware Infections

Droppers play a significant role in malware infections [10]. To provide additional information on the

behavior of malicious dropper processes, we proceed in a way similar to Section 5.2. For instance, we

measure how long it takes for droppers to infect users. To this end, we compute the time gap between the

first time a machine downloads (and executes) a dropper and a subsequent malware download. Notice

that we excluded adware, PUPs, and undefined types from this measurement so that we can compare

the results directly with the transition between adware/PUPs to other malware types discussed above.

Figure 5 (dashed red line) reports our results. As anticipated, a machine that is infected with a dropper

is almost certain to download and execute malware within the next days. In particular, by comparing the

dropper, adware, and pup curves in Figures 5, we can see that there is a much shorter time gap between

the download of a dropper and another malware, compared to the download of an adware/PUP and then

another malware.

30 | Exploring the Long Tail of (Malicious) Software Downloads

6. Exploring and Labeling
Unknown Files
As reported in Section 2 (see Table 1), the majority of file downloads (about 83%) are unknown, in that no

ground truth is available about their true nature, even two years after they were first observed. As these

unknown files involve a significant number of users who downloaded them (69% of all machines in our

data downloaded some unknown files), it is of utmost importance to be able to provide a reason for at

least about some of them. In fact, if these unknown files were malicious, they would have infected the

vast majority of the machine population. This section explores the characteristics of unknown files. We

also aim to build a rule-based classifier that can accurately label a significant fraction of these unknown

files as either malicious or benign.

6.1. Exploring the Characteristics of Unknown Files
Table 13 shows the top 10 domains from which unknown files were downloaded, whereas Figure 6 plots

the distribution of the Alexa rank of all domains hosting unknown files. Table 14 shows what benign

processes tend to download most of these files. Naturally, most unknown files are downloaded via web

browsers. However, we can see that a large number of unknowns are downloaded by Windows processes

as well. This is alarming, if we consider that Table 10 also shows that a large majority of downloaded files

by Windows processes for which ground truth is available are actually malicious. Take Acrobat Reader as

an extreme example (again, from Table 10). Of the 960 downloaded files, 696 are known to be malicious,

and none are known to be benign. This means that all of the remaining 264 unknowns (reported in Table

14) are also highly likely malicious.

31 | Exploring the Long Tail of (Malicious) Software Downloads

Domain
of

Downloads

inbox.com 75,946

humipapp.com 43,365

bestdownload-manager.com 37,398

freepdf-converter.com 32,276

coolrom.com 27,833

soft32.com 27,229

gamehouse.com 24,498

arcadefrontier.com 24,191

driverupdate.net 21,370

zilliontoolkitusa.info 19,550

Table 13. Top 10 Download Domains

Downloading process
type

of
Unknowns

Browser 1,120,855

Windows 368,925

Java 227

Acrobat Reader 264

Other benign processes 36,059

Total 1,486,961

Table 14. Categories of Download Processes

32 | Exploring the Long Tail of (Malicious) Software Downloads

Figure 6. Distribution of the Alexa ranks of domains hosting unknown files

6.2. Labeling Unknown Files
During our analysis, we noticed that in some cases a simple analysis of the properties of unknown files

would allow us to identify, with high confidence, their true nature. For instance, an executable file that is

signed by a software signer that in the past has signed many malicious files but no benign software is also

likely malicious. Conversely, an executable file that is signed by a reputable software developer, which has

exclusively signed benign files in the past, is very likely benign. Similarly, a file that is packed with a packer/

obfuscation tool that is known to be used exclusively to protect malicious files from AV detection is likely

malicious. Overall, we have identified a set of eight intuitive and easy-to-measure features, summarized

in Table 15, that we can use to label many in-the-wild unknown file downloads with high accuracy. The

following table presents a novel rule-based classification system that uses these features to mine past file

download events and automatically extract simple human-readable file classification rules.

33 | Exploring the Long Tail of (Malicious) Software Downloads

Feature Explanation

File’s signer The entity who signed a downloaded file.

File’s CA The certification authority in the chain of trust of signers for

the downloaded file

File’s packer The packer software used to pack the downloaded file, if any

Process’s signer The signer of the process that downloaded the file

Process’s CA The CA of the process that downloaded the file

Process’s packer The packer software used to pack the downloading process

Process’s type The type of process that downloaded the file (browser,

windows process, etc.)

Download domain’s Alexa rank The Alexa rank of the domain from which the file was

downloaded

Table 15. Features Description

Ttr

Overall #
of rules τ Selected

rules

Rules composition

of
Benign

of
Malicious

Feb 1,766
0.0% 1,020 889 131

0.1% 1,031 894 137

Mar 1,680
0.0% 1,148 970 178

0.1% 1,162 976 186

Apr 1,272
0.0% 1,054 872 182

0.1% 1,070 875 195

May 1,476
0.0% 974 791 183

0.1% 986 793 193

Jun 944
0.0% 740 577 163

0.1% 753 585 168

Jul 1,376
0.0% 937 755 182

0.1% 953 763 190

Table 16. Statistical information about extracted rules during different Ttr

34 | Exploring the Long Tail of (Malicious) Software Downloads

6.3. Generating Human-Readable Classification Rules
Recently, the authors of [3] explored the importance of interpretability in machine learning systems and

suggested that the decisions of such systems should be explainable. To this end, we aim to generate

simple human-readable classification rules and proceeded as follows. First, we use past file download

observations whose ground truth is known as a training dataset. Then, we use the PART rule learning

algorithm [4] to derive a set of human-readable classification rules based on the features reported in Table

15. Finally, we prune the classification rules output by PART to only retain highly accurate rules (i.e., rules

with low error rate).

Unlike other machine learning algorithms (e.g., support vector machines (SVMs), neural networks, etc.),

this approach generates easy-to-interpret classification rules that can be reviewed and modified by threat

analysts. The following is an example of a simple classification rule based on the described features:

IF (file’s signer is “Shanghai Gaoxin Computer System Co.”) AND
(file is packed by “NSIS”) → file is malicious.

This rule was learned from more than 50 instances of malicious file downloads, and does not match any

of the tens of thousands of benign downloads we observed.

6.4. Evaluation of Classification Rules

To systematically evaluate the efficacy of the human-readable classification rules, we proceeded as

follows. We first describe how we prepared the evaluation data, and then explain how we filtered the

generated rules to select only the rules with low error rates.

•	 Training dataset: To produce the rules, a training dataset of labeled feature vectors is generated over

all known benign and malicious files from download events observed during a training time window

Ttr (e.g., 30 days).

•	 Testing dataset: The performance and accuracy of the rules are evaluated using a test dataset. The

test dataset contains known benign and malicious files from download events gathered from a test

time window Tts that immediately follows the training time window Ttr. We ensured that the intersection

between training and test file download events is empty, so none of the samples from the testing

dataset are ever used for extracting the rules. Furthermore, this perfectly simulates how the system

is used in operational environments; rules generated based on past events are used to classify new,

unknown events in the future.

35 | Exploring the Long Tail of (Malicious) Software Downloads

•	 Unknown files dataset: The goal is to utilize the extracted rules to classify previously unknown files.

Therefore, we extract the truly unknown files during Tts and generate a dataset of unknown files.

Obviously, there is no ground truth available whatsoever about any of the files in this dataset. We

use the rule-based classifier to reduce the number of unknowns in this dataset by classifying them

as either benign or malicious. Due to a lack of ground truth, the correctness of the classification of

unknown files cannot be verified. However, we measured their properties and manually analyzed

some of the samples to attempt to determine the correctness of their new labels.

We now present our evaluation results. To this end, we consider a month of download events as our

training time window and extract the classification rules. Then we evaluate the performance of these

rules in terms of true positives (TP) and false positives (FP). Finally, we report the number of completely

unknown files that the rules classified during Tts.

We evaluated the rule-based classification system on different Ttr and Tts periods. Table 16 reports a

summary of the number of extracted rules per different training time. As mentioned before, we use a subset

of all rules generated by the PART algorithm [4], i.e., by including only those rules with error rates less than

a maximum (configurable) error threshold τ. The value of τ should be properly chosen as it impacts the

performance of the classifier. To compare the results, for every Ttr, we extract the rules based on different

configurations for τ during training. For example, for the month of March as Ttr and by choosing the rules

that have no training error (τ=0.0%), 1,148 rules (out of 1,680 rules) will be selected. The detection results

of these different settings are then compared to each other. The “rules composition” column shows the

number of rules that result in a benign or malicious label, among the 1,148 selected rules.

By increasing τ, the number of rules and samples that match them increases, at the expense of the

trade-off between TPs and FPs. Therefore, we limit ourselves to experimenting with low values of τ. Table

16 shows the results for different number of rules extracted per month for τ=0.0% and τ=0.1%. The

evaluation results for these two different rule sets are reported in Table 17.

In this table, each row corresponds to an experiment in which rules are extracted according to a specific

configuration (see Table 16) from download events during a month Ttr. The rules are then tested against

samples in the test dataset from Tts (see column “test dataset”).

More specifically, under “test dataset”, columns “# malicious” and “# benign” report the size of the benign

and malicious test samples that matched the rules. Note that those test samples that do not match any

rules are not considered, because the rule-based classifier cannot label them. Therefore, the TP and FP

rates are computed only over the test samples that actually match at least one rule. Column “# FP Rules”

reports the number of rules that cause FPs. We will discuss these rules in Section 7.

36 | Exploring the Long Tail of (Malicious) Software Downloads

The rule-based classifier also needs to deal with cases in which conflicts occur among multiple rules

that match the feature vector of a file. In this situation, some rules identify the file as benign while some

other conflicting rules classify the same file as malicious. In our rule-based classification system, should

a conflict occur when classifying a file, we “reject” the file and do not provide any classification to avoid

inaccurate results. This is another advantage of using our system over regular decision trees in which

rejecting some classification decisions of the decision tree is not an intuitive task. Rejecting a file in case

of conflicting rules helps reduce the errors (FPs), as we will demonstrate shortly.

As seen on Table 17, rules extracted with maximum error rate of τ=0.1% consistently produced accurate

detection results in terms of the combination of TPs and FPs during all Tts. Overall, using this setting, the

rule-based classifier achieved TP>95% and FP<0.32% on test datasets. Please note that due to rejecting

conflicting and inaccurate classifications, in some cases during the same Tts, the number of rules that

produce FPs decreases even after selecting more rules by increasing τ. Furthermore, the “unknowns

dataset” column in Table 17 reports the percentage of completely unknown files from period Tts that

match the extracted rules and are now classified (“matched” column). The table also shows the exact

numbers of matched unknown files classified as benign or malicious.

Also, note the percentage of truly unknown files that match the extracted rules in each τ setting. More

rules are chosen as τ increases, and consequently, more unknown files match the rules. However, as

discussed before, after a certain τ value, adding more rules causes deterioration of TPs and FPs. This is

because if too many inaccurate rules with higher error rates are added to the set of extracted rules, they

could lead to misclassifications. In addition, the possibility that files match conflicting rules increases and

the classifier rejects these files. So even though we can label more truly unknown files with more rules,

the final classification of these files might not be very accurate. Because τ=0.1% produced the best

performance on the test dataset, we use the same setting for classifying the unknown files.

As mentioned before, this is one of the advantages of our rule-based classification system over regular

decision trees, as the whole decision tree, which contains some less accurate branches, does not need

to be used. Overall, from February to August, the system classified 406,688 previously unknown files as

either benign or malicious. This number accounts for 28.30% of total unknown files observed during this

period.

37 | Exploring the Long Tail of (Malicious) Software Downloads

Ttr - Tts τ
Test dataset (extracted during Tts) Unknowns dataset (extracted during Tts)

malicious

TP

benign
FP

FP
rules

unknowns

matches

malicious

benign

Jan - Feb
0.0% 3,590 96.72% 1,401 0.07% 1

292,793
24.08% 68,200 2,312

0.1% 3,647 96.45% 2,718 0.00% 0 24.14% 68,368 2,312

Feb - Mar
0.0% 3,045 97.59% 2,051 0.39% 8

301,715
29.22% 68,165 20,005

0.1% 3,070 97.60% 2,830 0.32% 9 29.22% 68,165 20,005

Mar - Apr
0.0% 4,793 97.98% 1,367 0.37% 6

242,810
22.06% 51,096 2,470

0.1% 4,842 99.61% 2,315 0.30% 8 22.23% 51,504 2,467

Apr - May
0.0% 3,001 92.01% 1,873 0.05% 1

197,526
36.92% 46,651 26,266

0.1% 7,203 96.96% 2,267 0.13% 2 38.03% 49,014 26,108

May - Jun
0.0% 3,834 90.53% 2,038 0.15% 4

191,574
32.05% 40,600 20,794

0.1% 7,895 96.64% 2,597 0.12% 4 34.46% 43,175 22,846

Jun - Jul
0.0% 7,200 95.39% 2,414 0.25% 7

177,255
30.71% 35,530 18,906

0.1% 7,202 95.28% 2,837 0.18% 6 31.54% 35,693 20,207

Table 17. Evaluation results and classification of unknown files using rule-based classifier

(conflicts are handled by rejecting the test and unknown files)

38 | Exploring the Long Tail of (Malicious) Software Downloads

7. Discussion
As mentioned earlier, our rule-based classification system has a couple of advantages: the rules are

human-readable and they can easily be reviewed by an analyst. In the following, we report a few example

rules that led to the most true positives, as well as other rules that sometimes caused misclassifications.

Below, we list three sample rules that are responsible for correctly labeling many malicious downloads:

1.	 IF (file’s signer is “SecureInstall”) → file is malicious.

2.	 IF (file’s signer is “Apps Installer S.L.”) AND (downloading process’s signer is “Microsoft Windows”)

AND (file’s CA is “thawte code signing ca - g2”) → file is malicious.

3.	 IF (file is not signed) AND (downloading process is “Acrobat Reader”) → file is malicious.

The rules mentioned above follow our reported measurement results. For example, Table 10 showed that

malware files are downloaded by benign Windows processes. It also reported that files downloaded by

Acrobat Reader are malware.

Rules that produce some false positives include the following:

1.	 IF (file’s signer is “mail.ru games”) → file is malicious.

2.	 IF (file is not signed) AND (downloading process’s signer is “Amonetize ltd.”) AND (file’s packer is

“NSIS”) → file is malicious.

3.	 IF (file is not signed) AND (Alexa rank of file’s URL is between 10,000 to 100,000) AND (downloading

process is benign) AND (file’s packer is “aspack”) → file is malicious.

It should be noted that some of the classifications that we count as false positives may actually be due to

the presence of noise in our ground truth. For instance, let us consider rule (2) above. “Amonetize ltd” is

related to a family of adware and PUP software. Therefore, executable files downloaded from a process

signed by “Amonetize ltd” may, in fact, be malicious.

39 | Exploring the Long Tail of (Malicious) Software Downloads

Additionally, 33% of benign (according to our ground truth) test samples were downloaded by malware

processes or from malicious URLs. Therefore, these may be false positives due to noise in the whitelist.

Overall, these observations indicate that it is possible that the false positives we obtained may be

somewhat overestimated.

Our evaluation results indicate that signers of downloaded files play an important role in our rule-based

classifier. In fact, the file signer feature appeared in 75% of all rules. The other three most useful features, in

order, are the file’s packer, downloading process type, and downloading process’s signer, which appeared

in 8%, 5%, and 4% of all rules. Another interesting observation is that our classifier does not heavily rely

on the feature related to the Alexa rank of the domains, as it appeared in 1.4% of the rules. This is in

accordance with our previous measurement analysis that showed many benign file hosting websites tend

to host malicious files alongside benign files. We also noticed that simple rules containing one feature

were less error-prone and composed 89% of the rules, for τ=0.1%.

7.1. Analysis of Test Dataset Results
Among the correctly classified malicious test samples, 45% of files were droppers, 38% were trojans, and

3.5% were bankers. The remaining samples were divided among other malicious file types. The following

sample rules were the most successful in detecting different types of malware:

•	 bankers and bots: IF (downloading process is “Acrobat Reader”) → file is malicious.

•	 droppers: IF (file’s signer is “Somoto ltd.”) → file is malicious.

•	 fakeavs: IF (file is not signed) AND (Alexa rank of file’s URL is above 100K) AND (downloading process

is benign) AND (downloading process’s signer is “Microsoft Windows”) → file is malicious.

7.2. Expanding Available Ground Truth by
Labeling Unknown Files
As mentioned earlier, the set of rules we learned were able to label 28.30% of all 1,436,829 previously

unknown files from February to August, which represents a 233% increase in labeled files, compared

to the available ground truth. These 28.30% of unknown files were downloaded by as many as 294,419

machines, or 31% of all machines, therefore having a significant penetration across the machine population

(notice that the overall number of machines that downloaded any of the 1,436,829 unknown files between

February and August is 457,756).

40 | Exploring the Long Tail of (Malicious) Software Downloads

These results indicate that our rule-based classification method would enable a significant expansion

of the labeling of software files, compared to the ground truth available from multiple anti-virus sources.

Ultimately, this would allow researchers to evaluate the accuracy of their malware detection systems

over a much larger labeled dataset, including challenging cases of low-prevalence malicious files that in

aggregate tend to impact a large population of machines.

7.3. Evading Detection
Evasion is certainly possible for most statistical detection models. Malware developers could change

signer information by acquiring new signing certificates. However, valid certificates are not cheap.

Therefore, it would be expensive to create polymorphic malware variants with unique signatures. Also,

stealing a benign certificate is possible (though not easy); however, once the true certificate owners

detect this, they could revoke the certificate. Using “benign" packers would make it easier to unpack and

analyze the code. Therefore, malware often uses custom/hard-to-reverse packers. Thus, even though it is

technically possible to evade our system, it won't be very practical.

41 | Exploring the Long Tail of (Malicious) Software Downloads

8. Related Work
In this work, we focus on a specific class of software downloads that we believe to have been neglected

in the past, namely low-prevalence downloads. With respect to previous work investigating malicious

software downloads, we report the following. Rossow et al. [17] analyzed a limited number of about twenty

dropper families for aspects such as their network infrastructure, infection, propagation and persistence

on infected machines.

More recently, Kwon et al. [10] extended this research by looking into the download chains that occur after

infection. In comparison, we provided a comprehensive breakdown of different types of malware besides

droppers and analyzed their characteristics from various aspects, namely their signers, downloading

URLs, transitions from one type to another, etc. More importantly, [10] does not discuss the evaluation

of their classifier for files for which no ground truth is available whatsoever although these files seem to

comprise a significant portion (82%) of their dataset.

A second corpus of literature consists of papers focusing on potentially unwanted programs [8, 9]. Kotzias

et al. [8], for example, looked into the who-installs-who relationships of PUPs and reported findings similar

to ours with respect to PUPs delivering PUPs after the first infection. Similarly, we identified this behavior

on other types of malware, e.g., ransomware transitioning to ransomware in 80% of cases. Interestingly,

our results also suggested that seemingly less harmful malware such as adware and PUP tend to leave

machines vulnerable to other malware (Section 5.2)

The same authors in [9] looked at PUPs from the perspective of code signing. Their analysis showed that

most signed samples are PUPs and that other malware is not commonly signed. We also looked into this

phenomenon, and our work tends to suggest that possibly-malicious software normally downloaded by

browsers like droppers and PUPs tend to be correctly signed — probably as a need to send the code to

execute on modern operating systems (Section 4.3). We leveraged this and other features identified in our

measurement study to efficiently report unknown software downloads as malicious.

42 | Exploring the Long Tail of (Malicious) Software Downloads

Kurt et al. [19] and Caballero et al. [1] explored the ecosystem of pay-per-install campaigns (PPI) and their

role in the proliferation of PUPs by uncovering the operational organization and ecosystem of bundled

software at the back end. In contrast, our evaluation runs at the front end, on a population of over a million

end-point machines. We reported on the importance of considering low-prevalence software downloads,

as they generate files with no ground truth for a total of 69% of the entire machine population.

In Section 6, we proposed a rule-based classifier that helped us reduce the large number (83%) of

unknowns that we observed in our population of software download. Only about 0.25% of the files that we

observed during our measurement period had a prevalence of more than 20. While similar classification

systems have been proposed in the past (e.g., Polonium [2], Amico [20], CAMP [16], and Mastino [14]),

they appear to be somewhat limited in scope when dealing with low-prevalence software files. Polonium

[2], for example, reports a 48% detection rate on files with prevalences of 2 and 3, and it does not work on

files seen on single machines that account for 94% of the dataset in [2]. Other systems [14, 16, 20] could

potentially mistake low-prevalence benign files as malware. Also, these systems rely on the prevalence of

the downloading URLs to provide classifications, which, as explained in Section 4.2, could cause issues

for them.

43 | Exploring the Long Tail of (Malicious) Software Downloads

9. Conclusions
We have presented a large-scale study of global trends in software download events, with an analysis

of both benign and malicious downloads, and a categorization of events for which no ground truth is

currently available. Our measurement study, which is based on a real-world dataset containing more than

3 million in-the-wild web-based software download events involving hundreds of thousands of internet

machines, shows that more than 83% of all downloaded software files remain unknown to the anti-

malware community even two years after they were first observed. To better understand what these

unknown software files might be, and their potential impact on real-world internet machines, we have

performed a detailed analysis of their properties.

We then built a rule-based classifier to extend the labeling of software downloads. This system can be

used to identify many more benign and malicious files with very high confidence, allowing us to greatly

expand the number of software files that can be used to evaluate the accuracy of malware detection

systems.

44 | Exploring the Long Tail of (Malicious) Software Downloads

Acknowledgments
This material is based in part on work supported by the National Science Foundation (NSF) under grant No.

CNS-1149051. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the NSF.

This work is also partially supported by a grant from the Auburn University at Montgomery Research

Grant-in Aid Program. Additional acknowledgments go to Trend Micro’s Forward-Looking Threat Research

(FTR), SPN and Machine Learning teams who supported the research in different forms.

45 | Exploring the Long Tail of (Malicious) Software Downloads

REFERENCES
1.	 Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring pay-per-install: The commoditization of malware

distribution. In Usenix security symposium, 2011.

2.	 Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and Christos Faloutsos. Polonium: Tera-scale graph
mining for malware detection. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2010.

3.	 Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2 [stat.ML].

4.	 Eibe Frank and Ian H. Witten. Generating accurate rule sets without global optimization. In J. Shavlik, editor, Fifteenth
International Conference on Machine Learning, pages 144–151. Morgan Kaufmann, 1998.

5.	 Google. Google Safe Browsing. https://www.google.com/transparencyreport/safebrowsing/.

6.	 Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich, Kirill Levchenko, Panayiotis Mavrommatis,
Damon McCoy, Antonio Nappa, Andreas Pitsillidis, Niels Provos, M. Zubair Rafique, Moheeb Abu Rajab, Christian Rossow,
Kurt Thomas, Vern Paxson, Stefan Savage, and Geoffrey M. Voelker. Manufacturing Compromise: The emergence of exploit-
as-a-service. In Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS ’12, pages
821–832, New York, NY, USA, 2012. ACM.

7.	 Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel, and Giovanni Vigna. Revolver: An automated
approach to the detection of evasive web-based malware. In USENIX Security, pages 637–652. Citeseer, 2013.

8.	 Platon Kotzias, Leyla Bilge, and Juan Caballero. Measuring pup prevalence and pup distribution through pay-per-install
services. In Proceedings of the USENIX Security Symposium, 2016.

9.	 Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Caballero. Certified PUP: Abuse in Authenticode Code Signing. In ACM
Conference on Computer and Communication Security, 2015.

10.	 Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge, and Tudor Dumitras. The dropper effect: Insights into malware
distribution with downloader graph analytics. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1118–1129. ACM, 2015.

11.	 Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad. Towards measuring and mitigating social
engineering software download attacks. In Proceedings of the 25th USENIX Conference on Security Symposium, SEC’16,
2016.

12.	 Roberto Perdisci et al. Vamo: towards a fully automated malware clustering validity analysis. In Proceedings of the 28th Annual
Computer Security Applications Conference, pages 329–338. ACM, 2012.

13.	 Zubair Rafique, Tom Van Goethem, Wouter Joosen, Christophe Huygens, and Nick Nikiforakis. Itâ€™s free for a reason:
Exploring the ecosystem of free live streaming services. 2016.

14.	 Babak Rahbarinia, Marco Balduzzi, and Roberto Perdisci. Real-time detection of malware downloads via large-scale URL→file→
machine graph mining. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, ASIA
CCS ’16, pages 783–794, New York, NY, USA, 2016. ACM.

15.	 Babak Rahbarinia, Roberto Perdisci, and Manos Antonakakis. Segugio: Efficient behavior-based tracking of malware-control
domains in large isp networks. In Dependable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on, pages 403–414. IEEE, 2015.

16.	 Moheeb Abu Rajab, Lucas Ballard, Noé Lutz, Panayiotis Mavrommatis, and Niels Provos. Camp: Content-agnostic malware
protection. In NDSS, 2013.

17.	 Christian Rossow, Christian Dietrich, and Herbert Bos. Large-scale analysis of malware downloaders. In Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 42–61. Springer, 2012.

18.	 Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass: A tool for massive malware labeling. In
International Symposium on Research in Attacks, Intrusions, and Defenses, pages 230–253. Springer, 2016.

https://www.google.com/transparencyreport/safebrowsing/

46 | Exploring the Long Tail of (Malicious) Software Downloads

19.	 Kurt Thomas, Juan Antonio Elices Crespo, Ryan Rasti, Jean-Michel Picod, Cait Phillips, Chris Sharp, Fabio Tirelo, Ali Tofigh,
Marc-Antoine Courteau, Lucas Ballard, et al. Investigating commercial pay-per-install and the distribution of unwanted
software. In USENIX Security Symposium, 2016.

20.	 Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li, and Manos Antonakakis. Measuring and detecting malware
downloads in live network traffic. In Computer Security - ESORICS 2013 - 18th European Symposium on Research in Computer
Security, Egham, UK, September 9-13, 2013. Proceedings, pages 556–573, 2013.

21.	 Xinyu Xing, Wei Meng, Udi Weinsberg, Anmol Sheth, Byoungyoung Lee, Roberto Perdisci, and Wenke Lee. Unraveling the
relationship between ad-injecting browser extensions and malvertising. In Proceedings of the International Conference on the
World Wide Web, 2015.

©2018 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro

t-ball logo are trademarks or registered trademarks of Trend Micro, Incorporated. All other

product or company names may be trademarks or registered trademarks of their owners.

TREND MICROTM

Trend Micro Incorporated, a global cloud security leader, creates a world safe for exchanging digital information with its Internet content security and

threat management solutions for businesses and consumers. A pioneer in server security with over 20 years experience, we deliver top-ranked client,

server, and cloud-based security that fits our customers’ and partners’ needs; stops new threats faster; and protects data in physical, virtualized, and

cloud environments. Powered by the Trend Micro™ Smart Protection Network™ infrastructure, our industry-leading cloud-computing security technology,

products and services stop threats where they emerge, on the Internet, and are supported by 1,000+ threat intelligence experts around the globe.

For additional information, visit www.trendmicro.com.

	1. Introduction
	2. Data Collection and Labeling
	2.1. Software Download Events
	2.2. File Labeling
	2.3. Malicious File Types

	3. Dataset Overview
	4. Analysis of Software Download Events
	4.1. File Prevalence
	4.2. Analysis of Download URLs
	4.3. File Signers and Packers

	5. Downloading Processes and Machines
	5.1. Analysis of Benign Processes that Download Executables
	5.2. Analysis of Malicious Processes
	From Adware/PUP to Malware
	Dropper-driven Malware Infections

	6. Exploring and Labeling Unknown Files
	6.1. Exploring the Characteristics of Unknown Files
	6.2. Labeling Unknown Files
	6.3. Generating Human-Readable Classification Rules
	6.4. Evaluation of Classification Rules

	7. Discussion
	7.1. Analysis of Test Dataset Results
	7.2. Expanding Available Ground Truth by Labeling Unknown Files
	7.3 Evading Detection

	8. Related Work
	9. Conclusions
	Acknowledgments
	REFERENCES

