

tabindex="3"></textarea> 🐨

count\_info.field

ard: style="position: absolute; left: -999999px;">dog 200 b) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100)

# Exploring the Long Tail of (Malicious) Software Downloads

Prof. Babak Rahbarinia, Auburn University at Montgomery Dr. Marco Balduzzi, Forward-Looking Threat Research Team, Trend Micro Prof. Roberto Perdisci, University of Georgia

#### TREND MICRO LEGAL DISCLAIMER

The information provided herein is for general information and educational purposes only. It is not intended and should not be construed to constitute legal advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. Nothing contained herein should be relied on or acted upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing herein should be construed otherwise. Trend Micro reserves the right to modify the contents of this document at any time without prior notice.

Translations of any material into other languages are intended solely as a convenience. Translation accuracy is not guaranteed nor implied. If any questions arise related to the accuracy of a translation, please refer to the original language official version of the document. Any discrepancies or differences created in the translation are not binding and have no legal effect for compliance or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate and up-to-date information herein. Trend Micro makes no warranties or representations of any kind as to its accuracy, currency, or completeness. You agree that access to and use of and reliance on this document and the content thereof is at your own risk. Trend Micro disclaims all warranties of any kind, express or implied. Neither Trend Micro nor any party involved in creating, producing, or delivering this document shall be liable for any consequence, loss, or damage, including direct, indirect, special, consequential, loss of business profits, or special damages, whatsoever arising out of access to, use of, or inability to use, or in connection with the use of this document, or any errors or omissions in the content thereof. Use of this information constitutes acceptance for use in an "as is" condition.

Prof. Babak Rahbarinia Auburn University Montgomery, AL 36117, USA brahbari@aum.edu

Dr. Marco Balduzzi Forward-looking Threat Research (FTR) Team Trend Micro Inc. marco\_balduzzi@trendmicro.com

Prof. Roberto Perdisci University of Georgia Athens, GA 30602, USA perdisci@cs.uga.edu

### Contents

\_\_\_\_\_ Introduction

6

Data Collection and Labeling

10

Dataset Overview

#### 13

Analysis of Software Download Events

#### 22

Downloading Processes and Machines

#### 30

Exploring and Labeling Unknown Files

#### 38

Discussion

41

Related Work

43

Conclusions

44

Acknowledgments

#### Abstract

In this paper, we present a large-scale study of global trends in software download events, with an analysis of both benign and malicious downloads and a categorization of events for which no ground truth is currently available. Our measurement study is based on a unique, real-world dataset collected at Trend Micro containing more than 3 million in-the-wild webbased software download events involving hundreds of thousands of internet machines over a period of seven months.

Somewhat surprisingly, we found that despite our best efforts and the use of multiple sources of ground truth, more than 83% of all downloaded software files remain unknown, i.e. cannot be classified as benign or malicious, even two years after they were first observed. If we consider the number of machines that have downloaded at least one unknown file, we find that more than 69% of the entire machine/user population downloaded one or more unknown software file. Because the accuracy of malware detection systems reported in the academic literature is typically assessed only over software files that can be labeled, our findings raise concerns on their actual effectiveness in large-scale real-world deployments and their ability to defend the majority of internet machines from infection.

To better understand what these unknown software files might be, we perform a detailed analysis of their properties. We then explore whether it is possible to extend the labeling of software downloads by building a rulebased system that automatically learns from the available ground truth, and can be used to identify many more benign and malicious files with very high confidence. This allows us to greatly expand the number of software files that can be labeled with high confidence, thus providing results that can benefit the evaluation of future malware detection systems.

### 1. Introduction

Most modern malware infections are caused by web-driven software download events, such as infections via drive-by exploits [6] or social engineering attacks [11]. In response to the growth of infections via software downloads, the security community has conducted a wealth of research, the majority of which is dedicated to detection and remediation efforts [2, 7, 14-16, 20]. Some recent studies focused on measuring specific infection vectors. For instance, Caballero et al. [1] studied the business infrastructure of malware distribution networks, while Rossow et al. [17] and Kwon et al. [10] focused their attention towards malware droppers and provided detailed measurements to better understand how dropper-driven infections work.

In this paper, we aim to provide a broader, large-scale study of global trends in software download events, with an analysis of both benign and malicious downloads, and a categorization of events for which no ground truth is currently available. Our measurement study is based on a unique, real-world dataset we obtained from Trend Micro – a leading anti-malware vendor (which we refer to as AMV). This dataset contains detailed (anonymized) information about 3 million in-the-wild web-based software download events involving over a million internet machines, collected over a period of seven months. Each download event includes information such as a unique (anonymous) global machine identifier, detailed information about the downloaded file, the process that initiated the download, and the URL from which the file was downloaded. To label benign and malicious software download events and study their properties, we make use of multiple sources of ground truth, including information from VirusTotal.com and AMV's private resources. This ground truth was collected over several months, both at a time close to the software download events as well as many months after the collection of our dataset, to account for the time typically needed by anti-malware vendors to develop new malware signatures.

Somewhat surprisingly, we found that despite our best efforts, we were only able to label less than 17% of the 1,791,803 software files contained in our dataset. In other words, more than 83% of all downloads remain *unknown*, even two years after they were first observed. Most of these files have very low prevalence. Namely, when considered independently from one another, each file is downloaded by only one (or few) machines overall. Therefore, one may think that these files are uninteresting, and the fact that they remain unknown is understandable since they would impact a negligible number of machines if they were malicious. However, if we consider the number of machines that have downloaded at least

one unknown file, we find that more than 69% of the entire machine population downloaded one or more unknown software file(s) during our observation period. This result is significant, in that it highlights a major challenge faced by the malware research community. In fact, most malware detection and classification systems proposed in the scientific literature are naturally evaluated only on samples (i.e., executable files) for which ground truth is available. Unfortunately, because the accuracy of these systems can only be assessed over a small minority of in-the-wild software downloads, this raises concerns on their actual effectiveness in large-scale real-world deployments, and on their ability to defend the majority of internet machines from infection.

To better understand what these *unknown* software files may look like, we performed a detailed analysis of their properties. We then explored whether it is possible to extend the labeling of software downloads by building a rule-based system that automatically learns from the available ground truth. Specifically, we aim to generate human-readable classification rules that can accurately identify benign and malicious software using a combination of simple features, while keeping the false positive rate to a low target rate of 0.1%, which is a common threshold in the anti-malware industry. For instance, we show that features such as software signing information can be leveraged to improve file labeling. In particular, unlike studies that focus primarily on potentially unwanted programs [8, 9, 19], we show that software signing information for labeling purposes. These automatically extracted rules allow us to increase the number of samples labeled by 233% (a 2.3x increase) with high confidence, compared to the available ground truth. Furthermore, each newly labeled sample can be traced back to the human-readable rule that assigned the label, thus providing a way for analysts to interpret and verify the results. By providing a way to expand the labeling of software files significantly, our rule-based system can benefit the evaluation of future malware detection systems.

In summary, our paper makes the following contributions:

- We explore trends in the software downloads collected *in-the-wild* from over a million machines from a leading anti-malware provider and study the proprieties of benign, malicious, and unknown software.
- We report on the importance of considering low prevalence files, which in aggregate are run by almost 70% of the monitored machines and whose true nature tends to remain *unknown* to AV vendors even two years after they were first observed.
- We present a novel rule-based classification system that learns *human-readable* file classification rules from easily measured features, such as the process used to download a file and the software file signer. We then show that this system can be used to significantly increase the number of software files that can be labeled, compared to the available ground truth, thus providing results that can benefit the evaluation of future malware detection systems.

## 2. Data Collection and Labeling

#### 2.1. Software Download Events

To collect in-the-wild software download events, we monitor more than a million machines of a well-known leading anti-malware vendor (we only monitor download events from customers who have approved sharing this information with AMV). Each customer machine runs a monitoring software agent (SA), which is responsible for identifying web-based software downloads and reporting these events to a centralized data collection server (CS). Each download event is represented by a 5-tuple, (f, m, p, u, t), where f is the downloaded file, m is the machine that downloaded f, p is the process on the machine that initiated the download, u is the download URL, and t is a timestamp. The downloaded files and client processes are uniquely identified by their respective file hash, whereas the machines are uniquely identified by an anonymized global unique ID (generated by AMV's software agent installation). We also have the (anonymized) path on disk — including file names — of every download process and downloaded file.

While each SA captures all web-based download events observed on the system, only events considered of interest are reported to the CS for efficiency reasons. Specifically, our dataset contains only software download events that satisfy the following conditions:

- The newly downloaded file is *executed* on the user's machine. Namely, software files that are downloaded from the web but remain "inactive" (i.e., not executed on the system) are not reported.
- The current *prevalence* of the downloaded file is below a predefined threshold, σ. For instance, consider a newly downloaded software file *f* observed by a monitored machine *m* at time *t*. This new event is reported by *m* to the CS only if the number of distinct machines that downloaded the same file (as determined based on its hash) before time *t* is less than σ.
- The URL from which the file is downloaded is not whitelisted. For instance, software updates from Microsoft or other major software vendors were not collected.

Overall, the rules described above aim to reduce the system-overhead and bandwidth consumption needed to transfer the download events from millions of monitoring agents to the collection server.

During our data collection period,  $\sigma$  was set to 20. Each file could be reported up to 20 times if it occurred in up to 20 different download events. It is possible that a file will reach a true prevalence higher than 20, though this will not be reflected in the dataset we analyze. At the same time, if the final prevalence of a file (i.e., at the end of the collection period) is less than 20, this means that the file was actually downloaded by less than 20 of the monitored machines, as reported in our measurements. Of all the files we observed, we found that 99.75% have a prevalence of less than 20. Namely, our prevalence measurements were capped at 20 for only less than 0.25% of all the downloaded files we observed (see Section 4.1 for more details).

### 2.2. File Labeling

For every software file, we gather related ground truth using multiple sources. Specifically, we used a large commercial whitelist and NIST's software reference library<sup>1</sup> to label benign software files. Note that this information is gathered from both downloaded files and downloading processes. We also make use of VirusTotal.com (VT). Specifically, given a software file *f*, we query VT both close to the time of download and then again almost two years after the data collection. We let this large amount of time pass before re-querying VT, to give plenty of time for VT to collect and process (via crowdsourced submissions) files that we observed, and for anti-virus applications to develop new detection signatures.

We label a file as *benign* if it matches our whitelists or if all anti-virus engines (AV) on VT still classify the file as benign, even after almost two years from collection. We label a file as *likely benign* if it is classified as benign by VT but the time difference between first and last scans is less than 14 days. To label malicious files, we adopted the following approach. Of the more than 50 anti-virus (AV) engines on VT, we consider two groups: a group of "trusted" AVs that includes ten of the most popular AV vendors (i.e., Symantec, McAfee, Microsoft, Trend Micro, etc.), and a group containing all other available AVs, which tend to produce somewhat less reliable detection results. Then we label a file as *malicious* if at least one of the ten "trusted" AVs assigns it an AV label. On the other hand, if none of the ten "trusted" AV vendors assigns an AV label to the file but at least one of the remaining less popular AVs detects the file as malicious, we assign a *likely malicious* label. The downloading processes are also labeled similarly. Files (processes) for which no ground truth can be found were labeled as *unknown*. For every file, including *unknown* files, we obtain additional details, such as their file size, their prevalence across all machines of AMV, if the file carries a valid software signature, if it is packed and with what packer, etc.

To label the URLs from which files are downloaded, we use AMV's internal URL whitelists and blacklists, the list of most popular domains according to Alexa.com, and Google Safe Browsing (GSB) [5]. Specifically, to label a URL as *benign*, we maintain a list of domains that consistently appeared in the top one million Alexa sites for about a year. To further mitigate possible noise in the Alexa list, we consult multiple whitelists and

<sup>1</sup> http://www.nsrl.nist.gov

<sup>7 |</sup> Exploring the Long Tail of (Malicious) Software Downloads

adjust the labels as follows. If the effective second-level domain (e2LD) of a URL appears in the Alexa. com list and the URL also matches our private curated whitelist (provided by Trend Micro), the URL will be labeled as benign. On the other hand, a URL will be labeled as *malicious* if it matches GSB and our private URL blacklist.

### 2.3. Malicious File Types

To shed light on the type of malware were involved with the software download events we observed, we attempt to group known malicious files into *types*. To this end, for each malicious file we use multiple AV labels to derive their *behavior type* (e.g., fakeAV, ransomware, dropper, etc.) and their *family* (e.g., Zbot, CryptoLocker, etc.). While we acknowledge that AV labels are often noisy and sometimes inconsistent, we use a best effort approach, similar to previous work [12, 18]. For instance, to derive the *family* labels from AV labels, we simply use a recently proposed system called AVclass [18]. As we are not aware of any similar tool that can derive the *behavior type*, we developed the labeling scheme described below, which is based on AV label mappings provided by Trend Micro and our own empirical experience.

To determine the behavior type (or simply *type*, for brevity) of a malicious file, we consider the AV labels assigned to the file by a subset of five leading AV engines<sup>2</sup>, for which we have obtained a "label interpretation map" provided by Trend Micro (ref. Table 2). By leveraging this map, we identified a set of behavior type keywords used by these leading AVs, such as *fake-av*, *ransomware*, *bot*, etc. For instance, an AV label such as TROJ\_FAKEAV.SMU1 assigned by Trend Micro indicates a *fake-av* malware type. However, because different AVs may disagree on the label to be assigned to a specific malicious file, we designed a set of simple rules to resolve such conflicts:

- 1. *Voting*: Given a malicious file *f*, we first map each label into its respective *type*. We then assign to *f* the type label with the highest count. In case of two or more type labels receive an equal number of votes, we break the tie using the second rule.
- 2. Specificity: If among the types considered for a malicious file, there is one type that is more "specific" than the rest, that specific type is assigned. For example, if AV labels for a file report conflicting types, such as *banker* and *trojan*, we will select *banker* as the final label because it identifies a more specific type keyword than *trojan* (notice that AV engines often use *trojan* or *generic* to flag malicious files with an unknown behavior/class).

In some rare cases where these two rules still cannot be used to resolve a conflict, we derive the final type via manual analysis.

As an example of the results given by rule 1), consider a malicious file with four AV labels (i.e., one out of the five leading AVs we consider for type labeling did not report the file as being malicious):

<sup>&</sup>lt;sup>2</sup> Microsoft, Symantec, Trend Micro, Kaspersky, and McAfee

<sup>8 |</sup> Exploring the Long Tail of (Malicious) Software Downloads

Symantec=Trojan.Zbot, McAfee=Downloader-FYH!6C7411D1C043, Kaspersky=Trojan-Spy. Win32.Zbot.ruxa, and Microsoft=PWS:Win32/Zbot. The type *banker* can be derived from three of the AV labels (Zbot is programmed to steal banking information<sup>3</sup>), while McAfee's AV label indicates a *dropper* (i.e., Downloader is mapped to the *dropper* behavior type). In this case, the final type we assign will be *banker*. Now consider an example of rule 2) where the following AV labels are assigned to a malicious file: Kaspersky=Trojan-Downloader.Win32.Agent.heqj and McAfee=Artemis!DEC3771868CB. In this case, Kaspersky's label indicates a *dropper* behavior, while McAfee's label is a generic one (Artemis refers to a heuristics-based detection approach). Since *dropper* indicates a more specific behavior, we assign it as the final type.

For 44% of all malicious downloaded files and client processes, we were able to assign a type label without encountering any conflicts (i.e., the AVs fully agreed on the type). In about 28% of cases, the type label was assigned using the Voting rule, whereas the Specificity rule was applied in 23% or the cases. In the remaining 5% of the cases, the type label was resolved via manual analysis. To foster reproducibility of these results, we provide our malicious type extractor tool as an open source tool at gitlab.com/ pub-open/AVType.

<sup>&</sup>lt;sup>3</sup> https://www.symantec.com/security\_response/writeup.jsp?docid=2010-011016-3514-99

## 3. Dataset Overview

In this section, we provide an overview of our dataset, including the exact number of machines we monitored during the data collection period, the number of software download events we observed, how many of these events we were able to label, the malware types and families included in the dataset, etc. More detailed measurements are provided in Sections 4 and 5.

Our observation period spans seven months, from January 2014 to August 2014. During this time, we observed 3,073,863 software download events triggered by 1,139,183 machines. The software files were downloaded from 1,629,336 distinct URLs, across 96,862 different domain names. Out of 1,791,803 downloaded files, we labeled 9.9% as *malicious* and 2.3% as *benign*. We also labeled 4.8% as either likely benign or malicious. Note that although some ground truth is available for likely benign and likely malicious files, we excluded them from the rest of our study due to our lack of confidence in determining if they are truly benign or malicious, and the possibility that they introduce noise into results.

The remaining 83% of downloaded files were *unknown*, i.e., no ground truth exists for them. The software download events were initiated by 141,229 different download processes (identified by their hash). Of these processes, 18.5% were labeled as *malicious* and 7.6% as *benign*.

|          | # of             | # of               | Download Processes |        |                  |           |                     |  |
|----------|------------------|--------------------|--------------------|--------|------------------|-----------|---------------------|--|
| Month M  | # of<br>Machines | Download<br>Events | Total              | Benign | Likely<br>Benign | Malicious | Likely<br>Malicious |  |
| January  | 292,516          | 578,510            | 27,265             | 15.8%  | 8.4%             | 16.2%     | 4.8%                |  |
| February | 246,481          | 470,291            | 25,001             | 15.4%  | 8.2%             | 16.8%     | 4.8%                |  |
| March    | 248,568          | 493,487            | 25,497             | 15.7%  | 9.1%             | 16.2%     | 4.6%                |  |
| April    | 215,693          | 427,110            | 23,078             | 16.3%  | 9.3%             | 19.4%     | 4.5%                |  |
| Мау      | 180,947          | 351,271            | 20,071             | 17.3%  | 9.5%             | 19.3%     | 4.7%                |  |
| June     | 176,463          | 351,509            | 23,799             | 14.3%  | 8.1%             | 20.9%     | 3.8%                |  |
| July     | 157,457          | 323,159            | 26,304             | 12.2%  | 7.2%             | 16.6%     | 3.3%                |  |
| Overall  | 1,139,183        | 3,073,863          | 141,229            | 7.6%   | 6.6%             | 18.5%     | 3.1%                |  |

|          | Downloaded Files |        |                  |           |                     | Download URLs |        |           |  |
|----------|------------------|--------|------------------|-----------|---------------------|---------------|--------|-----------|--|
| Month    | Total            | Benign | Likely<br>Benign | Malicious | Likely<br>Malicious | Total         | Benign | Malicious |  |
| January  | 366,981          | 2.9%   | 2.8%             | 7.9%      | 2.8%                | 318,834       | 30.2%  | 11.6%     |  |
| February | 296,362          | 3.1%   | 3.1%             | 8.9%      | 3.1%                | 258,410       | 30.0%  | 12.2%     |  |
| March    | 312,662          | 3.0%   | 3.1%             | 9.6%      | 2.9%                | 282,179       | 33.0%  | 12.3%     |  |
| April    | 258,752          | 3.6%   | 3.4%             | 12.6%     | 3.2%                | 250,634       | 31.8%  | 11.3%     |  |
| Мау      | 218,156          | 3.7%   | 3.5%             | 12.5%     | 3.2%                | 206,095       | 29.9%  | 18.9%     |  |
| June     | 206,309          | 3.8%   | 3.4%             | 14.0%     | 3.5%                | 201,920       | 29.5%  | 23.0%     |  |
| July     | 188,564          | 4.0%   | 3.7%             | 12.6%     | 3.6%                | 187,315       | 29.3%  | 17.9%     |  |
| Overall  | 1,791,803        | 2.3%   | 2.5%             | 9.9%      | 2.3%                | 1,629,336     | 29.8%  | 15.1%     |  |

Table 1. Monthly summary of data collected by the anti-malware vendor (AMV)

These results are summarized in Table 1, whereas Figure 1 and Table 2 summarize the distribution of malware *families* and *types*, respectively, for the downloaded files that were labeled as malicious. As mentioned in Section 2, we obtained the malware family names in Figure 1 by running AVclass [18] on our dataset of known malicious files. The figure only shows the top 25 families by number of samples. Overall, our dataset contains malware from 363 different families, according to AVclass. However, for 58% of the samples, AVclass was unable to derive a family name. We also provide a brief description of malware types in our dataset in Table 2. Among all malware types, droppers were the most common type in our dataset. Also note the "undefined" type, which refers to those malicious files that were assigned generic AV labels (e.g., Artemis by McAfee) or labels for which we did not have any mappings available.

| Туре     | Total | Description                                                                          |
|----------|-------|--------------------------------------------------------------------------------------|
| Droppers | 22.7% | Malware specialized in dropping other files like second-stage malware                |
| PUPs     | 16.8% | Potentially unwanted program that is distributed as bundled in a benign application  |
| Adware   | 15.4% | Malicious software specialized in rendering ads without the consent of the user      |
| Trojan   | 11.3% | Generic name for malware that disguises as benign application and does not propagate |
| Bankers  | 0.9%  | Malware targeting online banking and specialized in stealing banking credentials     |
| Bots     | 0.6%  | Remotely controlled malware                                                          |
| FakeAVs  | 0.5%  | Malware distributed in the form of concealed antivirus software                      |

| Туре       | Total | Description                                                                      |
|------------|-------|----------------------------------------------------------------------------------|
| Ransomware | 0.3%  | Malware specialized in locking an endpoint (or files) and on asking for a ransom |
| Worms      | 0.1%  | Malware that auto-replicates and propagates through a victim network             |
| Spyware    | 0.04% | Malicious software specialized in monitoring and spying on the activity of users |
| Undefined  | 31.3% | Generic or unclassified malicious software                                       |



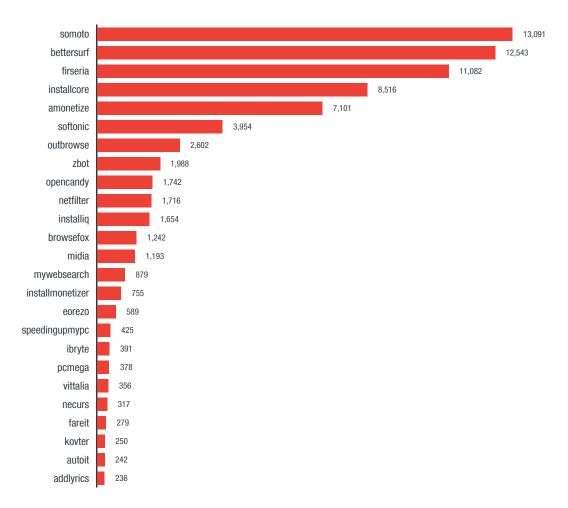


Figure 1. Distribution of malware families (top 25)

## 4. Analysis of Software Download Events

In this section, we present an in-depth analysis of the trends we observed in our collection of software download events. We will focus mainly on *which files* were downloaded, and *from where*, leaving a more detailed analysis of *how* files are downloaded (i.e., by what downloading processes and machines) to Section 5.

#### 4.1. File Prevalence

Figure 2 reports the *prevalence* of the downloaded files. We define the prevalence of a downloaded file as the total number of distinct machines that downloaded the file. The results show that the prevalence distribution for all downloaded files has a very long tail. It should be noted that this is partly due to the fact that highly popular (i.e., high-prevalence) software files are not collected by AMV's software agents, as discussed in Section 2.1. The section also explains that file download events are reported only until their prevalence exceeds 20 and if they are executed.

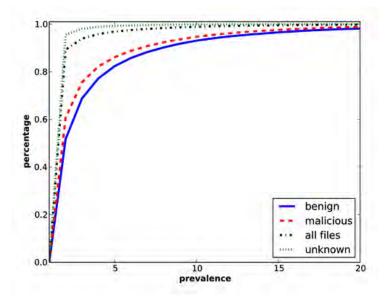


Figure 2. Prevalence of the downloaded software files

Nonetheless, it is remarkable that only one machine *downloaded and executed* almost 90% of all downloaded files. We can notice from Figure 2 that the long-tail of the prevalence distribution is driven by *unknown* files (i.e., files for which no ground truth is available), which have an extremely low prevalence compared to benign and known malicious files. We also explored the distribution of different malware types and found that they are very similar to each other.

In aggregate, these *unknown* files have been downloaded and run by 69% of the 1.1 million machines we monitored. Clearly, if a large percentage of the *unknown* files are malicious, it would affect a very large fraction of machines. It is therefore important to study this long tail, given the large number of machines involved.

#### 4.2. Analysis of Download URLs

Table 3 reports the most contacted effective second-level domains (e2LDs) from which software files were downloaded, according to different criteria. Here we define the popularity of a domain by the total number of unique machines that contacted the domain to download a file. The "Overall" column reports the most popular domains in general, while the "Benign" and "Malicious" columns report the most popular domains from which benign and malicious files were downloaded, respectively.

| Overall                  | # of<br>Machines | Benign             | # of<br>Machines | Malicious             | # of<br>Machines |
|--------------------------|------------------|--------------------|------------------|-----------------------|------------------|
| softonic.com             | 64,300           | softonic.com       | 64,300           | softonic.com          | 64,300           |
| inbox.com                | 49,481           | inbox.com          | 49,481           | inbox.com             | 49,481           |
| humipapp.com             | 30,966           | cloudfront.net     | 20,065           | humipapp.com          | 20,065           |
| bestdownload-manager.com | 30,376           | amazonaws.com      | 17,702           | freepdf-converter.com | 17,702           |
| freepdf-converter.com    | 25,858           | driverupdate.net   | 17,505           | cloudfront.net        | 17,505           |
| cloudfront.net           | 20,065           | arcadefrontier.com | 15,738           | soft32.com            | 15,738           |
| soft32.com               | 18,241           | mediafire.com      | 14,336           | amazonaws.com         | 14,336           |
| amazonaws.com            | 17,702           | uptodown.com       | 13,431           | arcadefrontier.com    | 13,431           |
| driverupdate.net         | 17,505           | ziputil.net        | 12,972           | free-fileopener.com   | 12,972           |
| arcadefrontier.com       | 15,738           | rackcdn.com        | 12,893           | mediafire.com         | 12,893           |

Table 3. Domains with highest download popularity

Table 3 shows that many file hosting services, such as softonic.com, cloudfront.com, and mediafire.com, are used for distributing legitimate software and abused by malware distributors. This represents a challenge for malware detection systems that rely on a notion of reputation for the download server/URL (e.g., CAMP [16] and Amico [20]), because the mixed the reputation of the domains/IPs

that serve both benign and malicious downloads could cause a significant number of false positives or negatives.

Also, from Table 4, which reports the domains in our dataset that serve the highest number of unique downloaded benign and malicious files, we can see that there is again a notable overlap among the domains listed under different columns. For example, domains such as softonic.com and mediafire.com host the highest number of both benign and malicious files. This suggests that files downloaded from these software hosting websites are not entirely trustworthy. In fact, the comparison of the distribution of the Alexa ranks of domains from which benign and malicious files are downloaded (shown in Figure 3) suggests that malicious files aggressively use higher Alexa ranked domains for distribution.

| Benign downloads | # of Files | Malicious downloads      | # of Files |
|------------------|------------|--------------------------|------------|
| cnet.com         | 1,574      | softonic.com             | 21,355     |
| sourceforge.net  | 1,357      | nzs.com.br               | 8,009      |
| mediafire.com    | 774        | cloudfront.net           | 7,416      |
| informer.com     | 749        | baixaki.com.br           | 4,564      |
| softonic.com     | 569        | cdn77.net                | 4,043      |
| wildgames.com    | 503        | mediafire.com            | 3,857      |
| lenovo.com       | 432        | softonic.com.br          | 3,251      |
| naver.net        | 361        | files-info.com           | 2,559      |
| ricoh.com        | 327        | v47installer.com         | 2,545      |
| tistory.com      | 305        | downloadaixeechahgho.com | 2,266      |

Table 4. Number of files served per domain (top 10 domains)

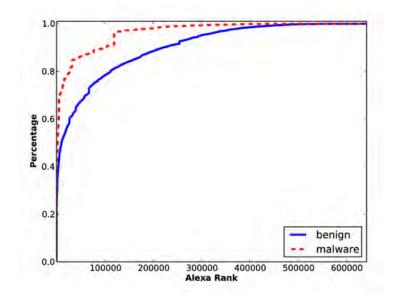


Figure 3. Distribution of the Alexa ranks of domains hosting benign and malicious files

Table 5 reports a break-down by malicious file type of the number of files served per domain. From Table 5, we can make some interesting observations. Some malicious file types, such as *dropper*, rely heavily on file hosting services to spread, while other types, such as *bot*, seem to employ other sources for their distribution. Also, we can see that domains used to distribute *fakeavs*, such as 5k-stopadware2014. in, sncpwindefender2014.in, webantiviruspro-fr.pw, etc., embed social engineering tactics in the domain name themselves. Another interesting point, which seems to confirm findings reported in [13], is that adware usually spreads by utilizing free live streaming services, such as media-watch-app.com, trustmediaviewer.com, vidply.net, etc.

| Bot           | # of Files | Dropper # o          | f Files |
|---------------|------------|----------------------|---------|
| mediafire.com | 70         | softonic.com         | 4,599   |
| 4shared.com   | 35         | files-info.com       | 2,072   |
| naver.net     | 34         | mediafire.com        | 845     |
| ge.tt         | 23         | softonic.com.br      | 732     |
| sharesend.com | 13         | d0wnpzivrubajjui.com | 601     |
| co.vu         | 12         | vitkvitk.com         | 489     |
| gulfup.com    | 11         | cloudfront.net       | 414     |
| hinet.net     | 10         | softonic.fr          | 356     |
| wipmsc.ru     | 10         | softonic.jp          | 334     |
| f-best.biz    | 9          | downloadnuchaik.com  | 302     |

| Adware               | # of Files | FakeAV                   | # of Files |
|----------------------|------------|--------------------------|------------|
| media-watch-app.com  | 1,936      | rackcdn.com              | 685        |
| media-buzz.org       | 1,911      | 5k-stopadware2014.in     | 4          |
| trustmediaviewer.com | 1,620      | sncpwindefender2014.in   | 3          |
| media-view.net       | 1,608      | webantiviruspro-fr.pw    | 3          |
| pinchfist.info       | 1,080      | 12e-stopadware2014.in    | 3          |
| media-viewer.com     | 919        | zeroantivirusprojectx.nl | 3          |
| dl24x7.net           | 848        | wmicrodefender27.nl      | 3          |
| zrich-medi-view.com  | 749        | qwindowsdefender.nl      | 3          |
| vidply.net           | 722        | updatestar.com           | 3          |
| mediaply.net         | 654        | alphavirusprotectz.pw    | 3          |

Table 5. Popular download domains per type of malicious file

### 4.3. File Signers and Packers

The use of a simple static analysis of the downloaded files can, in some cases, provide valuable information about their true nature. In this section, we explore if downloaded software is typically signed and by what signers<sup>4</sup>. Furthermore, we analyze what files are packed, and with what packing software. The information about software signatures and packer identification have been obtained from both VirusTotal.com as well as from AMV's internal software analysis infrastructure.

Table 6 reports the percentage of signed *benign*, *unknown*, and *malicious* files. According to Table 6, some malicious file types, such as *dropper* and *pup*, tend to carry a valid software signature, while some others, such as *bot* and *banker*, are rarely signed. This might be because malware types such as *dropper* and *pup* are usually the initiators of infections and are often directly downloaded via a web browser with user consent (e.g., via social engineering attacks). Signing these malicious files may be a way to persuade the users about their legitimacy, and perhaps also to thwart AV detection. To verify this intuition, the "From Browsers" column reports the percentage of signed files that are downloaded via popular web browsers. A row by row comparison reveals that malicious files that are directly downloaded by browsers are more likely to be signed. This is also true for benign and unknown files.

Another interesting observation is the percentage of signed malicious files is much higher than signed benign software. This again may be due to the fact that malware distributors try hard to trick users into running their software and evade AV detection.

17 | Exploring the Long Tail of (Malicious) Software Downloads

<sup>&</sup>lt;sup>4</sup> https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx

Table 7 shows the number of unique signers that signed different types of malicious files. We also compare the signers of different types of malicious files with benign files. The "In common with benign" column shows the number of common signers between malicious and benign files. For example, out of 248 signers that signed different droppers, 46 also signed some benign files and consequently 202 exclusively signed malicious files only. We further provide examples of these signers in Table 8. The "Top Signers" column lists the names of the top 3 signers for each type of file. For different types of malware, the table reports the top 3 signers that are in common with benign files as well as top 3 signers that exclusively signed malware files. Similar information is also provided for benign files. One interesting case is the droppers' top signer being "Softonic International," which shows that some popular software download websites may distribute bundled applications that include malicious software. Table 8 also shows some of the top signers that exclusively signed either malware or benign files, as well as the number of files signed by each signer. Note that file signer information could be utilized to gain more insight into the true nature of completely unknown files. In Section 6, we present a system that uses signers data (alongside other information) to label unknown files.

Figure 4 provides a detailed view of the common signers of malicious and benign files. The figure includes a count of malicious/benign files signed by each signer. Among the interesting results are malicious files that are signed by seemingly reputable signers such as AVG Technologies and BitTorrent, which further manual analysis revealed to be mostly PUPs.

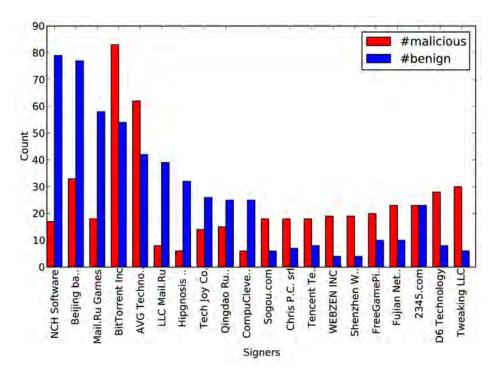


Figure 4. Common signers between malicious and benign files

| Tura       | Over       | Overall |            | owsers |
|------------|------------|---------|------------|--------|
| Туре       | # of Files | Signed  | # of Files | Signed |
| Trojan     | 22,413     | 59.9%   | 12,827     | 81.3%  |
| Dropper    | 43,423     | 85.6%   | 33,820     | 95.4%  |
| Ransomware | 563        | 44.4%   | 313        | 68.7%  |
| Bot        | 1,092      | 1.5%    | 268        | 2.2%   |
| Worm       | 201        | 5.5%    | 57         | 12.3%  |
| Spyware    | 80         | 21.2%   | 40         | 25.0%  |
| Banker     | 1,719      | 1.2%    | 272        | 1.8%   |
| FakeAV     | 987        | 2.8%    | 446        | 4.5%   |
| Adware     | 29,345     | 43.1%   | 8,792      | 91.8%  |
| PUP        | 31,018     | 76.0%   | 21,792     | 79.6%  |
| Undefined  | 60,609     | 65.1%   | 42,614     | 71.3%  |
| Benign     | 43,601     | 30.7%   | 30,346     | 32.1%  |
| Unknown    | 1,626,901  | 38.4%   | 1,227,241  | 42.1%  |
| Malicious  | 191,450    | 66%     | 121,241    | 81%    |

Table 6. Percentage of signed benign, unknown, and malicious files

| Туре       | # of Signers | In common<br>with Benign |
|------------|--------------|--------------------------|
| Trojan     | 426          | 71                       |
| Dropper    | 248          | 46                       |
| Ransomware | 14           | 4                        |
| Banker     | 11           | 2                        |
| Bot        | 15           | 3                        |
| Worm       | 7            | 1                        |
| Spyware    | 9            | 4                        |
| FakeAV     | 14           | 4                        |
| Adware     | 532          | 77                       |
| PUP        | 691          | 108                      |
| Undefined  | 1,025        | 339                      |
| Total      | 1,870        | 513                      |

Table 7. Common signers among malicious file types

| Туре              | Top signers                                                                                    | Top common signers with benign files                                       | Top signers exclusive to<br>malware files                                                      |
|-------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| trojan            | Somoto Ltd., Somoto Israel,<br>RAPIDDOWN                                                       | Open Source Developer, Binstall,<br>Rspark LLC                             | Somoto Ltd., Somoto Israel,<br>RAPIDDOWN                                                       |
| dropper           | Softonic International, Somoto<br>Israel, Sevas-S LLC                                          | Softonic International, RBMF<br>Technologies LLC, Open Source<br>Developer | Somoto Israel, Sevas-S LLC,<br>SecureInstall                                                   |
| ransomware        | ISBRInstaller, WorldSetup,<br>UpdateStar GmbH                                                  | WorldSetup, UpdateStar GmbH,<br>AppWork GmbH                               | ISBRInstaller, Trusted Software<br>Aps, The Nielsen Company                                    |
| bot               | Benjamin Delpy, Supersoft, Flores<br>Corporation                                               | Nir Sofer                                                                  | Benjamin Delpy, Supersoft,<br>Flores Corporation                                               |
| worm              | 70166A21-2F6A-4CC0-822C-<br>607696D8F4B7, JumpyApps,<br>Xi'an Xinli Software Technology<br>Co. |                                                                            | 70166A21-2F6A-4CC0-822C-<br>607696D8F4B7, JumpyApps,<br>Xi'an Xinli Software Technology<br>Co. |
| spyware           | Refog Inc., R-DATA Sp. z o.o.,<br>Mipko OOO                                                    | Refog Inc., Video Technology,<br>Valery Kuzniatsou                         | R-DATA Sp. z o.o., Mipko OOO,<br>Ts Security System - Seguranca<br>em Sistemas Ltda            |
| banker            | WEBPIC DESENVOLVIMENTO DE<br>SOFTWARE LTDA, JDI BACKUP<br>LIMITED, Wallinson                   | Open Source Developer, TLAPIA                                              | WEBPIC DESENVOLVIMENTO<br>DE SOFTWARE LTDA, JDI<br>BACKUP LIMITED, Wallinson                   |
| fakeav            | UpdateStar GmbH, Webcellence<br>Ltd., ISBRInstaller                                            | UpdateStar GmbH, The Phone<br>Support Pvt. Ltd., 2345.com                  | Webcellence Ltd., ISBRInstaller,<br>William Richard John                                       |
| adware            | Apps Installer SL, SITE ON SPOT<br>Ltd., Open Source Developer                                 | SITE ON SPOT Ltd., Open Source<br>Developer, Binstall                      | Apps Installer SL, Tuto4PC.com,<br>ClientConnect LTD                                           |
| pup               | Binstall, Somoto Ltd., SITE ON SPOT Ltd.                                                       | Binstall, SITE ON SPOT Ltd.,<br>Perion Network Ltd.                        | Somoto Ltd., Amonetize Itd.,<br>Firseria                                                       |
| undefined         | ISBRInstaller, JumpyApps,<br>Somoto Israel                                                     | Binstall, UpdateStar GmbH,<br>BoomeranGO Inc.                              | ISBRInstaller, JumpyApps,<br>Somoto Israel                                                     |
| malicious (total) | Softonic International, Binstall,<br>Somoto Ltd.                                               | Softonic International, Binstall,<br>SITE ON SPOT Ltd.                     | Somoto Ltd., ISBRInstaller,<br>Somoto Israel                                                   |
| Туре              | Top signers                                                                                    | Top common signers with                                                    | Top signers exclusive to                                                                       |

| Туре   | Top signers                 | Top common signers with<br>malware files | Top signers exclusive to<br>benign files |
|--------|-----------------------------|------------------------------------------|------------------------------------------|
|        | Lenovo Information Products | Lenovo Information Products              | TeamViewer, Blizzard                     |
| benign | (Shenzhen) Co., MetaQuotes  | (Shenzhen) Co., MetaQuotes               | Entertainment, Lespeed                   |
|        | Software Corp., Rare Ideas  | Software Corp., Rare Ideas               | Technology Ltd.                          |

Table 8. Top signers of different file types

| Benign                     | # of Files | Malware           | # of Files |
|----------------------------|------------|-------------------|------------|
| TeamViewer                 | 209        | Somoto Ltd.       | 5,652      |
| Blizzard Entertainment     | 77         | ISBRInstaller     | 5,127      |
| Lespeed Technology Ltd.    | 71         | Somoto Israel     | 5,062      |
| Hamrick Software           | 66         | Apps Installer SL | 5,049      |
| Dell Inc.                  | 59         | SecureInstall     | 2,694      |
| Google Inc                 | 59         | Firseria          | 2,474      |
| NVIDIA Corporation         | 58         | Amonetize Itd.    | 1,932      |
| Softland S.R.L.            | 52         | JumpyApps         | 1,896      |
| Adobe Systems Incorporated | 48         | ClientConnect LTD | 1,761      |
| Recovery Toolbox           | 43         | Media Ingea SL    | 1,671      |

Table 9. Top signers that exclusively signed benign or malicious files

We also investigated file packers. Interestingly, our analysis found that downloaded benign and malicious files were equally packed, with 54% of the benign files and 58% of the malicious files found processed with a known packing software. Similar to the signers, many packers are used to concurrently pack both benign and malicious software: out of 69 unique packers adopted by our collection of software downloads, more than half of them (35) are equally used in both benign and malicious cases. For example, we observed many benign and malicious files that are packed by INNO, UPX, Autolt, etc. This makes detection systems that solely rely on packing information fall short in terms of accuracy. Among the packers that are exclusively used on malicious files, we observed Molebox, NSPack, and Themida, for example. In addition, a simple breakdown of packers per type of malicious files does not reveal any discriminating factor among them because the files appear to be commonly packed by similar software.

## 5. Downloading Processes and Machines

In this section, we study the type of files that different processes typically download. For instance, we are interested in answering questions such as: What category of processes (e.g. browsers, windows processes, etc.) contribute more to malicious downloads? What files are typically downloaded by benign software?, and etc.

# 5.1. Analysis of Benign Processes that Download Executables

For our first measurements in this section, we focus on different categories of file download processes. We group the client processes into five broad classes, namely *browsers*, *windows processes*, *Java processes* (i.e., Java runtime environment software), *Acrobat Reader* processes, and *all other* processes. We consider Java and Acrobat Reader processes separately because these two software are notoriously vulnerable and have been exploited by malware distributors many times in the past (e.g., via exploit kits like Nuclear, Fiesta or Angler<sup>5</sup>).

To label a process according to the above labels, we leverage the name of the executable file on disk from which the process was launched. For instance, any process with the name of firefox.exe is labeled as the Firefox web browser. To this end, we compiled a list of different file names observed in the wild for each process category. At the same time, we had to take into account the fact that malware may, in some cases, disguise itself as a legitimate process. Therefore, our measurements only focused on the download behavior of *known benign* processes whose related executable file hash matched our whitelist.

<sup>&</sup>lt;sup>5</sup> https://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-evolution-of-exploit-kits.pdf

| Duesses   | Mashinga | Dov       | vnloaded | files           | Infected | Malware type of downloaded                                                                                                                                                    |
|-----------|----------|-----------|----------|-----------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processes | Machines | Unknown   | Benign   | Malicious       | Machines | malicious files                                                                                                                                                               |
|           |          |           |          | Browsers        |          |                                                                                                                                                                               |
| 1,342     | 799,342  | 1,120,855 | 28,265   | 113,750         | 24.44%   | dropper=28.05%, pup=18.55%,<br>trojan=10.48%, adware=7.36%,<br>fakeav=0.35%, ransomware=0.27%,<br>banker=0.23%, bot=0.22%,<br>worm=0.05%, spyware=0.03%<br>(undefined=34.43%) |
|           |          |           | V        | Vindows Proce   | esses    |                                                                                                                                                                               |
| 587       | 429,593  | 368,925   | 23,059   | 68,767          | 27.71%   | dropper=25.42%, pup=17.75%,<br>trojan=11.75%, adware=5.80%,<br>banker=1.23%, bot=0.73%,<br>ransomware=0.37%, fakeav=0.11%,<br>worm=0.08%, spyware=0.06%<br>(undefined=36.7%)  |
|           |          |           |          | Java            |          |                                                                                                                                                                               |
| 173       | 2,977    | 227       | 25       | 488             | 33.36%   | trojan=45.29%, bot=15.78%,<br>dropper=12.30%, banker=6.97%,<br>ransomware=4.30%, pup=1.02%,<br>worm=0.82% (undefined=12.54%)                                                  |
|           |          |           |          | Acrobat Read    | der      |                                                                                                                                                                               |
| 9         | 1,080    | 264       | 0        | 696             | 78.52%   | trojan=39.51%, dropper=23.71%,<br>banker=15.80%, bot=8.19%,<br>ransomware=3.74%, fakeav=1.44%,<br>spyware=0.43%, worm=0.29%<br>(undefined=6.89%)                              |
|           |          |           |          | All other proce | sses     |                                                                                                                                                                               |
| 8,714     | 112,681  | 68,334    | 5,642    | 15,440          | 31.24%   | pup=22.57%, dropper=17.22%,<br>trojan=11.34%, adware=8.38%,<br>fakeav=5.03%, banker=1.20%,<br>bot=0.79%, ransomware=0.44%,<br>worm=0.30%, spyware=0.02%<br>(undefined=32.71%) |

Table 10. Download behavior of benign processes (divided by process category)

Table 10 reports each category, the number of distinct process versions (counted as the number of distinct hashes for the files from which the processes are launched), the overall number of machines used to run these processes, the number of executable files downloaded (and executed) by those processes, the number of machines that became infected due to malicious file downloads initiated by the processes, and the distribution of malicious types for the downloaded file.

From Table 10, we can immediately notice that most files downloaded by Java and Acrobat Reader are in fact malicious, and cause the related downloading machines to become infected. Specifically, of the 1,080 machines that ran an instance of Acrobat Reader that was observed to initiate an executable file download, 78.52% downloaded and executed at least one of the 696 malicious files, thus becoming infected. We can also see that none of the executable files downloaded by Acrobat Reader processes could be labeled as benign, and that 264 files could not be labeled with existing ground truth, thus remaining *unknown*. However, it is likely that the vast majority (if not all) of these files are also malicious.

Similarly, Java processes mostly download malicious files. The 25 benign downloads shown in Table 10 appear to be outliers, which we investigated more closely. A closer look revealed that these appeared to be legitimate bundled software like Java applets for sound recording or custom calendars.

Windows system processes can also initiate the download (and execution) of new malicious files. As mentioned earlier, we only consider known benign processes. We suspect that the malicious downloads are due to these processes being exploited (either remotely or locally). The number of machines affected by these malicious downloads is quite significant. In fact, of the 429,593 machines on which an executable file download was initiated by a Windows process, 27.71% downloaded and executed at least one of the 68,767 malicious files we observed overall. This tends to suggest that a consistent number of Windows machines seem to run Windows processes that weren't properly patched, representing then a primary form of infection.

As expected, web browsers initiated the vast majority of web-based executable file downloads (see "Browsers" in Table 10). Table 11 reports the number and type of files downloaded by popular browsers. Somewhat surprisingly, these results revealed that Internet Explorer (IE) could be considered as the "safest" browser, based on the percentage of malicious downloads it initiated and the percentage of infected machines. In fact, of the 411,138 machines that used IE to download one or more executable files, only 18% became infected due to an IE-initiated malicious file download. On the other hand, of the 344,994 machines that were observed using Chrome to download an executable file, 31.92% became infected, which represents the highest rate of infection across all popular browsers. We should note, though, that these results are based on the *known malicious* files, and that the large number of *unknown* file downloads by both Chrome and IE could tilt the scale if complete ground truth was available. Nonetheless, it is significant that known malicious software tends to affect more Chrome users than IE users.

| Browser | # of<br>Processes | # of<br>Machines | Unknown<br>Files | Benign Files | Malicious<br>Files | Infected<br>Machines |
|---------|-------------------|------------------|------------------|--------------|--------------------|----------------------|
| Firefox | 378               | 86,104           | 104,237          | 7,411        | 21,443             | 26.00%               |
| Chrome  | 528               | 344,994          | 460,214          | 17,623       | 73,806             | 31.92%               |
| Opera   | 91                | 4,337            | 4,749            | 534          | 1,567              | 27.83%               |
| Safari  | 17                | 1,762            | 2,579            | 117          | 422                | 18.56%               |
| IE      | 307               | 411,138          | 561,769          | 13,801       | 48,206             | 18.09%               |

Table 11. Download behavior of benign browser processes

From Table 10 we can also see that droppers is the most represented malicious file type (if we exclude *undefined* malicious files) downloaded by browsers. This can be explained by the fact that droppers are first-stage malware, which are typically used to download additional malware once the machine is infected. This observation matches the results we presented in Table 6, which shows that 85.6% of droppers have a valid software signature, which is likely used as a way to evade current malware defenses and persuade users into running the software.

#### 5.2. Analysis of Malicious Processes

To extend our experiments that explore the download behavior of processes, we turned our attention to the download behavior of malicious processes. In particular, we categorize the malicious processes according to their malware types and demonstrate what is typically downloaded by each malware type. Table 12 has a similar structure to Table 10, but instead of process categories, it explores different malware types. In this case, the "Processes" column reports the number of processes associated with each malware type.

| Processes | Machines | Dov     | vnloaded | files   | Malware type of downloaded malicious files                                                                                                                  |  |  |  |
|-----------|----------|---------|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|           | wachines | Unknown | Benign   | Malware |                                                                                                                                                             |  |  |  |
|           |          |         |          |         |                                                                                                                                                             |  |  |  |
| 3,442     | 11,042   | 1,265   | 73       | 4,168   | trojan=51.90%, adware=11.80%,<br>dropper=10.94%, pup=8.25%,<br>banker=4.25%, bot=0.89%,<br>ransomware=0.34%, fakeav=0.12%,<br>worm=0.10% (undefined=11.42%) |  |  |  |

| _         |          | Dov     | vnloaded <sup>-</sup> | files   | Malware type of downloaded       |
|-----------|----------|---------|-----------------------|---------|----------------------------------|
| Processes | Machines | Unknown | Benign                | Malware | malicious files                  |
|           |          |         | Dr                    | opper   |                                  |
| 4,242     | 10,453   | 1,565   | 267                   | 2,992   | dropper=39.10%, trojan=16.78%,   |
|           |          |         |                       |         | pup=10.26%, adware=8.46%,        |
|           |          |         |                       |         | banker=7.59%, bot=1.34%,         |
|           |          |         |                       |         | ransomware=0.47%, worm=0.30%,    |
|           |          |         |                       |         | fakeav=0.20%, spyware=0.07%      |
|           |          |         |                       |         | (undefined=15.44%)               |
|           |          |         | Rans                  | omware  |                                  |
| 136       | 332      | 7       | 0                     | 147     | ransomware=80.95%, trojan=9.52%, |
|           |          |         |                       |         | dropper=3.40%, banker=1.36%      |
|           |          |         |                       |         | (undefined=4.76%)                |
|           |          |         |                       | Bot     |                                  |
| 323       | 689      | 81      | 2                     | 394     | bot=64.72%, trojan=15.99%,       |
|           |          |         |                       |         | dropper=4.57%, banker=4.31%,     |
|           |          |         |                       |         | pup=2.54%, ransomware=1.27%,     |
|           |          |         |                       |         | worm=0.51%, adware=0.25%,        |
|           |          |         |                       |         | fakeav=0.25% (undefined=5.58%)   |
|           |          |         | V                     | Vorm    |                                  |
| 64        | 164      | 4       | 0                     | 69      | worm=72.46%, banker=8.70%,       |
|           |          |         |                       |         | trojan=4.35%, dropper=4.35%,     |
|           |          |         |                       |         | bot=1.45%, pup=1.45%             |
|           |          |         |                       |         | (undefined=7.25%)                |
|           |          |         | Sp                    | yware   |                                  |
| 7         | 19       | 2       | 1                     | 6       | spyware=66.67%, trojan=16.67%    |
|           |          |         |                       |         | (undefined=16.67%)               |
|           |          |         | B                     | anker   |                                  |
| 484       | 1,146    | 47      | 5                     | 525     | banker=76.00%, trojan=14.48%,    |
|           |          |         |                       |         | dropper=4.00%, worm=0.57%,       |
|           |          |         |                       |         | fakeav=0.38%, ransomware=0.19%,  |
|           |          |         |                       |         | bot=0.19%, adware=0.19%          |
|           |          |         |                       |         | (undefined=4.00%)                |
|           |          |         | Fa                    | akeav   |                                  |
| 43        | 81       | 1       | 0                     | 53      | fakeav=56.60%, trojan=22.64%,    |
|           |          |         |                       |         | banker=9.43%, dropper=7.55%      |
|           |          |         |                       |         | (undefined=3.77%)                |

| <b>D</b>  | Downloaded files |         |        |         | Malware type of downloaded                                                                                                                                                    |  |  |  |  |
|-----------|------------------|---------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Processes | Machines         | Unknown | Benign | Malware | malicious files                                                                                                                                                               |  |  |  |  |
| Adware    |                  |         |        |         |                                                                                                                                                                               |  |  |  |  |
| 2,862     | 16,509           | 2,934   | 98     | 6,078   | adware=66.24%, pup=9.97%,<br>trojan=6.65%, dropper=2.91%,<br>banker=0.13%, bot=0.03%<br>(undefined=14.07%)                                                                    |  |  |  |  |
|           | I                |         | F      | PUP     |                                                                                                                                                                               |  |  |  |  |
| 5,597     | 32,590           | 6,757   | 199    | 16,957  | adware=58.64%, pup=22.91%,<br>trojan=6.30%, dropper=4.57%,<br>ransomware=0.02%, bot=0.01%,<br>banker=0.01%, fakeav=0.01%<br>(undefined=7.54%)                                 |  |  |  |  |
|           |                  |         | Und    | defined |                                                                                                                                                                               |  |  |  |  |
| 8,905     | 29,216           | 6,343   | 499    | 8,329   | adware=6.52%, pup=5.53%,<br>dropper=3.77%, trojan=3.36%,<br>banker=0.36%, bot=0.22%,<br>worm=0.06%, ransomware=0.04%,<br>spyware=0.04%, fakeav=0.01%<br>(undefined=80.09%)    |  |  |  |  |
|           |                  |         | 0      | verall  |                                                                                                                                                                               |  |  |  |  |
| 26,108    | 93,644           | 18,473  | 1,044  | 36,402  | adware=39.04%, pup=14.18%,<br>trojan=10.97%, dropper=7.14%,<br>banker=1.94%, bot=0.90%,<br>ransomware=0.39%, worm=0.18%,<br>fakeav=0.11%, spyware=0.02%<br>(undefined=25.13%) |  |  |  |  |

#### Table 12. Download behavior of different types of malicious processes

The results in Table 12 indicate that processes of a specific malware type download other malwares of the same type in majority of cases. However, some malware types had some unexpected download behaviors. For example, many malware types, even the most specific ones, such as ransomware, fakeav, etc., seem to download completely different malware types. The reason behind this depends on how the malware operates on the system and its intention. For example, a fakeav could lure victims into buying other things, but it could simultaneously drop another piece of malware to take full advantage of the victim. One thing that is clear, however, is that if a machine is initially infected with a somewhat less-dangerous malware such as adware and PUP applications, there is a good chance that the machine gets infected with more aggressive and damaging malware.

#### From Adware/PUP to Malware

Adware and PUPs are often considered "less damaging" malware. In fact, PUP stands for *potentially unwanted* program (also known as potentially unwanted application, or PUA). However, some studies (e.g., [21]) have suggested that running adware/PUPs increases the chances that a machine will be later infected with more damaging malware (e.g., ransomware, bots, etc.). In this section, we provide measurements that aim to support this suspicion quantitatively.

First, we analyze the results reported in Table 12, which shows that both adware and PUP processes tend to mostly download other adware or PUP software. However, it also shows that more than 6% of the downloaded executable files for both adware and PUP processes are trojans. In addition, almost 3% of the files downloaded by adware are droppers, whereas the same figure goes up to 4.57% for PUPs. Furthermore, both adware and PUPs in some cases directly download ransomware, bankers, and other dangerous malware.

Besides direct downloads, adware/PUP process could also be the cause of indirect infections. For instance, adware processes often display ads from low-reputation ad networks, thus exposing users to malvertisements [21]. Consequently, if a user clicks on a malicious ad, she may be redirected, via her default web browser, to downloading other malware [11]. To include these indirect downloads into our analysis, we proceed as follows. Let m be a machine that has downloaded and executed an adware/PUP at time  $t_i$ . We then check if, after  $t_i$ , m downloads and executes other types of malicious software (thus excluding other adware, PUP, and undefined malicious files). We repeat this process for each machine m that ran adware/PUP software and compute the time delta between the adware/PUP infection and the download of other types of malware. Figure 5 shows a CDF for the obtained results. As we can see, more than 40% of these machines download and execute other malware on the same day (day 0) in which they downloaded and executed the adware/PUP software. After only five days from the execution of adware/ PUP, the number of those machines infected with other malware types exceed 55%. On the contrary, let's consider the same measurements for machines that at a given time  $t_1$  download a benign software (and was not observed to have downloaded malicious files in the past). What we aim to show is that if a machine does not run adware/PUPs, it is much less likely to download malware in the immediate future. On the same Figure ("benign" line), after five days from the benign software download event, only 20% of the machines downloaded malicious files (excluding adware and PUPs, for comparison with "PUP" and "adware" lines).



Figure 5. Time delta between downloading benign/adware/pup/dropper and other malware

#### **Dropper-driven Malware Infections**

Droppers play a significant role in malware infections [10]. To provide additional information on the behavior of malicious dropper processes, we proceed in a way similar to Section 5.2. For instance, we measure how long it takes for droppers to infect users. To this end, we compute the time gap between the first time a machine downloads (and executes) a dropper and a subsequent malware download. Notice that we excluded adware, PUPs, and undefined types from this measurement so that we can compare the results directly with the transition between adware/PUPs to other malware types discussed above.

Figure 5 (dashed red line) reports our results. As anticipated, a machine that is infected with a dropper is almost certain to download and execute malware within the next days. In particular, by comparing the dropper, adware, and pup curves in Figures 5, we can see that there is a much shorter time gap between the download of a dropper and another malware, compared to the download of an adware/PUP and then another malware.

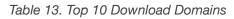
## 6. Exploring and Labeling Unknown Files

As reported in Section 2 (see Table 1), the majority of file downloads (about 83%) are *unknown*, in that no ground truth is available about their true nature, even two years after they were first observed. As these unknown files involve a significant number of users who downloaded them (69% of all machines in our data downloaded some unknown files), it is of utmost importance to be able to provide a reason for at least about some of them. In fact, if these *unknown* files were malicious, they would have infected the vast majority of the machine population. This section explores the characteristics of unknown files. We also aim to build a rule-based classifier that can accurately label a significant fraction of these unknown files as either *malicious* or *benign*.

### 6.1. Exploring the Characteristics of Unknown Files

Table 13 shows the top 10 domains from which unknown files were downloaded, whereas Figure 6 plots the distribution of the Alexa rank of all domains hosting unknown files. Table 14 shows what benign processes tend to download most of these files. Naturally, most unknown files are downloaded via web browsers. However, we can see that a large number of unknowns are downloaded by Windows processes as well. This is alarming, if we consider that Table 10 also shows that a large majority of downloaded files by Windows processes for which ground truth is available are actually malicious. Take Acrobat Reader as an extreme example (again, from Table 10). Of the 960 downloaded files, 696 are known to be malicious, and none are known to be benign. This means that all of the remaining 264 unknowns (reported in Table 14) are also highly likely malicious.

| Domain                   | # of<br>Downloads |
|--------------------------|-------------------|
| inbox.com                | 75,946            |
| humipapp.com             | 43,365            |
| bestdownload-manager.com | 37,398            |
| freepdf-converter.com    | 32,276            |
| coolrom.com              | 27,833            |
| soft32.com               | 27,229            |
| gamehouse.com            | 24,498            |
| arcadefrontier.com       | 24,191            |
| driverupdate.net         | 21,370            |
| zilliontoolkitusa.info   | 19,550            |



| Downloading process<br>type | # of<br>Unknowns |
|-----------------------------|------------------|
| Browser                     | 1,120,855        |
| Windows                     | 368,925          |
| Java                        | 227              |
| Acrobat Reader              | 264              |
| Other benign processes      | 36,059           |
| Total                       | 1,486,961        |

Table 14. Categories of Download Processes

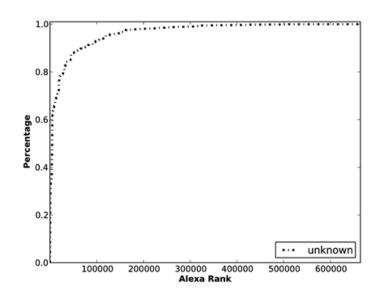


Figure 6. Distribution of the Alexa ranks of domains hosting unknown files

#### 6.2. Labeling Unknown Files

During our analysis, we noticed that in some cases a simple analysis of the properties of unknown files would allow us to identify, with high confidence, their true nature. For instance, an executable file that is signed by a software signer that in the past has signed many malicious files but no benign software is also likely malicious. Conversely, an executable file that is signed by a reputable software developer, which has exclusively signed benign files in the past, is very likely benign. Similarly, a file that is packed with a packer/ obfuscation tool that is known to be used exclusively to protect malicious files from AV detection is likely malicious. Overall, we have identified a set of eight intuitive and easy-to-measure features, summarized in Table 15, that we can use to label many in-the-wild unknown file downloads with high accuracy. The following table presents a novel rule-based classification system that uses these features to mine past file download events and automatically extract simple *human-readable* file classification rules.

| Feature                      | Explanation                                                                          |
|------------------------------|--------------------------------------------------------------------------------------|
| File's signer                | The entity who signed a downloaded file.                                             |
| File's CA                    | The certification authority in the chain of trust of signers for the downloaded file |
| File's packer                | The packer software used to pack the downloaded file, if any                         |
| Process's signer             | The signer of the process that downloaded the file                                   |
| Process's CA                 | The CA of the process that downloaded the file                                       |
| Process's packer             | The packer software used to pack the downloading process                             |
| Process's type               | The type of process that downloaded the file (browser, windows process, etc. )       |
| Download domain's Alexa rank | The Alexa rank of the domain from which the file was downloaded                      |

Table 15. Features Description

|                 | Overall #                |      | Rules composit |                |                   |  |  |
|-----------------|--------------------------|------|----------------|----------------|-------------------|--|--|
| T <sub>tr</sub> | T <sub>tr</sub> of rules |      | rules          | # of<br>Benign | # of<br>Malicious |  |  |
| Feb             | 1,766                    | 0.0% | 1,020          | 889            | 131               |  |  |
|                 |                          | 0.1% | 1,031          | 894            | 137               |  |  |
| Mar             | 1 690                    | 0.0% | 1,148          | 970            | 178               |  |  |
| IVIAI           | 1,680                    | 0.1% | 1,162          | 976            | 186               |  |  |
| Apr             | 1,272                    | 0.0% | 1,054          | 872            | 182               |  |  |
| Apr             |                          | 0.1% | 1,070          | 875            | 195               |  |  |
| Max             | 1 476                    | 0.0% | 974            | 791            | 183               |  |  |
| May             | 1,476                    | 0.1% | 986            | 793            | 193               |  |  |
| lun             | 044                      | 0.0% | 740            | 577            | 163               |  |  |
| Jun             | 944                      | 0.1% | 753            | 585            | 168               |  |  |
|                 | 1.076                    | 0.0% | 937            | 755            | 182               |  |  |
| Jul             | 1,376                    | 0.1% | 953            | 763            | 190               |  |  |

Table 16. Statistical information about extracted rules during different  $T_{tr}$ 

### 6.3. Generating Human-Readable Classification Rules

Recently, the authors of [3] explored the importance of interpretability in machine learning systems and suggested that the decisions of such systems should be explainable. To this end, we aim to generate simple human-readable classification rules and proceeded as follows. First, we use past file download observations whose ground truth is known as a training dataset. Then, we use the PART rule learning algorithm [4] to derive a set of human-readable classification rules based on the features reported in Table 15. Finally, we prune the classification rules output by PART to only retain highly accurate rules (i.e., rules with low error rate).

Unlike other machine learning algorithms (e.g., support vector machines (SVMs), neural networks, etc.), this approach generates easy-to-interpret classification rules that can be reviewed and modified by threat analysts. The following is an example of a simple classification rule based on the described features:

IF (file's signer is "Shanghai Gaoxin Computer System Co.") AND (file is packed by "NSIS")  $\rightarrow$  file is malicious.

This rule was learned from more than 50 instances of malicious file downloads, and does not match any of the tens of thousands of benign downloads we observed.

### 6.4. Evaluation of Classification Rules

To systematically evaluate the efficacy of the human-readable classification rules, we proceeded as follows. We first describe how we prepared the evaluation data, and then explain how we filtered the generated rules to select only the rules with low error rates.

- Training dataset: To produce the rules, a training dataset of labeled feature vectors is generated over all known benign and malicious files from download events observed during a training time window *T<sub>μ</sub>* (e.g., 30 days).
- Testing dataset: The performance and accuracy of the rules are evaluated using a test dataset. The test dataset contains known benign and malicious files from download events gathered from a test time window  $T_{ts}$  that immediately follows the training time window  $T_{tr}$ . We ensured that the intersection between training and test file download events is empty, so none of the samples from the testing dataset are ever used for extracting the rules. Furthermore, this perfectly simulates how the system is used in operational environments; rules generated based on past events are used to classify new, unknown events in the future.

 Unknown files dataset: The goal is to utilize the extracted rules to classify previously unknown files. Therefore, we extract the truly unknown files during T<sub>ts</sub> and generate a dataset of unknown files. Obviously, there is no ground truth available whatsoever about any of the files in this dataset. We use the rule-based classifier to reduce the number of unknowns in this dataset by classifying them as either benign or malicious. Due to a lack of ground truth, the correctness of the classification of unknown files cannot be verified. However, we measured their properties and manually analyzed some of the samples to attempt to determine the correctness of their new labels.

We now present our evaluation results. To this end, we consider a month of download events as our training time window and extract the classification rules. Then we evaluate the performance of these rules in terms of true positives (TP) and false positives (FP). Finally, we report the number of completely unknown files that the rules classified during  $T_{rs}$ .

We evaluated the rule-based classification system on different  $T_{tr}$  and  $T_{ts}$  periods. Table 16 reports a summary of the number of extracted rules per different training time. As mentioned before, we use a subset of all rules generated by the PART algorithm [4], i.e., by including only those rules with error rates less than a maximum (configurable) error threshold  $\tau$ . The value of  $\tau$  should be properly chosen as it impacts the performance of the classifier. To compare the results, for every  $T_{tr}$ , we extract the rules based on different configurations for  $\tau$  during training. For example, for the month of March as  $T_{tr}$  and by choosing the rules that have no training error ( $\tau$ =0.0%), 1,148 rules (out of 1,680 rules) will be selected. The detection results of these different settings are then compared to each other. The "rules composition" column shows the number of rules that result in a *benign* or *malicious* label, among the 1,148 selected rules.

By increasing  $\tau$ , the number of rules and samples that match them increases, at the expense of the trade-off between TPs and FPs. Therefore, we limit ourselves to experimenting with low values of  $\tau$ . Table 16 shows the results for different number of rules extracted per month for  $\tau$ =0.0% and  $\tau$ =0.1%. The evaluation results for these two different rule sets are reported in Table 17.

In this table, each row corresponds to an experiment in which rules are extracted according to a specific configuration (see Table 16) from download events during a month  $T_{tr}$ . The rules are then tested against samples in the test dataset from  $T_{ts}$  (see column "test dataset").

More specifically, under "test dataset", columns "# malicious" and "# benign" report the size of the benign and malicious test samples that matched the rules. Note that those test samples that do not match any rules are not considered, because the rule-based classifier cannot label them. Therefore, the TP and FP rates are computed only over the test samples that actually match at least one rule. Column "# FP Rules" reports the number of rules that cause FPs. We will discuss these rules in Section 7.

The rule-based classifier also needs to deal with cases in which conflicts occur among multiple rules that match the feature vector of a file. In this situation, some rules identify the file as benign while some other conflicting rules classify the same file as malicious. In our rule-based classification system, should a conflict occur when classifying a file, we "reject" the file and do not provide any classification to avoid inaccurate results. This is another advantage of using our system over regular decision trees in which rejecting some classification decisions of the decision tree is not an intuitive task. Rejecting a file in case of conflicting rules helps reduce the errors (FPs), as we will demonstrate shortly.

As seen on Table 17, rules extracted with maximum error rate of  $\tau$ =0.1% consistently produced accurate detection results in terms of the combination of TPs and FPs during all  $T_{ts}$ . Overall, using this setting, the rule-based classifier achieved *TP*>95% and *FP*<0.32% on test datasets. Please note that due to rejecting conflicting and inaccurate classifications, in some cases during the same  $T_{ts}$ , the number of rules that produce FPs decreases even after selecting more rules by increasing  $\tau$ . Furthermore, the "unknowns dataset" column in Table 17 reports the percentage of completely unknown files from period  $T_{ts}$  that match the extracted rules and are now classified ("matched" column). The table also shows the exact numbers of matched unknown files classified as benign or malicious.

Also, note the percentage of truly unknown files that match the extracted rules in each  $\tau$  setting. More rules are chosen as  $\tau$  increases, and consequently, more unknown files match the rules. However, as discussed before, after a certain  $\tau$  value, adding more rules causes deterioration of TPs and FPs. This is because if too many inaccurate rules with higher error rates are added to the set of extracted rules, they could lead to misclassifications. In addition, the possibility that files match conflicting rules increases and the classifier rejects these files. So even though we can label more truly unknown files with more rules, the final classification of these files might not be very accurate. Because  $\tau$ =0.1% produced the best performance on the test dataset, we use the same setting for classifying the unknown files.

As mentioned before, this is one of the advantages of our rule-based classification system over regular decision trees, as the whole decision tree, which contains some less accurate branches, does not need to be used. Overall, from February to August, the system classified 406,688 previously unknown files as either benign or malicious. This number accounts for 28.30% of total unknown files observed during this period.

|                                   |      | Test           | dataset (e | xtracted d  | luring T <sub>ts</sub> | )             | Unknowns dataset (extracted during $T_{ts}$ ) |         |                |             |
|-----------------------------------|------|----------------|------------|-------------|------------------------|---------------|-----------------------------------------------|---------|----------------|-------------|
| T <sub>tr</sub> - T <sub>ts</sub> | τ    | #<br>malicious | TP         | #<br>benign | FP                     | # FP<br>rules | #<br>unknowns                                 | matches | #<br>malicious | #<br>benign |
| Jan - Feb                         | 0.0% | 3,590          | 96.72%     | 1,401       | 0.07%                  | 1             | 292,793                                       | 24.08%  | 68,200         | 2,312       |
| Jan - Feb                         | 0.1% | 3,647          | 96.45%     | 2,718       | 0.00%                  | 0             | 292,793                                       | 24.14%  | 68,368         | 2,312       |
| Lob Mor                           | 0.0% | 3,045          | 97.59%     | 2,051       | 0.39%                  | 8             | 201 715                                       | 29.22%  | 68,165         | 20,005      |
| Feb - Mar                         | 0.1% | 3,070          | 97.60%     | 2,830       | 0.32%                  | 9             | 301,715                                       | 29.22%  | 68,165         | 20,005      |
|                                   | 0.0% | 4,793          | 97.98%     | 1,367       | 0.37%                  | 6             | 0.40,040                                      | 22.06%  | 51,096         | 2,470       |
| Mar - Apr                         | 0.1% | 4,842          | 99.61%     | 2,315       | 0.30%                  | 8             | 242,810                                       | 22.23%  | 51,504         | 2,467       |
|                                   | 0.0% | 3,001          | 92.01%     | 1,873       | 0.05%                  | 1             | 107 506                                       | 36.92%  | 46,651         | 26,266      |
| Apr - May                         | 0.1% | 7,203          | 96.96%     | 2,267       | 0.13%                  | 2             | 197,526                                       | 38.03%  | 49,014         | 26,108      |
| May                               | 0.0% | 3,834          | 90.53%     | 2,038       | 0.15%                  | 4             | 101 574                                       | 32.05%  | 40,600         | 20,794      |
| May - Jun                         | 0.1% | 7,895          | 96.64%     | 2,597       | 0.12%                  | 4             | 191,574                                       | 34.46%  | 43,175         | 22,846      |
| lum hul                           | 0.0% | 7,200          | 95.39%     | 2,414       | 0.25%                  | 7             | 177.055                                       | 30.71%  | 35,530         | 18,906      |
| Jun - Jul                         | 0.1% | 7,202          | 95.28%     | 2,837       | 0.18%                  | 6             | 177,255                                       | 31.54%  | 35,693         | 20,207      |

 Table 17. Evaluation results and classification of unknown files using rule-based classifier

 (conflicts are handled by rejecting the test and unknown files)

## 7. Discussion

As mentioned earlier, our rule-based classification system has a couple of advantages: the rules are human-readable and they can easily be reviewed by an analyst. In the following, we report a few example rules that led to the most true positives, as well as other rules that sometimes caused misclassifications.

Below, we list three sample rules that are responsible for correctly labeling many malicious downloads:

- 1. IF (file's signer is "SecureInstall")  $\rightarrow$  file is malicious.
- IF (file's signer is "Apps Installer S.L.") AND (downloading process's signer is "Microsoft Windows") AND (file's CA is "thawte code signing ca - g2") → file is malicious.
- 3. IF (file is not signed) AND (downloading process is "Acrobat Reader")  $\rightarrow$  file is malicious.

The rules mentioned above follow our reported measurement results. For example, Table 10 showed that malware files are downloaded by benign Windows processes. It also reported that files downloaded by Acrobat Reader are malware.

Rules that produce some false positives include the following:

- 1. IF (file's signer is "mail.ru games")  $\rightarrow$  file is malicious.
- IF (file is not signed) AND (downloading process's signer is "Amonetize Itd.") AND (file's packer is "NSIS") → file is malicious.
- IF (file is not signed) AND (Alexa rank of file's URL is between 10,000 to 100,000) AND (downloading process is benign) AND (file's packer is "aspack") → file is malicious.

It should be noted that some of the classifications that we count as false positives may actually be due to the presence of noise in our ground truth. For instance, let us consider rule (2) above. "Amonetize Itd" is related to a family of adware and PUP software. Therefore, executable files downloaded from a process signed by "Amonetize Itd" may, in fact, be malicious.

Additionally, 33% of benign (according to our ground truth) test samples were downloaded by malware processes or from malicious URLs. Therefore, these may be false positives due to noise in the whitelist. Overall, these observations indicate that it is possible that the false positives we obtained may be somewhat overestimated.

Our evaluation results indicate that signers of downloaded files play an important role in our rule-based classifier. In fact, the file signer feature appeared in 75% of all rules. The other three most useful features, in order, are the file's packer, downloading process type, and downloading process's signer, which appeared in 8%, 5%, and 4% of all rules. Another interesting observation is that our classifier does not heavily rely on the feature related to the Alexa rank of the domains, as it appeared in 1.4% of the rules. This is in accordance with our previous measurement analysis that showed many benign file hosting websites tend to host malicious files alongside benign files. We also noticed that simple rules containing one feature were less error-prone and composed 89% of the rules, for  $\tau$ =0.1%.

### 7.1. Analysis of Test Dataset Results

Among the correctly classified malicious test samples, 45% of files were droppers, 38% were trojans, and 3.5% were bankers. The remaining samples were divided among other malicious file types. The following sample rules were the most successful in detecting different types of malware:

- bankers and bots: IF (downloading process is "Acrobat Reader")  $\rightarrow$  file is malicious.
- *droppers*: IF (file's signer is "Somoto Itd.") → file is malicious.
- fakeavs: IF (file is not signed) AND (Alexa rank of file's URL is above 100K) AND (downloading process is benign) AND (downloading process's signer is "Microsoft Windows") → file is malicious.

# 7.2. Expanding Available Ground Truth by Labeling Unknown Files

As mentioned earlier, the set of rules we learned were able to label 28.30% of all 1,436,829 previously unknown files from February to August, which represents a 233% increase in labeled files, compared to the available ground truth. These 28.30% of unknown files were downloaded by as many as 294,419 machines, or 31% of all machines, therefore having a significant penetration across the machine population (notice that the overall number of machines that downloaded any of the 1,436,829 unknown files between February and August is 457,756).

These results indicate that our rule-based classification method would enable a significant expansion of the labeling of software files, compared to the ground truth available from multiple anti-virus sources. Ultimately, this would allow researchers to evaluate the accuracy of their malware detection systems over a much larger labeled dataset, including challenging cases of low-prevalence malicious files that in aggregate tend to impact a large population of machines.

### 7.3. Evading Detection

Evasion is certainly possible for most statistical detection models. Malware developers could change signer information by acquiring new signing certificates. However, valid certificates are not cheap. Therefore, it would be expensive to create polymorphic malware variants with unique signatures. Also, stealing a benign certificate is possible (though not easy); however, once the true certificate owners detect this, they could revoke the certificate. Using "benign" packers would make it easier to unpack and analyze the code. Therefore, malware often uses custom/hard-to-reverse packers. Thus, even though it is technically possible to evade our system, it won't be very practical.

### 8. Related Work

In this work, we focus on a specific class of software downloads that we believe to have been neglected in the past, namely low-prevalence downloads. With respect to previous work investigating malicious software downloads, we report the following. Rossow et al. [17] analyzed a limited number of about twenty dropper families for aspects such as their network infrastructure, infection, propagation and persistence on infected machines.

More recently, Kwon et al. [10] extended this research by looking into the download chains that occur after infection. In comparison, we provided a comprehensive breakdown of different types of malware besides droppers and analyzed their characteristics from various aspects, namely their signers, downloading URLs, transitions from one type to another, etc. More importantly, [10] does not discuss the evaluation of their classifier for files for which no ground truth is available whatsoever although these files seem to comprise a significant portion (82%) of their dataset.

A second corpus of literature consists of papers focusing on potentially unwanted programs [8, 9]. Kotzias et al. [8], for example, looked into the who-installs-who relationships of PUPs and reported findings similar to ours with respect to PUPs delivering PUPs after the first infection. Similarly, we identified this behavior on other types of malware, e.g., ransomware transitioning to ransomware in 80% of cases. Interestingly, our results also suggested that seemingly less harmful malware such as adware and PUP tend to leave machines vulnerable to other malware (Section 5.2)

The same authors in [9] looked at PUPs from the perspective of code signing. Their analysis showed that most signed samples are PUPs and that other malware is not commonly signed. We also looked into this phenomenon, and our work tends to suggest that possibly-malicious software normally downloaded by browsers like droppers and PUPs tend to be correctly signed — probably as a need to send the code to execute on modern operating systems (Section 4.3). We leveraged this and other features identified in our measurement study to efficiently report unknown software downloads as malicious.

Kurt et al. [19] and Caballero et al. [1] explored the ecosystem of pay-per-install campaigns (PPI) and their role in the proliferation of PUPs by uncovering the operational organization and ecosystem of bundled software at the back end. In contrast, our evaluation runs at the front end, on a population of over a million end-point machines. We reported on the importance of considering low-prevalence software downloads, as they generate files with no ground truth for a total of 69% of the entire machine population.

In Section 6, we proposed a rule-based classifier that helped us reduce the large number (83%) of unknowns that we observed in our population of software download. Only about 0.25% of the files that we observed during our measurement period had a prevalence of more than 20. While similar classification systems have been proposed in the past (e.g., Polonium [2], Amico [20], CAMP [16], and Mastino [14]), they appear to be somewhat limited in scope when dealing with low-prevalence software files. Polonium [2], for example, reports a 48% detection rate on files with prevalences of 2 and 3, and it does not work on files seen on single machines that account for 94% of the dataset in [2]. Other systems [14, 16, 20] could potentially mistake low-prevalence benign files as malware. Also, these systems rely on the prevalence of the downloading URLs to provide classifications, which, as explained in Section 4.2, could cause issues for them.

## 9. Conclusions

We have presented a large-scale study of global trends in software download events, with an analysis of both benign and malicious downloads, and a categorization of events for which no ground truth is currently available. Our measurement study, which is based on a real-world dataset containing more than 3 million in-the-wild web-based software download events involving hundreds of thousands of internet machines, shows that more than 83% of all downloaded software files remain unknown to the anti-malware community even two years after they were first observed. To better understand what these unknown software files might be, and their potential impact on real-world internet machines, we have performed a detailed analysis of their properties.

We then built a rule-based classifier to extend the labeling of software downloads. This system can be used to identify many more benign and malicious files with very high confidence, allowing us to greatly expand the number of software files that can be used to evaluate the accuracy of malware detection systems.

### Acknowledgments

This material is based in part on work supported by the National Science Foundation (NSF) under grant No. CNS-1149051. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

This work is also partially supported by a grant from the Auburn University at Montgomery Research Grant-in Aid Program. Additional acknowledgments go to Trend Micro's Forward-Looking Threat Research (FTR), SPN and Machine Learning teams who supported the research in different forms.

### REFERENCES

- 1. Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson. Measuring pay-per-install: The commoditization of malware distribution. In *Usenix security symposium*, 2011.
- 2. Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and Christos Faloutsos. Polonium: Tera-scale graph mining for malware detection. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2010.
- 3. Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608v2 [stat.ML].
- 4. Eibe Frank and Ian H. Witten. Generating accurate rule sets without global optimization. In J. Shavlik, editor, *Fifteenth International Conference on Machine Learning*, pages 144–151. Morgan Kaufmann, 1998.
- 5. Google. Google Safe Browsing. https://www.google.com/transparencyreport/safebrowsing/.
- 6. Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich, Kirill Levchenko, Panayiotis Mavrommatis, Damon McCoy, Antonio Nappa, Andreas Pitsillidis, Niels Provos, M. Zubair Rafique, Moheeb Abu Rajab, Christian Rossow, Kurt Thomas, Vern Paxson, Stefan Savage, and Geoffrey M. Voelker. Manufacturing Compromise: The emergence of exploit-as-a-service. In *Proceedings of the 2012 ACM Conference on Computer and Communications Security*, CCS '12, pages 821–832, New York, NY, USA, 2012. ACM.
- 7. Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel, and Giovanni Vigna. Revolver: An automated approach to the detection of evasive web-based malware. In USENIX Security, pages 637–652. Citeseer, 2013.
- 8. Platon Kotzias, Leyla Bilge, and Juan Caballero. Measuring pup prevalence and pup distribution through pay-per-install services. In *Proceedings of the USENIX Security Symposium*, 2016.
- 9. Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Caballero. Certified PUP: Abuse in Authenticode Code Signing. In ACM Conference on Computer and Communication Security, 2015.
- Bum Jun Kwon, Jayanta Mondal, Jiyong Jang, Leyla Bilge, and Tudor Dumitras. The dropper effect: Insights into malware distribution with downloader graph analytics. In *Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security*, pages 1118–1129. ACM, 2015.
- 11. Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad. Towards measuring and mitigating social engineering software download attacks. In *Proceedings of the 25th USENIX Conference on Security Symposium*, SEC'16, 2016.
- 12. Roberto Perdisci et al. Vamo: towards a fully automated malware clustering validity analysis. In *Proceedings of the 28th Annual Computer Security Applications Conference*, pages 329–338. ACM, 2012.
- 13. Zubair Rafique, Tom Van Goethem, Wouter Joosen, Christophe Huygens, and Nick Nikiforakis. It's free for a reason: Exploring the ecosystem of free live streaming services. 2016.
- Babak Rahbarinia, Marco Balduzzi, and Roberto Perdisci. Real-time detection of malware downloads via large-scale URL→file→ machine graph mining. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, ASIA CCS '16, pages 783–794, New York, NY, USA, 2016. ACM.
- Babak Rahbarinia, Roberto Perdisci, and Manos Antonakakis. Segugio: Efficient behavior-based tracking of malware-control domains in large isp networks. In *Dependable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP International Conference on*, pages 403–414. IEEE, 2015.
- 16. Moheeb Abu Rajab, Lucas Ballard, Noé Lutz, Panayiotis Mavrommatis, and Niels Provos. Camp: Content-agnostic malware protection. In *NDSS*, 2013.
- 17. Christian Rossow, Christian Dietrich, and Herbert Bos. Large-scale analysis of malware downloaders. In *Detection of Intrusions and Malware, and Vulnerability Assessment*, pages 42–61. Springer, 2012.
- 18. Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass: A tool for massive malware labeling. In *International Symposium on Research in Attacks, Intrusions, and Defenses*, pages 230–253. Springer, 2016.

- 19. Kurt Thomas, Juan Antonio Elices Crespo, Ryan Rasti, Jean-Michel Picod, Cait Phillips, Chris Sharp, Fabio Tirelo, Ali Tofigh, Marc-Antoine Courteau, Lucas Ballard, et al. Investigating commercial pay-per-install and the distribution of unwanted software. In USENIX Security Symposium, 2016.
- Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li, and Manos Antonakakis. Measuring and detecting malware downloads in live network traffic. In *Computer Security - ESORICS 2013 - 18th European Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013. Proceedings*, pages 556–573, 2013.
- 21. Xinyu Xing, Wei Meng, Udi Weinsberg, Anmol Sheth, Byoungyoung Lee, Roberto Perdisci, and Wenke Lee. Unraveling the relationship between ad-injecting browser extensions and malvertising. In *Proceedings of the International Conference on the World Wide Web*, 2015.

#### TREND MICRO™

Trend Micro Incorporated, a global cloud security leader, creates a world safe for exchanging digital information with its Internet content security and threat management solutions for businesses and consumers. A pioneer in server security with over 20 years experience, we deliver top-ranked client, server, and cloud-based security that fits our customers' and partners' needs; stops new threats faster; and protects data in physical, virtualized, and cloud environments. Powered by the Trend Micro<sup>™</sup> Smart Protection Network<sup>™</sup> infrastructure, our industry-leading cloud-computing security technology, products and services stop threats where they emerge, on the Internet, and are supported by 1,000+ threat intelligence experts around the globe. For additional information, visit **www.trendmicro.com**.



Securing Your Journey to the Cloud

©2018 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.