

Trend Micro, Incorporated 🛛 😔

Julius Dizon, Lennard Galang, and Marvin Cruz

A Trend Micro Research Paper I July 2010

→ CONTENTS

INTRODUCTION
WHAT IS WMI?4
WMI NAMESPACE: root\subscription5
WMI System Classes
EventConsumer
EventFilter
FILTERToConsumerBinding
TIMERINSTRUCTION
PUTTING THE PUZZLE PIECES TOGETHER: MALWARE ROUTINES
TROJ_WMIGHOST.A WMI Class Instances and Correlation11
filemonitor_consumer12
filetrans_consumer13
WMIScriptKids_consumer14
ProbeScriptKids_consumer
MANUAL DETECTION
Command Line: WMI CommandLine Tool16
GUI: WMI Tools
MANUAL REMOVAL
Command Line: WMI CommandLine Tool17
GUI: WMI Tools
PREVENTION
CONCLUSION
GLOSSARY
REFERENCES

INTRODUCTION

This research paper will discuss how cybercriminals used Windows Management Instrumentation (WMI) as a venue to conveniently perform malicious activities on affected users' systems. The findings in this paper were based on a client-submitted case that TrendLabs engineers handled this March.

In the said attack, a WMI script detected by Trend Micro as TROJ_WMIGHOST.A arrived on a system bundled with a DLL malware detected as BKDR_HTTBOT.EA. The said malicious script opened two Internet browser windows. The first window allowed BKDR_ HTTBOT.EA to execute via an *ActiveX* content while the second allowed it to post *Office* files (e.g., *Word, PowerPoint,* or *Excel*) to a remote site and to execute other malicious scripts from the GhostNet IP. These backdoor routines put users at risk of losing pertinent data.

It should, however, be noted that this was not the first time WMI was used for malicious purposes. In fact, in "Kiwicon 2008," a security consultant introduced "The Moth," a proof-of-concept (POC) Trojan that implements WMI __EventConsumer instances as a unique method of malicious code deployment. It is not a serious piece of malicious code but a demonstration of a new method of hiding code inside a native *Windows* functionality. It uses the WMI service to deploy a malicious code.

This paper aims to arm do-it-yourself (DIY) and small and medium-sized business (SMB) network administrators against threats that utilize Trojans leveraging WMI for their malicious purposes. It provides a brief overview as to what WMI is, how the service can be used for malicious purposes, solutions to rid affected systems of the malware, and best practices that network administrators should keep in mind to prevent system infection.

• WMI is the Microsoft implementation of WBEM, which is an industry initiative to develop a standard technology for accessing management information in an enterprise environment.

WHAT IS WMI?

WMI is the Microsoft implementation of Web-Based Enterprise Management (WBEM), which is an industry initiative to develop a standard technology for accessing management information in an enterprise environment. WMI uses the Common Information Model (CIM) industry standard to represent systems, applications, networks, devices, and other managed components. CIM is developed and maintained by the Distributed Management Task Force (DMTF).

WMI is a default service installed on *Windows XP* and *Server 2003* OSs, thus one can readily write WMI scripts or applications to automate administrative tasks on *Windows*-based systems.

Services (Local 3), Services (Local)							
. ,	ag Services (Local)						
	Windows Management	Name A	Description	Status	Startup Type	Log On As	
	Instrumentation	Service VMware Agent Service	VMware Ag		Manual	Local System	
		Service Withorization Service	Authorizatio	Started	Automatic	Local System	
	Stop the service	Service VMware DHCP Service	DHCP servi	Started	Automatic	Local System	
	Restart the service	Service VMware NAT Service	Network ad	Started	Automatic	Local System	
		🍓 VMware Virtual Mount Manager Extended		Started	Automatic	Local System	
	Description:	Nolume Shadow Copy	Manages a		Manual	Local System	
	Provides a common interface and object	🎭 WebClient	Enables Wi	Started	Automatic	Local Servi	
	model to access management information	🎭 Windows Audio	Manages a	Started	Automatic	Local System	
	about operating system, devices,	🏶 Windows Driver Foundation - User-mode Driver Framework	Manages u	Started	Automatic	Local System	
	stopped most Windows-based software	🏶 Windows Firewall/Internet Connection Sharing (ICS)	Provides ne	Started	Automatic	Local System	
	will not function properly. If this service is	Swindows Image Acquisition (WIA)	Provides im	Started	Automatic	Local System	
	disabled, any services that explicitly	🎭 Windows Installer	Adds, modifi		Manual	Local System	
	depend on it will fail to start.	Windows Management Instrumentation	Provides a	Started	Automatic	Local System	
		indows Management Instrumentation Driver Extensions	Provides sy		Manual	Local System	
		🏶 Windows Media Player Network Sharing Service	Shares Win		Manual	Network S	
		🎭 Windows Time	Maintains d	Started	Automatic	Local System	
		🎭 Wired AutoConfig	This service		Manual	Local System	
		🎭 Wireless Zero Configuration	Provides au	Started	Automatic	Local System	
		WMI Performance Adapter	Provides pe		Manual	Local System	
		Workstation	Creates and	Started	Automatic	Local System	

Figure 1. The WMI service

WMI acts as a means to acquire information on how an OS operates. It gives administrators a means to extract information about all aspects of an OS. As such, one can consider WMI as:

- A database that contains information about a system's disk, services, processor, and objects
- A means to automate the collection of hardware and software data
- A pipe that connects the inner secrets of the Microsoft OS to one another
- A distinctive dialect of *Visual Basic* script (VBS) with its own WMI Query Language (WQL)
- A tool used to determine an OS's properties

Unfortunately, however, each of the above-mentioned capabilities of WMI can be used for a malicious pragma in the following ways:

- As a database, malware can leverage the information found in WMI for malicious purposes, primarily information stealing.
- Because WMI is a means to automate hardware and software data collection, it can be used to automate malicious activities, too.
- As a pipe that connects the OS's inner secrets to one another, WMI can provide escalated privileges for malware to work on.
- Because WMI supports scripting, it can allow malicious scripts to be embedded in and carried out by the normal service.
- As a tool used to determine an OS's properties, WMI can be a means to spy on and probe a system, which is vital to Trojan spies.

WMI NAMESPACE: root\subscription

WMI classes stored in *namespace: subscription* allow permanent and general access to WMI services. The classes under *namespace* allow access to WMI data and discretely allow Win32 events, in particular, to be acted upon or processed.

Figure 2. WMI classes stored in namespace: subscription

WMI System Classes

Objects from system classes such as event and provider registration, security, and event notification support WMI activities. In this paper, however, we will only highlight the system classes that TROJ_WMIGHOST.A modified using WMI.

• WMI classes stored in namespace: subscription allow permanent and general access to WMI services. EventConusmer is an abstract base class used in registering a permanent event consumer.

_EventConsumer

__EventConsumer is an abstract base class used in registering a permanent event consumer.

Figure 3. __EventConsumer class

The ActiveScriptEventConsumer class is one of the standard event consumer classes. It allows a user to run an *ActiveX* script code whenever an event is delivered to it. Scripts can be inserted to it as well. This class is unique in that it can embed scripts using the specified script language. The following properties define its script-enabled capabilities:

- Name: Gives a unique name to an instance of ActiveScriptEventConsumer.
- ScriptingEngine: The name of the scripting engine that will be used. Although the
 documentation states that this can be any arbitrary scripting engine, the usual ones
 used are VBS and JavaScript (JS).
- ScriptText: A string property that contains a VBS or JS code that would be executed when an event is delivered to the ActiveScriptEventConsumer instance.
- ScriptFileName: This property holds the full path to the VBS or JS file that would be executed upon event arrival. ScriptText and ScriptFileName properties are mutually exclusive.

WMIScriptKids_consumer is an example of the active script event consumer instance that TROJ_WMIGHOST.A creates on an affected system.

	Name 🖉	Туре	Value
	CreatorSID	array of uint8	Aray
2	KilTimeout	uint32	0
3	MachineName	string	<empty></empty>
3	K MaximumQueueSize	uint32	<empty></empty>
20	Name	string	WMIScriptKids_consumer
	ScriptFilename	string	<empty></empty>
	ScriptingEngine	string	jscript
	ScriptText	string	var MAIN=function(){\$=this;\$.oHttp=nul;\$.oSheli=nul;\$.oIX=nul;\$.oWMI=nul;\$.x=ActiveXObject;\$.sZone='HKEY_CURRENT_USER\\Software\\Microsofter
	_CLASS	string	ActiveScriptEventConsumer
	DERIVATION	array of string	Array
	DYNASTY	string	SystemClass
5	GENUS	sint32	2
	NAMESPACE	string	ROOT\subscription
	PATH	string	\\JIT-078\ROOT\subscription:ActiveScriptEventConsumer.Name="WMIScriptKids_consumer"
	PROPERTY_COUNT	sint32	8
5	RELPATH	string	ActiveScriptEventConsumer.Name="WMIScriptKids_consumer"
	SERVER	string	JIT-078
5	SUPERCLASS	string	EventConsumer
1			Þ

Figure 4. Sample script TROJ_WMIGHOST.A creates on an affected system

The script that has been inserted in this example uses the JS engine whose corresponding text is specified in ScriptText. Based on our analysis of using JS, the application *wscript.exe* is responsible for executing the malicious code. However, in the case of WMI implementation, such a script is executed by the *WMI Standard Event Consumer - scripting* application, which can be found in the *WMI* folder in %system32%/ *wbem/scrcons.exe*. This makes the script hard to detect since it uses a not-so-common WMI application—*wscript.exe*.

scrcons.exe Properties	scrcons.exe Properties
General Version Compatibility Security Summary	General Version Compatibility Security Summary
scrcons.exe	File version: 5.1.2600.2180 Description: WMI Standard Event Consumer - scripting
Type of file: Application Description: WMI Standard Event Consumer - scripting	Copyright: © Microsoft Corporation. All rights reserved.
Location: C:\WINDOWS\system32\wbem	Item name: Value:
Size: 36.0 KB (36,864 bytes) Size on disk: 28.0 KB (28,672 bytes)	Company File Version Internal Name Language
Created: Saturday, March 08, 2008, 10:31:13 AM Modified: Tuesday, February 28, 2006, 8:00:00 PM Accessed: Today, April 10, 2010, 6:30:41 PM	Original File name Product Name Product Version
Attributes: Read-only Hidden Advanced	
OK Cancel Apply	OK Cancel Apply

Figure 5. Scrcons.exe's properties

__EventFilter

An instance of an __EventFilter system class is required to register a permanent event consumer.

Figure 6. ____EventFilter system class

 EventFilter is a mandatory class entry creation process to activate event consumer class instances. As defined, this is a mandatory class entry creation process to activate event consumer class instances. Event filters are triggers or autostart methods to execute event consumer entries. Within this class instance, a user can monitor *Windows* system events. This can be likened to a commonly used malware method—hooking.

The example below shows that the name WMIScriptKids_filter has been inserted.

			Name 🖉	Туре	Value		
		:=	CreatorSID	array of uint8	Array		
		:=	EventAccess	string	<empty></empty>		
		:=	EventNamespace	string	<empty></empty>		
	Ľ	:=	Name	string	WMIScriptKids_filter		
		:=	Query	string	select * fromtimerevent where timerid="WMIScriptKids_WMITimer"		
		:=	QueryLanguage	string	wql		
			CLASS	string	EventFilter		
			DERIVATION	array of string	Array		
			DYNASTY	string	SystemClass		
			GENUS	sint32	2		
			NAMESPACE	string	ROOT\subscription		
			PATH	string	\\JIT-078\ROOT\subscription:EventFilter.Name="WMIScriptKids_filter"		
			PROPERTY_COUNT	sint32	6		
			RELPATH	string	EventFilter.Name="WMIScriptKids_filter"		
SERVER string JIT-078		JIT-078					
SUPERCLASS stringIndicationRelated		IndicationRelated					
1	<						

Figure 7. WMIScriptKids_filter inserted into a sample __EventFilter system class

Working with event filters allows one to query information from the WMI database using the WQL specified in the Query properties of the class. Once the query satisfies a TRUE condition, it activates a specified event consumer class instance specified in __FilterToConsumerBinding.

__FilterToConsumerBinding

• _____FilterToConsumer-Binding is used in registering permanent event consumers to relate an _____Event-Consumer instance to an ___EventFilter instance.

___FilterToConsumerBinding is used in registering permanent event consumers to relate an ___EventConsumer instance to an __EventFilter instance.

Prope	ties Methods Associations
Z	This tab shows a graphical representation of how other objects are associated to the currently selected object.
	🗐 🔲 🔎 Antine Chief Composite Marco (M. 1940) and (M. 1940)
	ActiveScriptEventConsumer.Name="WMIScriptKids_consumer" EventFilter.Name="WMIScriptKids_consumerBinding ptKids_filter"

Figure 8. ____FilterConsumerBinding class

This class instance associates an __EventFilter instance with an __EventConsumer instance. It completes the cycle by relating the class instances with each other. It answers the question, "What *Windows* event (__EventFilter) will I execute my script program (__EventConsumer) with?"

___TimerInstruction

___TimerInstruction specifies instructions on how timer events should be generated for consumers.

Figure 9. _____ TimerInstruction class

• Timer instruction classes are timer events that one can use within the context of the consumer. Timer instruction classes are timer events that one can use within the context of the consumer. It can primarily be considered a *Windows* event that an __EventFilter instance can generally query.

		Name 🖻	Type	Value	
		IntervalBetweenEvents	uint32	60000	
	5	SkipIfPassed	boolean	false	
8	\$ 5	TimerId	string	WMIScriptKids_WMITimer	
		CLASS	string	IntervalTimerInstruction	
		DERIVATION	array of string	Array	
		DYNASTY	string	SystemClass	
		GENUS	sint32	2	
		NAMESPACE	string	ROOT\subscription	
		PATH	string	\\JIT-078\ROOT\subscription:IntervalTimerInstruction.TimerId="WMIScriptKids_WMITimer"	
		PROPERTY_COUNT	sint32	3	
		RELPATH	string	IntervalTimerInstruction.TimerId="WMIScriptKids_WMITimer"	
		SERVER	string	JIT-078	
		SUPERCLASS	string	TimerInstruction	
٦,	_				

Figure 10. Sample ____TimerInstruction class instance

In the example above, the interval is set using the IntervalBetweenEvents property with the return specified in or controlled by the SkiplfPassed property. An IntervalBetweenEvents instance tells one how many milliseconds a ______TimerInstruction instance can be triggered as a *Windows* event. The SkiplfPassed property, on the other hand, tells one what is returned if a query has to be done on this class instance. It is similar to asking if 60,000 milliseconds have already passed? The return will either be:

- If yes, return TRUE.
- If no, return FALSE.

This class instance may be disparate from other classes. Using this class, however, allows an __EventFilter instance to be triggered at intervals without solely relying on *Windows* events. This is thus a good means of implementing a repetitive script program specified in an __EventConsumer instance.

PUTTING THE PUZZLE PIECES TOGETHER: MALWARE ROUTINES

TROJ_WMIGHOST.A WMI Class Instances and Correlation

The table below will help users understand TROJ_WMIGHOST.A's routines in a typical malware infection.

Malware Precept	Autorun Entry/ Binding	Executable Code	Condition/Trigger
Class	EventFilter	EventConsumer	TimerInstruction
Instance	filemonitor_filter filetrans_filter ProbeScriptKids_ filter WMIScriptKids_ filter	filemonitor_ consumer filetrans_filter ProbeScriptKids_ filter WMIScriptKids_ filter	(no TimerInstruction but monitors the %document%/ recent folder) filetrans_WMITimer ProbeScriptKids_ WMITimer WMIScriptKids_ WMITimer
Purpose	Serves as a link to system events and the execution of malware code	Contains the malicious code that is executed on a monitored system event	Lists the monitored system events for malicious consumer script execution conditions

Table 1. Typical TROJ_WMIGHOST.A infection routines

filemonitor_consumer

The filemonitor_consumer script runs every time a file operation occurs on the folder that monitors the files created or modified. The files are logged on *C:\Documents and Settings\Administrator\Recent*. If the file extensions are *.TXT*, *.RTF*, *.PDF*, *.DOC*, *.DOCX*, *.XLS*, *.XLSX*, *.PPT*, and/or *.PPTX*, they will be copied onto %windows%\temp\syslog\p.

Figure 11. How TROJ_WMIGHOST.A uses the filemonitor_consumer script

filetrans_consumer

The filetrans_consumer script runs every 360,000 seconds as specified by the filemonitor_ filter and filemonitor_timer scripts, which collect the files in *%windows%\temp\syslog\p* that are more than 360,000 seconds from when they were last modified. It checks when the folder was last modified so as not to disrupt filemonitor_consumer operations.

Once verified, TROJ_WMIGHOST.A prepares the file for compression using .CAB format. If the file is more than 102,400 bytes, it will be split accordingly into separate .CAB files that are 102,400 bytes in size and stored in *%windows%/temp/syslog/s/<hostname><Os createtime><fileLastWriteTime>1.6<curdate><curtime>@@X-Y@@.cab.*

It then posts the files to *http://abhisheksingh.blog.com/feed/* as XML content with the bin. base64 data type.

Figure 12. How TROJ_WMIGHOST.A uses the filetrans_consumer script

WMIScriptKids_consumer

The WMIScriptKids_consumer script runs every 360,000 seconds, as specified by the WMIScriptKids_filter and WMIScriptKids_timer scripts. Its main purpose is to open an Internet browser while loading the *ActiveX* object of a malicious component detected by Trend Micro as BKDR_HTTBOT.EA.

The WMIScriptKids_consumer script creates a function to activate an *ActiveX* object named *Mycom.myMain.1*.

To check whether BKDR_HTTBOT.EA is already running, it will check the FILE-LOCKING MUTEX used by the WMI script and BKDR_HTTBOT.EA. It will then attempt to delete the file *%temp%/mywmimutex.dat*. It will only open another instance of the malicious script if the above-mentioned file does not exist on the system.

The ATL component (BKDR_HTTBOT.EA) that the script loaded allows the binary component to send and receive data using the spawned Internet browser.

Figure 13. How TROJ_WMIGHOST.A uses the WMIScriptKids_consumer script

ProbeScriptKids_consumer

The ProbeScriptKids_consumer script runs every 360,000 seconds, as specified by the ProbeScriptKids_filter and ProbeScriptKids_timer scripts. It acts as an HTTP commandand-control (C&C) bot. It connects to *http://hiok125.blog.com/feed/* to parse the response as XML data and to acquire all the URL addresses on the bot list.

The script will pick only one URL from the said list and will begin to access it using the parameter cstype=server&authname=servername&authpass=serverpass&hostname=<computername>&ostype=<OSType>&macaddr=<MACaddr>8&owner=bobotest09&version=0.5.2&t=<CurrMin+CurrSecs>.

Figure 14. How TROJ_WMIGHOST.A uses the ProbeScriptKids_consumer script

The script will again acquire a response in the form of XML data. It will then read out and decode the assumed JS codes, which will be executed one by one as commands from the C&C.

Once executed, it will send feedback to the same URL for command results using the parameter &command=result&commandresult=<commandresult>.

MANUAL DETECTION

There are several ways to detect threats like TROJ_WMIGHOST.A. The key lies in understanding how to list instances of the WMI class.

Command Line: WMI CommandLine Tool

To manually detect instances of the threat in a system, type the following in the command line tool:

- wmic/namespace:\\root\subscription PATH __EventConsumer get/format:list
- wmic/namespace:\\root\subscription PATH __EventFilter get/format:list
- wmic/namespace:\\root\subscription PATH __FilterToConsumerBinding get/ format:list
- wmic/namespace:\\root\subscription PATH __TimerInstruction get/format:list

GUI: WMI Tools

The graphical user interface (GUI) tool can be downloaded from *http://www. microsoft.com/downloads/details.aspx?FamilyID*=6430f853-1120-48db-8cc5-f2abdc3ed314&displaylang=en.

The Event Viewer in this tool allows one to see all running instances of the malware. It will primarily allow one to see consumer, filter, and timer instances running on his/her system.

MANUAL REMOVAL

We can use the same detection tools to rid a system of malicious WMI class instances.

Command Line: WMI CommandLine Tool

To manually remove instances of the malware from a system, type the following on the command line tool:

- wmic/namespace:\\root\subscription PATH__EventConsumer delete
- wmic/namespace:\\root\subscription PATH__EventFilter delete
- wmic/namespace:\\root\subscription PATH___FilterToConsumerBinding delete
- wmic/namespace:\\root\subscription PATH__TimerInstruction delete

Note: Using the command line will delete all instances of the specified classes. Ensure that there are no normal WMI class instances installed on the system before going ahead and issuing the above-mentioned commands. Otherwise, use the GUI tool instead.

GUI: WMI Tools

The GUI tool can be downloaded from *http://www.microsoft.com/downloads/details.* aspx?FamilyID=6430f853-1120-48db-8cc5-f2abdc3ed314&displaylang=en.

Accessing each class instance will give one the option to delete them by right clicking each one and selecting "Delete."

PREVENTION

For the most part, WMI implementation requires administrative permission and rights to be installed on a system. Securing WMI means restricting access to it. For more details on securing WMI namespaces, go to this *MSDN* page.

Typically, the systems in a uniform network setup such as one wherein Active Directory is enabled are not prone to this type of threat. This particular type of attack targets local groups and individual workstations for which cybercriminals gain administrative access.

CONCLUSION

WMI is a useful tool for system administration and computer management. However, the features one adds to his/her system are also potential tools for threat distribution. It would thus be useful for one to question whether these tools are more useful or harmful before actually enabling them. WMI, for instance, has several advantages and disadvantages.

First, as a database that contains information about a system's disk, services, processor, and objects, malware can leverage the information found in WMI for malicious purposes, primarily information stealing. Second, because WMI is a means to automate hardware and software data collection, it can be used to automate malicious activities, too. Third, as a pipe that connects the OS's inner secrets to one another, WMI can provide escalated privileges for malware to work on. Fourth, because WMI supports scripting, it can allow malicious scripts to be embedded in and carried out by the normal service. Finally, as a tool used to determine an OS's properties, WMI can be a means to spy on and probe a system, which is vital to Trojan spies.

WMI feature manipulation is structured in *Windows* system classes, which can be easily modified by any inherent *Windows* programming language. Understanding *Windows* system classes and their implementation is thus a must to understand detailed features of the WMI service's structure.

WMI-related threats are a wake-up call to computing individuals. The need to inadvertently look at certain features of a system for potential damage rather than to better use it is critical in determining what new threat vectors cybercriminals may leverage. There is a thin line between restriction, security, and versatility that one always has to consider when serving one's computing needs.

GLOSSARY

- Active Directory: A hierarchical collection of network resources that can contain users, computers, printers, and other Active Directories. Active Directory Services (ADS) allow administrators to handle and maintain all network resources from a single location.
- ActiveScriptEventConsumer: A WMI Standard Consumer Class that executes a predefined script in an arbitrary scripting language when an event is delivered to it. This consumer is available on *Windows XP* and *Windows 2000*.
- ATL component: An "Active Template Library" component, which is a set of templatebased C++ classes developed by Microsoft, intended to simplify the programming of Component Object Model (COM) objects.
- __EventConsumer: A WMI system class. The __EventConsumer system class is an abstract base class that is used in registering a permanent event consumer.
- __EventFilter: A WMI system class. The registration of a permanent event consumer requires an instance of the __EventFilter system class. This specifies what "event" a user wants to receive or act on.
- File-locking mutex: "Mutex" stands for "mutual exclusion," which is the most basic form of synchronization between processes. Locking a file using a mutex means that a computer resource, in this case, a file, can only be made available to one user at a time.
- ___FilterToConsumerBinding: A WMI system class used in registering permanent event consumers to relate an instance of the __EventConsumer to an instance of ___ EventFilter. __FilterToConsumerBinding is an association class. It binds the "action" to an "event." The "action" is defined in ActiveScriptEventConsumer.
- **GhostNet:** The name researchers gave to a large-scale cyberspying operation discovered in March 2009 during the Information Warfare Monitor.
- **JS engine:** Refers to a "JavaScript engine," which is a specialized software program that processes JavaScript, especially for Web browsers.
- WMI: Stands for "Windows Management Instrumentation," which was designed for enterprise data collection and management that is both flexible and extensible to manage local and remote systems comprising arbitrary components. It is the infrastructure for data management and operation on *Windows*-based OSs. It is Microsoft's implementation of the WBEM and CIM standards from the DMTF.
- **WMI namespace:** An abstract container or environment created to hold a logical grouping of unique identifiers or symbols (i.e., names).
- WMI system classes: A collection of predefined classes based on the CIM. Unlike classes supplied by providers, the system classes are not declared in a Managed Object Format (MOF) file. WMI creates a set of these classes whenever a new WMI namespace is created.

• WQL: Stands for "WMI Query Language," which is a subset of the American National Standards Institute Structured Query Language (ANSI SQL)—with minor semantic changes. A basic WQL query remains fairly understandable for people with basic SQL knowledge.

REFERENCES

- Lennard Galang. (May 26, 2010). *TrendLabs Malware Blog.* "WMI Abused for Malware Operations." http://blog.trendmicro.com/windows-wmi-abused-formalware-operations/ (Retrieved June 2010).
- Microsoft Corporation. (May 4, 2010). *MSDN.* "Securing WMI Namespaces." http://msdn.microsoft.com/en-us/library/aa826354%28VS.85%29.aspx (Retrieved July 2010).
- Microsoft Corporation. (May 4, 2010). *MSDN*. "Standard Consumer Classes." http:// msdn.microsoft.com/en-us/library/aa393649%28v=VS.85%29.aspx (Retrieved July 2010).
- Microsoft Corporation. (May 4, 2010). MSDN. "Windows Management Instrumentation." http://msdn.microsoft.com/en-us/library/aa394582%28VS.85%29. aspx (Retrieved June 2010).
- Microsoft Corporation. (May 4, 2010). MSDN. "WMI System Classes." http://msdn. microsoft.com/en-us/library/aa394583%28VS.85%29.aspx (Retrieved June 2010).
- Microsoft Corporation. (May 4, 2010). MSDN. "WQL (SQI for WMI)." http://msdn. microsoft.com/en-us/library/aa394606%28VS.85%29.aspx (Retrieved July 2010).
- Paul Craig. (2010). *Ha.cked: A Lone Kiwi Hacker on a Mission of Exploitation.* "New Project: The Moth Trojan." http://ha.cked.net/ (Retrieved June 2010).
- Shadowserver Foundation. (April 6, 2010). "Shadows in the Cloud: Investigating Cyber Espionage 2.0." http://www.nartv.org/mirror/shadows-in-the-cloud.pdf (Retrieved July 2010).
- Sybase Inc. (2004). Sybase. "Chapter 4: Process Management." http://infocenter. sybase.com/help/index.jsp?topic=/com.sybase.dc36335_0420/html/ecgunix/ ecgunix112.htm (Retrieved July 2010).
- The Trustees of Indiana University. (March 31, 2010). Indiana University: University Information Technology Services. "What Is Active Directory?" http://kb.iu.edu/data/ ahtd.html (Retrieved July 2010).
- Trend Micro Incorporated. (March 26, 2010). Threat Encyclopedia. "BKDR_ HTTBOT.EA." http://threatinfo.trendmicro.com/vinfo/virusencyclo/default5. asp?VName=BKDR_HTTBOT.EA (Retrieved June 2010).
- Trend Micro Incorporated. (May 18, 2010). Threat Encyclopedia. "TROJ_ WMIGHOST.A." http://threatinfo.trendmicro.com/vinfo/virusencyclo/default5. asp?VName=TROJ_WMIGHOST.A (Retrieved June 2010).
- Uros Calakovic. (July 29, 2008). The Code Project: Your Development Resource. "Creating WMI Permanent Event Subscriptions Using MOF." http://www.codeproject. com/KB/system/PermEvtSubscriptionMOF.aspx (Retrieved June 2010).

- Wikimedia Foundation Inc. (April 13, 2010). Wikipedia. "Pragma." http://en.wikipedia. org/wiki/Pragma (Retrieved June 2010).
- Wikimedia Foundation Inc. (April 21, 2010). Wikipedia. "Hooking." http://en.wikipedia. org/wiki/Hooking (Retrieved June 2010).
- Wikimedia Foundation Inc. (June 10, 2010). Wikipedia. "Active Template Library." http://en.wikipedia.org/wiki/Active_Template_Library (Retrieved July 2010).
- Wikimedia Foundation Inc. (June 30, 2010). Wikipedia. "Namespace (Computer Science)." http://en.wikipedia.org/wiki/Namespace_%28computer_science%29 (Retrieved July 2010).
- Wikimedia Foundation Inc. (July 7, 2010). Wikipedia. "WQL." http://en.wikipedia.org/ wiki/WQL (Retrieved July 2010).
- Wikimedia Foundation Inc. (July 14, 2010). Wikipedia. "JavaScript Engine." http:// en.wikipedia.org/wiki/JavaScript_engine (Retrieved July 2010).

TREND MICRO™

Trend Micro Incorporated is a pioneer in secure content and threat management. Founded in 1988, Trend Micro provides individuals and organizations of all sizes with award-winning security software, hard-ware and services. With headquarters in Tokyo and operations in more than 30 countries, Trend Micro solutions are sold through corporate and value-added resellers and service providers worldwide. For additional information and evaluation copies of Trend Micro products and services, visit our Web site at www.trendmicro.com.

TREND MICRO INC.

10101 N. De Anza Blvd. Cupertino, CA 95014

US toll free: 1 +800.228.5651 **Phone:** 1 +408.257.1500 **Fax:** 1 +408.257.2003

www.trendmicro.com

©2010 by Trend Micro, Incorporated. All rights reserved. Trend Micro, the Trend Micro t-ball logo are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.