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LoRaWAN technology is used across different industries to monitor critical applications. Usually, 

these small devices connect sensors with a network. For example, many industrial facilities rely 

on these sensors to keep an eye on smoke, fire, flood, or weather conditions. The devices are 

also used in modern connected cities to make environments smart in a way that reduces 

maintenance costs and improves quality of life.  

An attack affecting these devices could have damaging effects on property and even users, 

depending on how the technology is integrated into the environment. Attacks could lead to out-

of-control factory issues, sensitive data leaks, or many other dangerous security scenarios. 

In our previous publications1,2,3, we talked about the known LoRaWAN entry vectors that attackers 

usually target. The LoRaWAN stack is not a vector that is usually included in conversations about 

LoRaWAN security, but it is actually the root of LoRaWAN implementation — and so of its security. 

An attack on the stack could have severe consequences.   

In this report, we show the techniques that an attacker can use to find exploitable flaws in the 

LoRaWAN stack. We bring these details forward to highlight that the same techniques can be 

used by stack developers or a security consultant to secure the stack and make LoRaWAN 

communication resistant to critical bugs. 

 

Introduction 

Although we have cited significant security issues and practices in our previous publications about 

LoRaWAN,4 there are still areas concerning the implementation of the LoRaWAN stacks used by 

connected devices that are in the dark. Most of these security issues are about the confidentiality 

and integrity of data. The exploitation of a protocol stack vulnerability would allow an attacker to 

execute malicious code on target devices, which in turn could have compounded security effects 

depending on the target and its capabilities. 

In most existing publications, protocol stack topics are exceedingly rare. Because of this, we 

thought that making this report on the LoRaWAN stack could complete our security series. Here, 

we discuss LoRaWAN stack implementation and how to hunt for bugs in the different stacks using 

different techniques, such as fuzzing with AFL++.5 In the section about fuzzing, we introduce our 

fuzzing platform, which includes several harness tools that help us during the fuzzing process. In 

the next section, we speak about emulation using Qiling (based on Unicorn Engine)6 with respect 

to fuzzing and debugging exotic architectures. In addition to Qiling, we also discuss an alternative 

method using Ghidra's PCode emulation, which is done when targeted architectures are not 

supported by Unicorn or Qiling. 

We hope the discussion on these techniques will help security teams include protocol stack 

security testing in the Deming wheel and avoid risks of compromise. 

 



 

The LoRaWAN Stack 

There are at least two types of stacks we can find with LoRaWAN: an end-node stack and a 

gateway stack.  

It should be noted that there are also other stacks for the network and application servers, but we 

will focus on vulnerabilities that we can trigger from the radio interface. Indeed, an attacker has a 

better chance of accessing the radio interface rather than the network because it is more exposed. 

It is also worth noting that attackers from the radio side will act as a kind of malicious sensor or 

gateway. 

 

End-node stack 

The end-node stack is implemented in end-node devices as well as used to send uplink (UL) 

packets to the gateway. But on some occasions, the network can also send information to the 

end-node devices, and so end-node stacks also need to manage downlink (DL) packets 

forwarded by the gateway.  

The following figure shows how end-node devices are placed in a typical LoRaWAN infrastructure: 

 

Figure 1. LoRaWAN network architecture 



 

DL packets include the join procedure in the end-node device side, as well as data that comes 

from the network. For example, the open-source implementation from Semtech called “LoRaMac-

node”7 implements the different types of packets that come from the network and are forwarded 

by the gateway. This is shown in the following lines in C from /src/mac/LoRaMac.c sources: 

 

static void ProcessRadioRxDone( void ) 
{ 
[…] 
switch( macHdr.Bits.MType ) 
    { 
        case FRAME_TYPE_JOIN_ACCEPT: 
[…] 
        case FRAME_TYPE_DATA_CONFIRMED_DOWN: 
            MacCtx.McpsIndication.McpsIndication = MCPS_CONFIRMED; 
            // Intentional fall through 
        case FRAME_TYPE_DATA_UNCONFIRMED_DOWN: 
[…] 
} 

In addition to the direction of chips in radio, therefore, only packets of those types are expected 

by the end-node device. 

 

Gateway stack 

The gateway stack includes all functions to connect to the network and forwards packets that 

come from it. It can also forward packets coming from the end-node to the network using the radio 

interface. An example of a gateway implementation can be found with the open-source LoRa 

Basics Station8 as follows: 

 

Figure 2. BasicStation architecture for gateways 

 



 

By default, the gateway is not an important target for an attacker who wants to use the radio 

interface. Generally, gateways only forward the packet to the core without interpreting them. On 

rare occasions, we can see custom gateways capable of interpreting packets; this means that 

though they are possible targets, they are not typically so. Nevertheless, some implementations 

can be configured in standalone mode (thereby avoiding the connection to a LoRaWAN network), 

such as TheThingsNetwork (TTN),9 which will soon be completely upgraded to The Things Stack 

V3.10  

Indeed, Dragino is one of the vendors allowing the gateways to be put in standalone mode using  

Authentication By Personalization (ABP) mode: 

 

 

Figure 3. Enabling ABP end-node packets decryption on Dragino’s gateway 

Enabling end-node packet decryption in ABP mode implies that the gateway will parse the 

packets at some point. This can be seen with static analysis of the lora_pkt_fwd binary from the 

Dragino LG308 gateway: 

 

Figure 3. Analyzing lora_pkt_fwd of an LG308 in MIPS MSB with Ghidra 



 

 

Dragino’s binary-like lora_pkt_fwd implementation is based on Semtech’s code but was 

customized to introduce packet parsing and decryption. The code can be found in one of Dragino’s 

Github repositories by digging into their packages for LG308 devices.11 

 

Finding Bugs in the Packet’s Parser 

In the second article in our LoRaWAN series,12 we showed a method of using Scapy not just to 

parse but also to generate LoRaWAN packets. This way, it was also possible to see that 

LoRaWAN packets have many fields that could be badly implemented.  

There are several ways to find bugs in the protocol stacks of LoRaWAN and other protocols: 

• Using statical analysis 

• Running fuzzing campaigns 

• Finding them accident (our favorite) 

• Using hybrid approaches 

The benefit of statistical analysis is that we are more precise about the presence of bugs and their 

nature. However, sometimes we must then spend a considerable amount of time trying to 

understand closed source code and the interesting path of code we are analyzing is never hit. In 

other words, it’s like looking for a needle in a haystack. Fortunately, a technique called “fuzzing” 

exists to perfect the task. 

Fuzzing consists of generating and mutating inputs that we will feed into our program to find bugs. 

This technique is derivate of accidental bug finding since we introduce bad input data into our 

program that our parser is not supposed to handle. 

There are many ways to generate LoRaWAN packets: 

• “Dumb”: Bit-flipping using a valid packet 

• “Smart”: Using a generator like our loraphy2wan Scapy layer13 

• Solver-based generation: Using Satisfiability Modulo Theories (SMT) solver such as z3, 

or even frameworks like Triton14 to generate input payloads 

The “dumb” way is not the fastest way to generate valid payloads, but it takes less time to write a 

dumb fuzzer than a “smart” generator, which needs to understand the structure of a packet. When 

generators can produce a finite result of test cases depending on how elements are handled, 

dumb fuzzing can be powerful in finding bugs that a standard generator can miss.  

 

Instrumenting the packet-parsing process 

Before fuzzing anything, we need to compile the code into something easily handled by a fuzzer. 

Indeed, as we have the source code, we will not compile the code and fuzz in radio as there will 

be a lot of introduced latencies. Instead, we will change the code in such a way that it will directly 

process given "packets."  



 

When we look at cross references to the LoRaMacParserData() function deeper, we see that it is 

called in LoRaMacCryptoUnsecureMessage() as well as ProcessRadioRxDone(), but 

LoRaMacCryptoUnsecureMessage() itself is called in ProcessRadioRxDone(), so the conclusion 

is that everything begins at ProcessRadioRxDone(). 

ProcessRadioRxDone() is called by an Interrupt ReQuest (IRQ) that we can track using a cross-

reference engine as follows: 

 

Figure 4. LoRaMAC-node sources browsing on OpenGrok 

The following RxDone callback functions will handle IRQ events from the LoRa radio driver: 

 

Figure 5. LoRaWAN IRQ event handler 

Therefore, if we want to perform fuzzing tests independently from these IRQ, we can start directly 

from the ProcessRadioRxDone() function. 

 



 

This function, however, does not use any argument to pass, so we must find out how to pass the 

packet message for processing. Luckily, the function is not extraordinarily complex, and we can 

quickly figure out what variable will be necessary to use for our fuzzing: 

 

802  static void ProcessRadioRxDone( void ) 
803  { 
804      LoRaMacHeader_t macHdr; 
805      ApplyCFListParams_t applyCFList; 
806      GetPhyParams_t getPhy; 
807      PhyParam_t phyParam; 
808      LoRaMacCryptoStatus_t macCryptoStatus = LORAMAC_CRYPTO_ERROR; 
809   
810      LoRaMacMessageData_t macMsgData; 
811      LoRaMacMessageJoinAccept_t macMsgJoinAccept; 
812      uint8_t *payload = RxDoneParams.Payload; 
813      uint16_t size = RxDoneParams.Size; 
814      int16_t rssi = RxDoneParams.Rssi; 
815      int8_t snr = RxDoneParams.Snr; 
816 […] 

 

The RxDoneParams is also a global structure (part of LoRaMac-node/src/mac/LoRaMac.c), and 

we can change it on the fly to fill with our custom payload: 

 

Figure 6. RxDoneParams’ structure 

Using this structure, we can initialize our payload on the fly in a main() function that will take the 

payload as an argument and call the ProcessRadioRxDone. 

When trying to compile all the sources, there are still some timers and/or schedulers specific to 

the used microcontroller unit (MCU). The original ProcessRadioRxDone() function will need to be 

copied and the native functions commented out to compile in the targeted architecture when we 

want to fuzz.  

In copying this ProcessRadioRxDone() function we need to include its dependencies and 

comment architecture-specific function calls as follows: 



 

static void ProcessRadioRxDone( void ) 
{ 
    LoRaMacHeader_t macHdr; 
[...] 
  
    //Radio.Sleep( ); 
    //TimerStop( &MacCtx.RxWindowTimer2 ); 
  
    // This function must be called even if we are not in class b mode 

yet. 
    /*if( LoRaMacClassBRxBeacon( payload, size ) == true ) 
    { 
        MacCtx.MlmeIndication.BeaconInfo.Rssi = rssi; 
        MacCtx.MlmeIndication.BeaconInfo.Snr = snr; 
        return; 
    }*/ 
    // Check if we expect a ping or a multicast slot. 
    /*if( MacCtx.NvmCtx->DeviceClass == CLASS_B ) 
    { 
        if( LoRaMacClassBIsPingExpected( ) == true ) 
        { 
            LoRaMacClassBSetPingSlotState( 0 ); 
            LoRaMacClassBPingSlotTimerEvent( NULL ); 
            MacCtx.McpsIndication.RxSlot = 

RX_SLOT_WIN_CLASS_B_PING_SLOT; 
        } 
        else if( LoRaMacClassBIsMulticastExpected( ) == true ) 
        { 
            LoRaMacClassBSetMulticastSlotState( 0 ); 
            LoRaMacClassBMulticastSlotTimerEvent( NULL ); 
            MacCtx.McpsIndication.RxSlot = 

RX_SLOT_WIN_CLASS_B_MULTICAST_SLOT; 
        } 
    }*/ 
  
    macHdr.Value = payload[pktHeaderLen++]; 
     switch( macHdr.Bits.MType ) 
    { 

It should be noted that we have also removed calls to modes we are not using by default to 

simplify the task. 

Moreover, some other initialized context is needed to avoid any unwanted crashes happening 

when parsing, deciphering the messages, or processing missing queues in the code. This results 

are in the following main() function: 

void main(int argc, char *argv[]) 
{ 
    LoRaMacCryptoNvmEvent * cryptoNvmCtxChanged; 



 

    FILE *fp; 
     char buff[500]; // larger enough to mess with that 
  
    if (argc == 2) 
    { 
        fp = fopen(argv[1], "r"); 
        fgets(buff, 256, (FILE*)fp); // a little big than the MAX size 

of a LoRaWAN packet, but let’s find some bugs on the code... 

 
    LoRaMacCryptoInit(cryptoNvmCtxChanged); 
       MacCtx.NvmCtx = malloc(sizeof(LoRaMacNvmCtx_t)); 
       MacCtx.MacCallbacks = malloc(sizeof(LoRaMacCallback_t)); 
       LoRaMacInitialization2( ); // a derivate function without 

architecture specific calls 
       RxDoneParams.Payload = buff; 
       RxDoneParams.Size = strlen(buff); 
       ProcessRadioRxDone(); 
    } 
} 

After compiling a code that will process a packet provided in the argument line, we can start 

thinking about how we can process it when fuzzing this stack. 

 

Fuzzing the stack 

 

Proposed design 
 

For our purpose, we will combine the generation that will allow us to cover as many code paths 

as possible with legitimate and dumb fuzzing using the AFL++ framework (evolution of AFL) that 

supplies some instrumentation for pseudorandomly mutating the bits, bytes, words. 

First, we generate and capture legitimate packets coming from the LoRaWAN network; these are 

mostly downlink packets since we are studying the end-node stack. Captured and generated 

packets will then be saved in independent byte files that will be reduced using a minimizer that 

will filter the input that is useless to mutate (based on the code path coverage). Essential inputs 

will be fed to an AFL++ fuzzer that instruments a different binary base on the strategy and 

produces crashes. Produced crashes are then classified by the type of vulnerability and its 

backtrace, and then they are minimized to the smallest useful payload that can be debugged.  

We explain the main points of this architecture in the following sections. Figure 7 shows the 

whole architecture that we have designed for our fuzzing tests: 



 

 

Figure 7. Fuzzing architecture design for radio protocol layer as applied to LoRaWAN 

 

Generation and captures 
 

To cover as much code path as possible, we needed to collect every type of message that could 

be interpreted by the parser. The first approach consists of capturing messages using our 

LoRaPWN framework, which works as follows: 

 

Figure 8. Capturing and processing packets with the LoRaPWN framework 

 

 



 

 

We can then arrange or generate the captured packet using the interactive mode of the 

framework: 

~>>> ABPpkt 
<LoRa Preamble=0x1 PHDR=0xe312 PHDR_CRC=0x0 MType=Unconfirmed Data Up 

RFU=0 Major=0 DevAddr=[<DevAddrElem NwkID=0x6e NwkAddr=0x260117 |>] 

FCtrl=[<FCtrl_Link ADR=1 ADRACKReq=0 ACK=0 UpClassB_DownFPending=0 

FOptsLen=0 |>] FCnt=9 FPort=1 

ULDataPayload='\x9ec)Egc\xdb\x9a\x8cT\xde\xd3wF\xa9\xce\xc8' 

MIC=0xecc33bc4 CRC=0x922 |> 
  
~>>> ABPpkt.MType=0 
~>>> ABPpkt 
<LoRa Preamble=0x1 PHDR=0xe312 PHDR_CRC=0x0 MType=Join-request RFU=0 

Major=0 Join_Request_Field=None MIC=0xecc33bc4 CRC=0x922 |> 
… 

 

Binary instrumentation and strategies 
 

Fuzzing is a very long process. We must use as much CPU as possible to parallelize the work 

and gain some time, or try different strategies to trigger as many bugs and/or crashes as possible. 

For that, AFL++ allows us to use main and secondary fuzzers with “-M” and “-S” options: 

afl-fuzz -M 01 -i finput -o fout -- ./Fuzzy2 @@ 

 

For secondary fuzzers, it is better to use variations, unless we want to fuzz the exact same 

thing. AFL++ allows interesting variation compilations, as listed here: 

• With sanitizers activated (export AFL_USE_ASAN=1 ; export AFL_USE_UBSAN=1 ; 

export AFL_USE_CFISAN=1; ) 

• CMPLOG/redqueen 

• laf-intel/COMPCOV 

Other secondary sessions could also be run, such as 

• A third- to a half-session with the MOpt mutator enabled, -L 0 

• Using different a power schedule, like explore (default), fast, coe, lin, quad, exploit, 

mmopt, rare, and seek (for example, -p seek) 

 

 

 
 



 

Optimizing fuzzing with persistent mode 
 

The persistent mode is used to increase the fuzzing process speed from by x2 to by x20. Using 

this mode, the fuzzer feeds test cases in separate long-lived processes, avoiding costs when 

fork()ing the program. 

We have performed the following changes to use the persistent mode in the main.c binary: 

 

18a19 
> #include <limits.h> 
2130a2132 
> __AFL_FUZZ_INIT(); 
2133a2136 
>  
2137a2141,2146 
> #ifdef __AFL_HAVE_MANUAL_CONTROL 
>   __AFL_INIT(); 
> #endif 
>  
> while (__AFL_LOOP(UINT_MAX)) { 
>  
2141,2142c2150,2151 
< fp = fopen(argv[1], "r"); 
< fgets(buff, 256, (FILE*)fp); 
--- 
> //fp = fopen(argv[1], "r"); 
> //fgets(buff, 256, (FILE*)fp); 
2155,2157c2164,2170 
< RxDoneParams.Payload = buff; 
< RxDoneParams.Size = strlen(buff); 
< ProcessRadioRxDone(); 
--- 
> RxDoneParams.Payload = __AFL_FUZZ_TESTCASE_BUF; 
> RxDoneParams.Size = __AFL_FUZZ_TESTCASE_LEN; 
> if (RxDoneParams.Size < 256) 
> { 
> ProcessRadioRxDone(); 
> } 
> } 

Note that this mode is not as stable as the standard mode. That is why we keep to different 

versions of instrumented main.c source code. 

 

 



 

Classifications 
 

The classification part can be considerably helpful when dealing with the many "uniq crash files" 

found in a repository: 

 

Figure 9. Example of a fuzzing session on LoRaMAC-node with AFL++ 

 

 

Figure 10. Use of 32 thread CPU to fuzz seriously 

Even if only nine unique crashes out of 22.1 thousand have been detected, by debugging these 

nine crashes taken in a short period against the AddressSanitizer (ASan)15 compiled binary, we 

can directly see that two "uniq crashes" recorded by AFL++ are in fact the same (thanks to 

backtrace information): 

 

$ ../binaries/Fuzzy-afl-clang-fast-default default-fast-

default/crashes/id:000000,sig:11,src:000000,time:92,op:havoc,rep:8 
UndefinedBehaviorSanitizer:DEADLYSIGNAL 
==34307==ERROR: UndefinedBehaviorSanitizer: SEGV on unknown address 

0x000000000000 (pc 0x000000427897 bp 0x000000000001 sp 0x7fff3ff8adb0 

T34307) 
==34307==The signal is caused by a READ memory access. 
==34307==Hint: address points to the zero page. 



 

#0 0x427897 in GetElement 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/LoRaMacConfirmQueue.c:145:30 
#1 0x427897 in LoRaMacConfirmQueueIsCmdActive 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/LoRaMacConfirmQueue.c:309:9 
#2 0x4244df in ProcessRadioRxDone 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/main.c:1561:21 
#3 0x4244df in main 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/main.c:2157:3 
#4 0x7f771c8120b2 in __libc_start_main /build/glibc-eX1tMB/glibc-

2.31/csu/../csu/libc-start.c:308:16 
#5 0x4034dd in _start 

(/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/binaries/Fuzzy-afl-clang-fast-default+0x4034dd) 
  
UndefinedBehaviorSanitizer can not provide additional info. 
SUMMARY: UndefinedBehaviorSanitizer: SEGV 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/LoRaMacConfirmQueue.c:145:30 in GetElement 
==34307==ABORTING 
  
[…] 
  
$ ../binaries/Fuzzy-afl-clang-fast-default default-fast-

default/crashes/id:000001,sig:11,src:000000,time:175,op:havoc,rep:8 1 

↵ 
UndefinedBehaviorSanitizer:DEADLYSIGNAL 
==34343==ERROR: UndefinedBehaviorSanitizer: SEGV on unknown address 

0x000000000000 (pc 0x000000427897 bp 0x000000000001 sp 0x7ffc05236f10 

T34343) 
==34343==The signal is caused by a READ memory access. 
==34343==Hint: address points to the zero page. 
#0 0x427897 in GetElement 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/LoRaMacConfirmQueue.c:145:30 
#1 0x427897 in LoRaMacConfirmQueueIsCmdActive 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/LoRaMacConfirmQueue.c:309:9 
#2 0x4244df in ProcessRadioRxDone 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/main.c:1561:21 
#3 0x4244df in main 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/main.c:2157:3 
#4 0x7fa22e1810b2 in __libc_start_main /build/glibc-eX1tMB/glibc-



 

2.31/csu/../csu/libc-start.c:308:16 
#5 0x4034dd in _start 

(/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/binaries/Fuzzy-afl-clang-fast-default+0x4034dd) 
  
UndefinedBehaviorSanitizer can not provide additional info. 
SUMMARY: UndefinedBehaviorSanitizer: SEGV 

/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Fuzz/LoRaMacConfirmQueue.c:145:30 in GetElement 
==34343==ABORTING 

 

Here, only the address of the __libc_start_main function differs in the call stack, which can be 

irritating when one is dealing with many files. To resolve this small inconvenience, we processed 

the output of the ASan display and created a unique MD5 hash based on the call stack, excluding 

__libc_start_main, to get a unique crash trace. 

After determining if a crash is unique given the unique ID hash, we classify the crash by its type 

as detected by ASan. A crash can be classified as either a leak type or a buffer overflow type, 

among others.   

This helps us to focus not only on the most interesting bugs first, but also on the "quick wins." 

To finish, we also need to know which payload does not crash a non-instrumented binary. This 

also helps us focus directly on the most interesting bugs. That step can simply be achieved using 

a GDB script that will run, show a backtrace, and quit the debugging process: 

 

$ cat run.gdb 
r 
bt 
quit 

 

It can be run as follows: 

$ gdb --batch --command=scripts/run.gdb --args binaries/Original-gcc 

foutput/default-fast-

default/crashes/id:000000,sig:11,src:000000,time:92,op:havoc,rep:8 1  
1testtest[Inferior 1 (process 35433) exited normally] 
scripts/run.gdb:2: Error in sourced command file: 
No stack. 

 

In this context, we see that the crash is not triggered with a non-instrumented binary, so it is 

possible that this payload should be analyzed later. 

The result from our classification engine is then recorded into an HTML report file as follows: 



 

 

Figure 11. Results of the classification crash report when fuzzing before v4.5.1 of LoRaMac-

node16 

 

 

 



 

Payload minimalization 
 

There are two ways to minimalize the payload. One is through corpus minimalization and another 

is by test case minimalization. 

Corpus minimalization can be performed with the afl-cmin tool, which will find the smallest subset 

of files that will perform as much coverage as possible. The test case minimalization offered by 

afl-tmin offers a way to remove much of the data while keeping the same state of covered path 

or crash. 

This takes time, but some tools are also available to speed up the process: 

• https://github.com/googleprojectzero/halfempty 

• https://github.com/MarkusTeufelberger/afl-ddmin-mod 

• https://github.com/ilsani/afl-pytmin 

We will consider integrating these tools into the architecture in the future. 

 

Emulation 

Fuzzing source code with AFL++ is the most scalable technique when the payloads are generated 

to pass as much code path as they can and are also reduced to the minimum size. But as we saw 

earlier, the code is compiled to a different architecture than x86-64, as well as with a specific cross 

compiler containing specific options. Therefore, if we try to prove the vulnerability by exploiting it, 

more time will be wasted adapting the exploit to the right architecture. 

Some firmware can also be closed-source, so we need different methods other than static 

analysis to continue automatic bug finding.  

Introducing stubs during debugging with GDB Python scripts or using Frida17 on a few 

architectures supported by the tool is one method out of many that exist. Emulating with 

multiplatform engines such as Unicorn18 or Qiling19 is another. 

For this article, we have decided to demonstrate the use of the Qiling framework, which is a 

valuable tool used to quickly develop proof-of-concept emulators for multiple types of 

architectures. 

 

Building a LoRaMAC-node stack for a target 

To demonstrate the tool in a straightforward way and with symbols, we chose the LoRaMAC-node 

project, which is open-source but compiled in ARM and mostly supported by the following 

platforms: 

• NAMote72 

• NucleoLxxx 

• SKiM880B, SKiM980A, SKiM881AXL 

https://github.com/googleprojectzero/halfempty
https://github.com/MarkusTeufelberger/afl-ddmin-mod
https://github.com/ilsani/afl-pytmin


 

• SAMR34 

To begin, we compiled this stack for the NucleoL476 platform with a LR1110MB1DIS MBED 

shield (since it is the supported platform for this project): 

 

$ cmake -DCMAKE_BUILD_TYPE=Release \ 
        -DTOOLCHAIN_PREFIX="/usr/bin/" \ 
        -DCMAKE_TOOLCHAIN_FILE="../cmake/toolchain-arm-none-

eabi.cmake" \ 
        -DAPPLICATION="LoRaMac" \ 
        -DSUB_PROJECT="periodic-uplink-lpp" \ 
        -DCLASSB_ENABLED="ON" \ 
        -DACTIVE_REGION="LORAMAC_REGION_EU868" \ 
        -DREGION_EU868="ON" \ 
        -DREGION_US915="OFF" \ 
        -DREGION_CN779="OFF" \ 
        -DREGION_EU433="OFF" \ 
        -DREGION_AU915="OFF" \ 
        -DREGION_AS923="OFF" \ 
        -DREGION_CN470="OFF" \ 
        -DREGION_KR920="OFF" \ 
        -DREGION_IN865="OFF" \ 
        -DREGION_RU864="OFF" \ 
        -DBOARD="NucleoL476" \ 
        -DMBED_RADIO_SHIELD="LR1110MB1XXS" \ 
        -DSECURE_ELEMENT="LR1110_SE" \ 
        -DSECURE_ELEMENT_PRE_PROVISIONED="ON" \ 
        -DUSE_RADIO_DEBUG="ON" .. 

 

So, we got a binary file that looks as follows: 

 

$ file LoRaMac-periodic-uplink-lpp* 
LoRaMac-periodic-uplink-lpp:     ELF 32-bit LSB executable, ARM, EABI5 

version 1 (SYSV), statically linked, with debug_info, not stripped 
LoRaMac-periodic-uplink-lpp.bin: data 
LoRaMac-periodic-uplink-lpp.hex: ASCII text, with CRLF line 

terminators 

The good thing about building this way is that we also have an ELF file that directly provides us 

with the entry point of our binary with section details. This could help us with the emulation part. 



 

 

First run with Qiling  

Qiling supports this architecture, as well as many others: 

• X86 

• X86_64 

• Arm 

• Arm64 

• MIPS (only MSB for from now) 

• 8086 

This framework also provides many examples to run executables for many file formats: 

• PE 

• MachO 

• ELF 

• COM 

• MBR 

The Qiling documentation provides many examples and shows how to fuzz a complete binary 

using exotic architectures like those in routers. 20 Doing the same, we adapted the provided lines 

in the documentation with our own binary. The results are as follows: 

 

ql = Qiling([“LoRaMac-periodic-uplink-lpp”], ".") # arg1=binary path, 

arg2=rootfs 
ql.run() 

 

But running the binary directly with the few lines is not enough. Indeed, we can see that our binary 

crashes after some emulated code: 

 

$ python3 

emulate_demo.py                                                       

                                                        
[x] 
  
[x]r0: 0x20000000 
[x]r1: 0xe000ed00 
[x]r2: 0x20003064 
[x]r3: 0x20003064 
[x]r4: 0x0 
[x]r5: 0x0 
[x]r6: 0x0 
[x]r7: 0x0 



 

[x]r8: 0x0 
[x]r9: 0x0 
[x]r10: 0x0 
[x]r11: 0x0 
[x]r12: 0x0 
[x]sp: 0x20018000 
[x]lr: 0x800bfa3 
[x]pc: 0x800bfc8 
[x]cpsr: 0x600001f3 
[x]c1_c0_2: 0xf00000 
[x]c13_c0_3: 0x0 
[x]fpexc: 0x40000000 
[x] 
  
[x]PC = 0x800bfc8 
[x] (/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-

node-Emulate/LoRaMac-periodic-uplink-lpp+0x800bfc8) 
[=][+] Start      End        Perm.  Path 
[=][+] 08000000 - 08014000 - r-

x    /home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-

node-Emulate/LoRaMac-periodic-uplink-lpp 

(/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Emulate/LoRaMac-periodic-uplink-lpp) 
[=][+] 20000000 - 20004000 - 

rw-    /home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-

node-Emulate/LoRaMac-periodic-uplink-lpp 

(/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Emulate/LoRaMac-periodic-uplink-lpp) 
[=][+] 20004000 - 20006000 - rwx    [hook_mem] 
[=][+] 7ff0d000 - 7ff3d000 - rwx    [stack] 
[=][+] ffff0000 - ffff1000 - rwx    [arm_tls] 
[x]['0xf', '0x49', '0xd1', '0xf8', '0x88', '0x30', '0x43', '0xf4'] 
[=] 
  
[=]0x0800bfc8 

{/home/fluxius/Projects/LoRa/LoRaPWN_tool/tools/stacks/LoRaMac-node-

Emulate/LoRaMac-periodic-uplink-lpp + 0x00bfc8}   0f 49 d1 f8 88 30 43 

f4 70 03 c1 f8 88 30 0d 4b 1a 68 00 20 42 f0 01 02 1a 60 98 60 1a 68 

22 f0 a8 52 22 f4 10 22 1a 60 4f f4 80 52 da 60 1a 68 22 f4 80 22 1a 

60 98 61 4f f0 00 63 8b 60 70 47 ldr r1, [pc, #0x3c] 
> ldr.w r3, [r1, #0x88] 
> orr r3, r3, #0xf00000 
> str.w r3, [r1, #0x88] 
> ldr r3, [pc, #0x34] 
> ldr r2, [r3] 
> movs r0, #0 
> orr r2, r2, #1 
> str r2, [r3] 



 

> str r0, [r3, #8] 
> ldr r2, [r3] 
> bic r2, r2, #0x15000000 
> bic r2, r2, #0x90000 
> str r2, [r3] 
> mov.w r2, #0x1000 
> str r2, [r3, #0xc] 
> ldr r2, [r3] 
> bic r2, r2, #0x40000 
> str r2, [r3] 
> str r0, [r3, #0x18] 
> mov.w r3, #0x8000000 
> str r3, [r1, #8] 
> bx lr 
Traceback (most recent call last): 
  File "emulate_demo.py", line 4, in <module> 
    ql.run() 
  File "/home/fluxius/.local/lib/python3.8/site-

packages/qiling/core.py", line 756, in run 
    self.os.run() 
  File "/home/fluxius/.local/lib/python3.8/site-

packages/qiling/os/linux/linux.py", line 118, in run 
    self.ql.emu_start(self.ql.loader.elf_entry, self.exit_point, 

self.ql.timeout, self.ql.count) 
  File "/home/fluxius/.local/lib/python3.8/site-

packages/qiling/core.py", line 897, in emu_start 
    self.uc.emu_start(begin, end, timeout, count) 
  File "/usr/local/lib/python3.8/dist-packages/unicorn/unicorn.py", 

line 318, in emu_start 
    raise UcError(status) 
unicorn.unicorn.UcError: Invalid memory read (UC_ERR_READ_UNMAPPED) 

 

Patching the execution 

To solve the issue, we need to dynamically allocate memory by adding the following function: 

 

def memory_fix(ql, access, addr, size, value): 
        if mem_map_force is True: 
            ql.log.debug("[_] Mapping "+str(size)+" bytes at 

"+hex(addr)+" | access: "+ str(access)+" | value: "+ str(value)) 
            ql.mem.map(addr//4096*4096, 4096) 
            ql.mem.write(addr, struct.pack(">I",value)) # memory 

packing is OS dependant 
        else: 



 

            print(("Auto-Memmap disabled for this address")) 
        return 

After this, we use an unmapped memory hook to call our function each time the problem 

“reading or writing to an unmapped memory” happens: 

ql.hook_mem_unmapped(memory_fix) 

 

We also make use of trace function with the power of the Capstone engine21 to disassemble all 

instruction if we want to, as well as disable the initial debugging output to have something custom: 

 

[...] 
from capstone import * 
from binascii import hexlify 
from capstone.arm import * 
[...] 
if enable_trace is False: 
        outputd = "off" 
        enable_trace = True 
  
    ql = Qiling([binary_file], ".", 
                output=outputd, 
            stdout=1 if enable_trace else None, 
                stderr=1 if enable_trace else None, 
                console = True if enable_trace else False)  
md = Cs(CS_ARCH_ARM, CS_MODE_THUMB) 
count = [0] 
[...] 
def trace_cb(ql, address, size, count): 
        dis = disasm(count, ql, address, size) 
        if dis is not None: 
            ql.log.debug(dis) 
        count[0] += 1 
if enable_trace: 
        ql.hook_code(trace_cb, count) 

By fixing the memory, our program runs like a charm — except that it runs like an infinite loop 

after the BLX on R3 at address 0x08010758: 

 

[+]     00003F9F        08010758: 98 

47                    blx        r3               
[+]     [_] Mapping 1 bytes at 0x0 | access: 21 | value: 0 
[+]     00003FA0        00000000: 00 00 00 

00              movs       r0, r0           
[+]     00003FA1        00000004: 00 00 00 



 

00              movs       r0, r0           
[+]     00003FA2        00000008: 00 00 00 

00              movs       r0, r0           
[+]     00003FA3        0000000C: 00 00 00 

00              movs       r0, r0           
[+]     00003FA4        00000010: 00 00 00 

00              movs       r0, r0           
[+]     00003FA5        00000014: 00 00 00 

00              movs       r0, r0 
[...] 

Using Ghidra, we can clearly see at this address that a call to the arm_set_fast_math function is 

done, but the address is missing: 

 

Figure 12. A missing address call 

Based on Ghidra, however, the function clearly exists: 

 

 



 

Figure 13. Existing function inside the binary 

To resolve this, we made a quick fix with a new hook: 

[...] 
def fix_arm_set_fmath_addr(ql): 
        ql.reg.r3 = 0x08000188 
[...] 
ql.hook_address(fix_arm_set_fmath_addr, 0x08010758) 

But that was not the last problem in our journey. Indeed, many registers will require fixes to run 

the program properly: 

 

[...] 
[+]     00003F9F        08010758: 98 

47                    blx        r3               
[+]     00003FA0        08000188: f1 ee 10 

3a              vmrs       r3, fpscr        
[+]     [_] Mapping 1 bytes at 0x843bd54 | access: 21 | value: 0 
[+]     00003FA1        0843BD54: 00 00 00 

00              movs       r0, r0           
[+]     00003FA2        0843BD58: 00 00 00 

00              movs       r0, r0   
 [...] 

 

Although we do not go through all of these issues, we will talk about other problems that might 

come up with regard to platform-specific calls that could waste time. The following are examples: 

• BoardInit() 

• SecureElementInit() 

• lr1110_radio_set_lora_sync_word() 

• GpioWrite() 

• TimerStart() 

We can simply get rid of all these calls using a function that will patch all call instructions doing 

NOPs (a specific instruction that does nothing) proper to ARM. If there are issues, we can also 

use the Keystone engine22 that could give the right operation code for the targeted instruction set, 

as seen here: 

 

$ kstool thumb "nop"            
nop = [ 00 bf ] 

 

 

 



 

This results in the following patch: 

 

[...] 
nop_addresses = { #0x0800bf9e : b"\x00\xbf" * 2, 
                  0x0800bfa2 : b"\x00\xbf" * 2, 
                  #0x0800aaa2 : b"\x00\xbf" * 2,  
                  0x08002b32 : b"\x00\xbf" * 2, # BoardInit() 
                  #0x08002b36 : b"\x00\xbf" * 2, # BoardInitPeriph() 
                  0x08005bc8 : b"\x00\xbf", # bypass 

LORAMAC_STATUS_REGION_NOT_SUPPORTED condition 
                  0x08005e3a : b"\x00\xbf", # RadioInit() 
                  #0x08005e40 : b"\x00\xbf" * 2, #SecureElementInit() 
                  0x0800a72e : b"\x00\xbf" * 18, # lr1110_* in 

SecureElementInit() 
                  0x0800918a : b"\x00\xbf" * 3,  # RadioStandby() + 

result in r0 
                  0x08009192 : b"\x00\xbf" * 2, # 

lr110_system_get_random_number 
                  0x08009742 : b"\x00\xbf" * 2, # RadioSetModem() 
                  0x0800a066 : b"\x00\xbf" * 2, # 

lr1110_radio_set_lora_sync_word()->lr1110_hal_write()  
                  0x08005e7e : b"\x00\xbf", # RadioSleep() 
                  0x08000cec : b"\x00\xbf", # Skip branch 
                  0x08000d8a : b"\x00\xbf", # force 

LORAMAC_HANDER_SUCCESS 
                  0x0800522c : b"\x00\xbf" * 2, # 

BoardCriticalSection() 
                  0x0800523c : b"\x00\xbf" * 2, # 

BoardCriticalSectionEnd() 
                  0x08005242 : b"\x00\xbf", # bypassing Event check 
                  0x08005306 : b"\x00\xbf", # bypassing Event check 2 
                  0x08005368 : b"\x00\xbf", # RadioSleep() 
                  0x080087ae : b"\x00\xbf" * 2, # 

SecureElementProcessJoinAccept() 
                  0x080087b4 : b"\x00\xbf", # Force 

SECURE_ELEMENT_SUCCESS 
                  0x080056dc : b"\x00\xbf", # Force 

LORAMAC_CRYPTO_SUCCESS 
                  0x08002a54 : b"\x00\xbf", # OnRXData->GpioWrite() 
                  0x08002a5e : b"\x00\xbf", # OnRXData-->TimerStart() 
                } 
[...] 
def skip_it(ql, list_instru): # patch broken instructions 
        for instru, rcode in list_instru.items(): 
            ql.patch(instru, rcode) 



 

 
skip_it(ql, nop_addresses) 

 

After all the fixes, we can run the program without a problem and finish its execution: 

 

[...] 
[+]00013B4E08005622: 9a 07                    lsls       r2, r3, 

#0x1e    
[+]00013B4F08005624: 08 

d5                    bpl        #0x8005638       
[+]00013B5008005638: 94 f8 8c 34              ldrb.w     r3, [r4, 

#0x48c] 
[+]00013B510800563C: 02 2b                    cmp        r3, 

#2           
[+]00013B520800563E: 01 

d1                    bne        #0x8005644       
[+]00013B5308005644: 29 b0                    add        sp, 

#0xa4        
[+]00013B5408005646: bd e8 f0 8f              pop.w      {r4, r5, r6, 

r7, r8, sb, sl, fp, pc} 

 

Reimplementing some functions 

Notably, reading such instructions can be exhausting. This is why user-friendly debugging 

methods are always welcome. Indeed, we can see that the binary also makes use of some printf() 

functions as follows: 

 

 

Figure 14. printf() function in the binary 

We can therefore use these calls to make some hooks to a homemade function in Python that 

will take the arguments past the function and simply print everything as it should be: 

 

def hijack_printf(ql): 
        new_str = "" 



 

        fmt = ql.mem.string(ql.os.function_arg[0]) 
        matches = re.findall("\%\w+", fmt) 
        count = 0 
        for sp in fmt.split("%"): 
            if count == 0: 
                new_str += sp 
            else: 
                if matches[count-1] == "%s": 
                    new_str += 

ql.mem.string(ql.os.function_arg[count])+ sp[1:] 
                elif matches[count-1] == "%d" or matches[count-1] == 

"%i": 
                    new_str += "%d" % int(ql.os.function_arg[count])+ 

sp[1:] 
            count += 1 
        print (new_str) 

 

We can then have these beautiful prints when running the binary: 

 

$ python3 emul_LoRaMacNode.py -b LoRaMac-periodic-uplink-lpp -

v                                                               

 
###### ===================================== ###### 
  
  
Application name   : periodic-uplink-lpp 
  
Application version: 1.2.0 
  
GitHub base version: 4.5.0 
  
  
###### ===================================== ###### 

 

But this is not finished yet. We also need to emulate the binary and input packets to parse there, 

and we have not even made use of the parser yet. 

 

Parsing LoRaWAN packets 

To parse our packet, we make use of a pipe (as used in the fuzzing demonstration with AFL that 

we discuss in later sections): 



 

[...] 
class MyPipe(): 
    def __init__(self): 
        self.buf = b'' 
  
    def write(self, s): 
        self.buf += s 
  
    def read(self, size): 
        if size <= len(self.buf): 
            ret = self.buf[: size] 
            self.buf = self.buf[size:] 
        else: 
            ret = self.buf 
            self.buf = '' 
        return ret 
  
    def fileno(self): 
        return 0 
  
    def show(self): 
        pass 
  
    def clear(self): 
        pass 
  
    def flush(self): 
        pass 
  
    def close(self): 
        self.outpipe.close() 
  
    def fstat(self): 
        return stdin_fstat 
[...] 
def main(binary_file, enable_trace=False, enable_verbose=False, 

message_bytes=b"", input_file=None, output_file=None): 
    global mem_map_force 
    global inject_addr 
  
    stdin = MyPipe() 
  
    # for unicorn_afl 
    outputd = "debug" 
    if enable_trace is False: 
        outputd = "off" 
        enable_trace = True 
    # end 



 

  
    ql = Qiling([binary_file], ".", 
                output=outputd, 
                stdin=stdin, 
                stdout=1 if enable_trace else None, 
                stderr=1 if enable_trace else None, 
                console = True if enable_trace else False) 
  
    md = Cs(CS_ARCH_ARM, CS_MODE_THUMB) 
    count = [0] 
[...] 

 

This allows us to provide an input packet with our command line, but we also need to use the 

parser, inject the message, and process it. To do so, we will use a new hook that will jump to the 

parser after the initialization of the binary to get a stable context: 

 

[...]  
   def jump2parser(ql): 
        global mem_map_force 
        mem_map_force = False # Don't force map anything from now 
        inject_msg(message_bytes) 
        # Jump to the parser 
        ql.reg.pc = 0x08005225 # thump jump to parser 
[...] 
ql.hook_address(jump2parser, 0x08002bb6) 
[...] 

 

Adding other debugging hooks allows us to parse a join-accept type packet, resulting in the 

following: 

 

$ python3 emul_LoRaMacNode2.py -b LoRaMac-periodic-uplink-lpp –v –s 

[JOINT ACCEPT PKT] 
  
###### ===================================== ###### 
  
  
Application name   : periodic-uplink-lpp 
  
Application version: 1.2.0 
  
GitHub base version: 4.5.0 
  
  



 

###### ===================================== ###### 
  
  
Mapping payload at:  0x1000 
Parsing case:  FRAME_TYPE_JOIN_ACCEPT 
Parsing case:  FRAME_TYPE_DATA_UNCONFIRMED_DOWN 

 

This is perfect for us if we find some bugs that we want to confirm as exploitable vulnerabilities. 

We can make an exploit without tweaking the payload too much, depending on the context 

(mitigations and address space). 

These are not the only features available in Qiling, however. In fact, we can also use Qiling with 

a patched Unicorn Engine stub with AFL to do some fuzzing tests. But before delving into fuzzing, 

let us first optimize the execution to speed up the fuzzing process also. 

 

Optimize execution speed 

Qiling has a notable feature called snapshot23 that can speed up the execution process. To make 

use of it, we can snapshot the execution of the binary when we want to jump into our parser with 

the save() function of Qiling, as follows: 

 

def jump2parser(ql): 
        global mem_map_force 
        mem_map_force = False # Don't force map anything from now 
        inject_msg(message_bytes) 
        # Jump to the parser 
        ql.save(reg=True, cpu_context=True, snapshot="snapshot.bin") 
        ql.reg.pc = 0x08005225 # thump jump to parser 

 

After one run, a snapshot should be written in the current directory: 

 

$ ls -lh snapshot.bin 
-rw-rw-r-- 1 fluxius fluxius 340K févr. 26 09:45 snapshot.bin 

 

For the next runs, we can restore the snapshot, disable the unmapped memory hooks, and directly 

run at the packet parser’s address and define an end to the execution (as seen in the following). 

Then, we can start fuzzing the proper way with Qiling. 

 



 

    [...] 
    md = Cs(CS_ARCH_ARM, CS_MODE_THUMB) 
    count = [0] 
  
    ql.restore(snapshot="snapshot.bin") 
    […] 
    #ql.hook_mem_unmapped(memory_fix) 
    […] 
    #ql.run() 
    ql.run(begin=0x08005225, end=0x800563e) 
   [...] 

 

Fuzzing with Qiling 

Qiling brings the UnicornAFL24 feature to the game, so we not only use the framework to emulate, 

but also fuzz an emulated binary of a different platform. 

Using the feature is a straightforward matter. First, we need to load a patched Unicorn version, 

define a function to start AFL, and finally, use a hook at the address that should start the fuzzing 

process: 

 

import unicornafl 
unicornafl.monkeypatch() 
[…] 
    def start_afl(_ql: Qiling): 
        """ 
        Callback from inside 
        """ 
        # We start our AFL forkserver or run once if AFL is not 

available. 
        # This will only return after the fuzzing stopped. 
        try: 
            #print("Starting afl_fuzz().") 
            if not _ql.uc.afl_fuzz(input_file=input_file, 
                        place_input_callback=place_input_callback, 
                        exits=[ql.os.exit_point]): 
                print("Ran once without AFL attached.") 
                os._exit(0)  # that's a looot faster than tidying up. 
        except unicornafl.UcAflError as ex: 
            if ex != unicornafl.UC_AFL_RET_CALLED_TWICE: 
                raise 
     […] 
    # Fuzzing hook 
    ql.hook_address(start_afl, 0x800522c) 
    #ql.run() 
    ql.run(begin=0x08005225, end=0x800563e) 



 

To finish, we write a starting script to launch all the things in an easy manner: 

 

#!/bin/bash 
  
if [ ! -d ./AFLplusplus ]; then 
  git clone https://github.com/AFLplusplus/AFLplusplus.git 
  cd AFLplusplus 
  make 
  cd ./unicorn_mode 
  ./build_unicorn_support.sh 
  cd ../../ 
fi 
  
AFL_AUTORESUME=1 AFL_PATH="$(realpath ./AFLplusplus)" 

PATH="$AFL_PATH:$PATH" afl-fuzz -t <some fuzzy values> -i afl_inputs -

o afl_outputs -U -- python3 emul_LoRaMacNode.py -b LoRaMac-periodic-

uplink-lpp --fuzz_input @@ 

 

But at the end, even with optimization, we face the limitations of the framework in Python 3, 

leading with just 1.54 executions per second on an i7 vPro 10th Gen computer: 

 

Figure 15. AFLUnicorn with Qiling 



 

Unicorn Engine emulation in C would be a better candidate for this task after doing the quick 

proof-of-concept with Qiling in Python. Nevertheless, Qiling can be considered for fuzzing smaller 

code paths, or by making more optimizations than what is shown in this example. 

 

Emulating and fuzzing with Ghidra 

We have seen architecture supported by Unicorn and Qiling, which gives us the ability to emulate 

and fuzz ARM architecture. But when it comes to emulating and fuzzing gateways, the 

architecture that is often encountered is MIPS MSB, which is not yet handled by Unicorn and 

Qiling. As a result, we opted for Ghidra for these architectures. 

It is also possible to use Ghidra with official processors as an alternative.25 For example, users 

can perform emulation with extended processors like Xtensa26 on Espressif chips.  

It should be noted that to emulate the parsing function of a LoRaWAN gateway, the parsing 

function must be enabled to act in standalone mode. In LoRaWAN, it is rare to find a gateway 

parsing the packet from an end-node, but this situation can happen if the gateway is put in 

standalone mode and it is able to parse packets in this mode.  

To emulate the parsing function that will be working in MIPS MSB architecture, we can make use 

of Ghidra by creating either a Python or a Java module. 

For this section, we have quickly adapted the script from a very detailed article by John Toterhi 

about Ghidra PCode emulation in X86.27 First, we import modules like the emulation helper, as 

well as the module that can help us give pointers to some symbol names. Then we define helpers 

that will simplify getting the list of registers and addresses of symbols: 

 

# adapted code from John Toterhi's article 
 from ghidra.app.emulator import EmulatorHelper 
from ghidra.program.model.symbol import SymbolUtilities 

 
# == Helper functions 

====================================================== 
def getAddress(offset): 
    return 

currentProgram.getAddressFactory().getDefaultAddressSpace().getAddress

(offset) 

 

 
def getSymbolAddress(symbolName): 
    symbol = SymbolUtilities.getLabelOrFunctionSymbol(currentProgram, 

symbolName, None) 
    if (symbol != None): 
        return symbol.getAddress() 
    else: 
        raise Exception("Failed to locate label: 

{}".format(symbolName)) 



 

 

 
def getProgramRegisterList(currentProgram): 
    pc = currentProgram.getProgramContext() 
    return pc.registers 

 

We will then create a main() function that will, once called, get the address of the 

LoRaMacParserData() function that will be called by filling PC registers with its address: 

 

def main(): 
    CONTROLLED_RETURN_OFFSET = 0 
    mainFunctionEntry = getSymbolAddress(" LoRaMacParserData ") 
    emuHelper = EmulatorHelper(currentProgram) 
    # Set controlled return location so we can identify return from 

emulated function 
    controlledReturnAddr = getAddress(CONTROLLED_RETURN_OFFSET) 
    # Set initial PC 
    mainFunctionEntryLong = int("0x{}".format(mainFunctionEntry), 16) 
    emuHelper.writeRegister(emuHelper.getPCRegister(), 

mainFunctionEntryLong) 

 

Afterward, we finish our main() function that will make use of a monitor to single-step the emulated 

instruction one by one, until we reach the 0x0 invalid address: 

    registers = getProgramRegisterList(currentProgram) 

 

 
    # Here's a list of all the registers we want printed after each 
    # instruction. Modify this as you see fit, based on your 

architecture. 
    reg_filter = [ 
        "zero", "at", "v0", "v1", "a0",  
      "a1", "a2", "a3", "t0", "t1",  
      "t2", "t3", "t4", "t5", "t6", 
        "t7", "s0", "s1", "s2", "s3", 
      "s4", "s5", "s6", "s7", "t8", 
      "t9", "k0", "k1", "gp", "sp",  
      "s8", "ra", "pc", 
    ] 

 

 
    print("Emulation starting at 0x{}".format(mainFunctionEntry)) 
    while monitor.isCancelled() is False: 
         



 

        # Check the current address in the program counter, if it's 
        # zero (our `CONTROLLED_RETURN_OFFSET` value) stop emulation. 
        # Set this to whatever end target you want. 
        executionAddress = emuHelper.getExecutionAddress()   
        if (executionAddress == controlledReturnAddr): 
            print("Emulation complete.") 
            return 

 

 
        # Print current instruction and the registers we care about 
        print("Address: 0x{} ({})".format(executionAddress, 

getInstructionAt(executionAddress))) 
        for reg in reg_filter: 
            reg_value = emuHelper.readRegister(reg) 
            print("  {} = {:#018x}".format(reg, reg_value)) 

 

 
        # single step emulation 
        success = emuHelper.step(monitor) 
        if (success == False): 
            lastError = emuHelper.getLastError() 
            printerr("Emulation Error: '{}'".format(lastError)) 
            return 

 

 
    # Cleanup resources and release hold on currentProgram 
    emuHelper.dispose() 

 

 
# == Invoke main 

=========================================================== 
main() 

 

By running this script, we get the first result as follows: 



 

 

Figure 16. Emulation with Ghidra 

Some memory contexts will be required to run the function properly or to force cases (exactly like 

with Qiling). We will then have to make use of emuHelper.write* helpers to set up registers and 

memory with a proper state. 

To perform the fuzzing, we look to an informative project of Flavian Dola from Airbus.28 The project 

was published running a trampoline program with AFL++ to forward input to the target, as seen 

in Figure 17. 

 

Figure 17. AFL Ghidra emulator PoC architecture 

To go further, we encourage the reader to take a look at the documentation of this project where 

Airbus also gives examples of Xtenza and PPC targets.29 

 

Conclusion and Recommendations 

It is important to trust the LoRaWAN protocol stack implementation, and this level of trust can only 

be achieved by constantly testing it against memory corruptions and logical bugs. To do so, it is 

recommended to first choose a protocol stack that was approved by the community and also 

tested by security researchers. Afterward, it is important to invest in resources and spend time 



 

fuzzing environments to check if the libraries used are resistant to most of the test cases 

scenarios, as shown in the previous sections using different techniques.  

In our report, we covered only targeted parser fuzzing, but complete fuzzing scenarios must be 

also integrated into the audits and stress tests of the whole application to certify the robustness 

of the stack.  

The image here shows an example of how fuzzing tests can be integrated in the battery of tests 

usually done before releasing the product.  

 

Figure 18. Fuzzing integrated into the battery of tests 

 

By imagining ourselves with an attacker's mindset, we are able to understand possible security 

issues and flaws and find additional attack vectors that were not covered by our previous 

research. Although we have already highlighted the complexity of these security issues in the 

previous sections of this technical brief, we also want to mention the complexity of the exploitation 

itself.  

Ultimately, the attacker would have to know precisely what the target is, how it was compiled, or 

(by chance) get a dump of the firmware. Nevertheless, despite this high level of complexity, this 

class of bugs must be taken seriously if we want to guarantee solid security inside industrial 

factories or smart city environments using LoRaWAN technology. 
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