S

@ S | research

LoRaWAN'’s Protocol Stacks: The
Forgotten Targets at Risk

Technical Brief

LoRaWAN technology is used across different industries to monitor critical applications. Usually,
these small devices connect sensors with a network. For example, many industrial facilities rely
on these sensors to keep an eye on smoke, fire, flood, or weather conditions. The devices are
also used in modern connected cities to make environments smart in a way that reduces
maintenance costs and improves quality of life.

An attack affecting these devices could have damaging effects on property and even users,
depending on how the technology is integrated into the environment. Attacks could lead to out-
of-control factory issues, sensitive data leaks, or many other dangerous security scenarios.

In our previous publications!?3, we talked about the known LoRaWAN entry vectors that attackers
usually target. The LoRaWAN stack is not a vector that is usually included in conversations about
LoRaWAN security, but it is actually the root of LoRaWAN implementation — and so of its security.
An attack on the stack could have severe consequences.

In this report, we show the techniques that an attacker can use to find exploitable flaws in the
LoRaWAN stack. We bring these details forward to highlight that the same techniques can be
used by stack developers or a security consultant to secure the stack and make LoRaWAN
communication resistant to critical bugs.

Introduction

Although we have cited significant security issues and practices in our previous publications about
LoRaWAN,* there are still areas concerning the implementation of the LoRaWAN stacks used by
connected devices that are in the dark. Most of these security issues are about the confidentiality
and integrity of data. The exploitation of a protocol stack vulnerability would allow an attacker to
execute malicious code on target devices, which in turn could have compounded security effects
depending on the target and its capabilities.

In most existing publications, protocol stack topics are exceedingly rare. Because of this, we
thought that making this report on the LoRaWAN stack could complete our security series. Here,
we discuss LoRaWAN stack implementation and how to hunt for bugs in the different stacks using
different techniques, such as fuzzing with AFL++.° In the section about fuzzing, we introduce our
fuzzing platform, which includes several harness tools that help us during the fuzzing process. In
the next section, we speak about emulation using Qiling (based on Unicorn Engine)® with respect
to fuzzing and debugging exotic architectures. In addition to Qiling, we also discuss an alternative
method using Ghidra's PCode emulation, which is done when targeted architectures are not
supported by Unicorn or Qiling.

We hope the discussion on these techniques will help security teams include protocol stack
security testing in the Deming wheel and avoid risks of compromise.

The LoRaWAN Stack

There are at least two types of stacks we can find with LoRaWAN: an end-node stack and a
gateway stack.

It should be noted that there are also other stacks for the network and application servers, but we
will focus on vulnerabilities that we can trigger from the radio interface. Indeed, an attacker has a
better chance of accessing the radio interface rather than the network because it is more exposed.
It is also worth noting that attackers from the radio side will act as a kind of malicious sensor or

gateway.

End-node stack

The end-node stack is implemented in end-node devices as well as used to send uplink (UL)
packets to the gateway. But on some occasions, the network can also send information to the
end-node devices, and so end-node stacks also need to manage downlink (DL) packets
forwarded by the gateway.

The following figure shows how end-node devices are placed in a typical LoRaWAN infrastructure:

(7] ‘. - s

Q VS - Cellular/Ethernet Y - S

o T Tl ~ backhaul o <

> T () seeereesenciidiecicenacncieaaas P T

[}]

c .

11} .)
LoRa-enabled Application server

network server

~ .
L
u Application server

Figure 1. LoRaWAN network architecture

DL packets include the join procedure in the end-node device side, as well as data that comes
from the network. For example, the open-source implementation from Semtech called “LoRaMac-
node”” implements the different types of packets that come from the network and are forwarded
by the gateway. This is shown in the following lines in C from /src/mac/LoRaMac.c sources:

static void ProcessRadioRxDone (void)
{
[...]
switch(macHdr.Bits.MType)
{
case FRAME TYPE JOIN ACCEPT:

case FRAME TYPE DATA CONFIRMED DOWN:
MacCtx.McpsIndication.McpsIndication = MCPS CONFIRMED;
// Intentional fall through
case FRAME TYPE DATA UNCONFIRMED DOWN:
[...]
}

In addition to the direction of chips in radio, therefore, only packets of those types are expected
by the end-node device.

Gateway stack

The gateway stack includes all functions to connect to the network and forwards packets that
come from it. It can also forward packets coming from the end-node to the network using the radio
interface. An example of a gateway implementation can be found with the open-source LoRa
Basics Station?® as follows:

BasicStation — System Overview

T - T
i]
T__ GPS (optional) i ! CUPS Protocol cUPS
< o | < HTTPS >
=
PPS E: 2 g 5
1
L H % 8 Zla i
[E | .
- > | LNS Protocol LNS Service
LoRa Concentrator | o« SPI ™ ! i Wwss —* Discovery
- i Y S
Ll]
i ova : LNS Data
H ! Endpoint
! 0s !
I I t i
LoRa Gateway Hardware BasicStation Services

Figure 2. BasicStation architecture for gateways

By default, the gateway is not an important target for an attacker who wants to use the radio
interface. Generally, gateways only forward the packet to the core without interpreting them. On
rare occasions, we can see custom gateways capable of interpreting packets; this means that
though they are possible targets, they are not typically so. Nevertheless, some implementations
can be configured in standalone mode (thereby avoiding the connection to a LoRaWAN network),
such as TheThingsNetwork (TTN),® which will soon be completely upgraded to The Things Stack
Vv3.10

Indeed, Dragino is one of the vendors allowing the gateways to be put in standalone mode using
Authentication By Personalization (ABP) mode:

Cj wiEEci\mll [ORay LoRaWANvY MQTTv TCPw HTTP Custom Systemwv LogReadv

Decrypt ABP End Node Packets

|EnabIeABP Decryption # SAVE |

Add Key

DevADDR
APP Session Key:

Network Session Key 1SB, 16 Bytes
Decoder: ASCII String v
ADD_KEY
Delete Key DevADDR M DELETE

ABP Keys:

Dev ADDR | APP Session Key | Network Session Key | Decoder

018229BB | BFF2CA2C7191F895365CCF822C3224D1 | 2541B4A7145935927393358617651B9B | Dragino LHT65
[2602111D | B317F8147443278A6A31C4473D555D33 | 72326395DDBFE2B21366E435938F55DF | ASCII |

Figure 3. Enabling ABP end-node packets decryption on Dragino’s gateway

Enabling end-node packet decryption in ABP mode implies that the gateway will parse the
packets at some point. This can be seen with static analysis of the lora_pkt_fwd binary from the
Dragino LG308 gateway:

|5 usting: lora_pkt_fwd DA EREY || C oecompile: roc_repkt - (Iora_pKE_R % | | @/~ x| [References to LoRaMacParserbata 5 loc... | @y & = J[™[X
0040cc2a 2a 68 bnez 0,LAB_O0d0ccfc 4 orawan 4| [loca. u[tabel |code umt [Context
0040cczc 5 20 93 14 v 1.0x534 (sp) =>To" PTR_DAT_0043dbb8 + @x7alc; = EXTERNAL
Dot 1m0 mean gy = | 0408 AL parsed nsg COMPUTED Cal
0640cc38 9b 60 W 1.5:0071) = 1 = (undefined)* (undefined2) ((intdpkt_ptr_var + -2); CO306M I0e (Bl 00 EEHPUTER (©1L
0040cc3a da 01 addiu 0, 0x1 pk t_ptr_vars jalr vO=>LoRaMacP, COMPUTED _CALL
0840cc3c ea 62 st 0.v1 dift_ MacPhrserbatalplt_nso): 0043d.. PTR_L0.. addr LoRaMacParse... DATA=< OFFCUT >>
0640cc3e 5 20 d2 10 sw 0,0x530(sp)=>1o] = it ((- 0) §& (printf_nac_header (pkt_nsq), DAT_0043e1d0 1= 0)
0040cc42 60 7L bteqz LAE_0040cd26 h pthread_mutex_t *)&dev_addr;

1

LAB_0040ccdd.

0040ccas f7 ff ag se lhu 0.-0x2(pkt_ptr|
0040cc4g 67 7d nove s

0040ccda f5 20 9418 1w s
0040ccde 4 20 3 4c sb

0040cc52 67 Sc nove

0040cc54 f4 a0 d1 08 sw
0040cc58 f0 b0 9a 40w

-+ oe40cese ea 40 jalr
0040ccSe 65 3a move
0840cc60 96 08 v N0 {
0040cc62 67 02 nove o DECRYPT~ [Ignore] Cam\'t find SessionKeys for Dev %08
0040cc64 65 Oe nove
0040cc66 23 46 bnez } 0040ccl4 ¥
0040ce68 67 Sc nove aF T
0040cc6a 5 20 94 18 1'% 0x538(sp) =>pk| else {
00docc6e fL 10 9a bc v 0)=>

address = (undefinedd *)dev_addr;
d

0040cc72 ed 40 jalr ushort +) ((ntdpkt ptr vgr + -2)) {

0040ce74 65 3d _nove ze = (int #)((+(ushort +) ({int)pkt pir vr + -2) - Oxd) -
0040ce76 96 08 i (Local_ca & oxf));

0040cc78 65 92 nove butf, (void *) ((int)pkt ptr_var + (local c4 & oxf) + 9),
0040ce7a 67 5S¢ nove t)payload_size);

0040ce7c O 30 9a 44 v 7fde(vo)=>| = Decrypt

0040cc80 fl dc 92 50 1w set DAT_00) buff, (uint)pa ze & OxTFFf,&thread_for->field ox

0040cced 22 c7 begz : 0040cc14 |
0040cc86 67 7c nove v1,qp v Tocal 7c = d

- v < PR——— vs

Figure 3. Analyzing lora_pkt_fwd of an LG308 in MIPS MSB with Ghidra

<

Dragino’s binary-like lora_pkt fwd implementation is based on Semtech’s code but was
customized to introduce packet parsing and decryption. The code can be found in one of Dragino’s
Github repositories by digging into their packages for LG308 devices.!!

Finding Bugs in the Packet’s Parser

In the second article in our LoRaWAN series,*? we showed a method of using Scapy not just to
parse but also to generate LoRaWAN packets. This way, it was also possible to see that
LoRaWAN packets have many fields that could be badly implemented.

There are several ways to find bugs in the protocol stacks of LoRaWAN and other protocols:

e Using statical analysis

¢ Running fuzzing campaigns

¢ Finding them accident (our favorite)
e Using hybrid approaches

The benefit of statistical analysis is that we are more precise about the presence of bugs and their
nature. However, sometimes we must then spend a considerable amount of time trying to
understand closed source code and the interesting path of code we are analyzing is never hit. In
other words, it’s like looking for a needle in a haystack. Fortunately, a technique called “fuzzing”
exists to perfect the task.

Fuzzing consists of generating and mutating inputs that we will feed into our program to find bugs.
This technique is derivate of accidental bug finding since we introduce bad input data into our
program that our parser is not supposed to handle.

There are many ways to generate LoRaWAN packets:

e “Dumb?”: Bit-flipping using a valid packet

e “Smart”: Using a generator like our loraphy2wan Scapy layer!?

e Solver-based generation: Using Satisfiability Modulo Theories (SMT) solver such as z3,
or even frameworks like Triton'* to generate input payloads

The “dumb” way is not the fastest way to generate valid payloads, but it takes less time to write a
dumb fuzzer than a “smart” generator, which needs to understand the structure of a packet. When
generators can produce a finite result of test cases depending on how elements are handled,
dumb fuzzing can be powerful in finding bugs that a standard generator can miss.

Instrumenting the packet-parsing process

Before fuzzing anything, we need to compile the code into something easily handled by a fuzzer.
Indeed, as we have the source code, we will not compile the code and fuzz in radio as there will
be a lot of introduced latencies. Instead, we will change the code in such a way that it will directly
process given "packets.”

When we look at cross references to the LoRaMacParserData() function deeper, we see that it is
called in LoRaMacCryptoUnsecureMessage() as well as ProcessRadioRxDone(), but
LoRaMacCryptoUnsecureMessage() itself is called in ProcessRadioRxDong(), so the conclusion
is that everything begins at ProcessRadioRxDone().

ProcessRadioRxDone() is called by an Interrupt ReQuest (IRQ) that we can track using a cross-
reference engine as follows:

fLoRaMac-node/src/mac/

802 static void ProcessRadioRxDone{ void) in ProcessRadioRxDone() function

HAD LoRaMac.c . .
1336 ProcessRadioRxDone(}; in LoRaMacHandleIrgEvents()

Figure 4. LoRaMAC-node sources browsing on OpenGrok
The following RxDone callback functions will handle IRQ events from the LoRa radio driver:

| | Zistatic void LoRaMacHandleIrqEvents(void)

1328 {

1321 LoRaMacRadioEvents t events;

1322

1323 CRITICAL SECTION BEGIN():

1324 events = LoRaMacRadioEvents;

1325 LoRaMacRadioEvents.Value = 0;

1326 CRITICAL SECTION END{):

1327

1328 if(events.Value != 8)

1329 {

1338 if(events.Events.TxDone == 1)
1331 {

1332 ProcessRadioTxDone();

1333 }

1334 if{ events.Events.RxDone == 1)
1335 {

1336 ProcessRadioRxDone();

1337 }

1338 if(events.Events.TxTimeout == 1)
1339 {

1340 ProcessRadioTxTimeout();
1341 }

1342 if(events.Events.RxError == 1)
1343 {

1344 ProcessRadioRxError();:
1345 }

1346 if(events.Events.RxTimeout == 1)
1347 {

1348 ProcessRadioRxTimeout();
1349 }

1358 }

1351 }

Figure 5. LoRaWAN IRQ event handler

Therefore, if we want to perform fuzzing tests independently from these IRQ, we can start directly
from the ProcessRadioRxDone() function.

This function, however, does not use any argument to pass, so we must find out how to pass the
packet message for processing. Luckily, the function is not extraordinarily complex, and we can
quickly figure out what variable will be necessary to use for our fuzzing:

802 static void ProcessRadioRxDone (void)

803 {

804 LoRaMacHeader t macHdr;

805 ApplyCFListParams t applyCFList;

806 GetPhyParams t getPhy;

807 PhyParam t phyParam;

808 LoRaMacCryptoStatus t macCryptoStatus = LORAMAC CRYPTO ERROR;
809

810 LoRaMacMessageData t macMsgData;

811 LoRaMacMessageJoinAccept t macMsgJoinAccept;
812 uint8 t *payload = RxDoneParams.Payload;

813 uintleé t size = RxDoneParams.Size;

814 intl6 t rssi = RxDoneParams.Rssi;

815 int8 t snr = RxDoneParams.Snr;

816 [..]

The RxDoneParams is also a global structure (part of LoRaMac-node/src/mac/LoRaMac.c), and
we can change it on the fly to fill with our custom payload:

Home | History | Annotate | Raw | Download Search [current directory
Lines Matching refs:RxDoneParams

668 }RxDoneParams; variable

685 RxDoneParams.LastRxDone = TimerGetCurrentTime(); in OnRadioRxDone()

686 RxDoneParams.Payload = payload; in OnRadioRxDone()

687 RxDoneParams.Size = size; in OnRadioRxDone()

688 RxDoneParams.Rssi = rssi; in OnRadioRxDone()

689 RxDoneParams.Snr = snr; in OnRadioRxDone()

812 uint8 t *payload = RxDoneParams.Payload; in ProcessRadioRxDone()

813 uintl6_t size = RxDoneParams.Size; in ProcessRadioRxDone()

814 intl6 t rssi = RxDoneParams.Rssi; in ProcessRadioRxDone()

815 int8 t snr = RxDoneParams.Snr; in ProcessRadioRxDone()

1111 MacCtx.ResponseTimeoutStartTime = RxDoneParams.LastRxDone; in ProcessRadioRxDone()
2273 .. LoRaMacClassBBeaconTimingAns(beaconTimingDelay, beaconTimingChannel, RxDoneParams.LastRxDone); in ProcessMacCommands ()

Figure 6. RxDoneParams’ structure

Using this structure, we can initialize our payload on the fly in a main() function that will take the
payload as an argument and call the ProcessRadioRxDone.

When trying to compile all the sources, there are still some timers and/or schedulers specific to
the used microcontroller unit (MCU). The original ProcessRadioRxDone() function will need to be
copied and the native functions commented out to compile in the targeted architecture when we
want to fuzz.

In copying this ProcessRadioRxDone() function we need to include its dependencies and
comment architecture-specific function calls as follows:

static void ProcessRadioRxDone (void)

{

LoRaMacHeader t macHdr;

[...]

//Radio.Sleep()
//TimerStop (&MacCtx.RxWindowTimer2) ;

// This function must be called even if we are not in class b mode

yvet.

/*if (LoRaMacClassBRxBeacon (payload, size) == true)

{
MacCtx.MlmeIndication.BeaconInfo.Rssi = rssi;
MacCtx.MlmeIndication.BeaconInfo.Snr = snr;
return;

px/

// Check if we expect a ping or a multicast slot.

/*1if (MacCtx.NvmCtx->DeviceClass == CLASS B)

{
if (LoRaMacClassBIsPingExpected() == true)

{
LoRaMacClassBSetPingSlotState(0);
LoRaMacClassBPingSlotTimerEvent (NULL) ;
MacCtx.McpsIndication.RxSlot =
RX SLOT WIN CLASS B PING SLOT;
}
else if(LoRaMacClassBIsMulticastExpected() == true)
{
LoRaMacClassBSetMulticastSlotState(0) ;
LoRaMacClassBMulticastSlotTimerEvent (NULL) ;
MacCtx.McpsIndication.RxSlot =
RX_ SLOT WIN CLASS B MULTICAST SLOT;
}
}x/

macHdr.Value = payload[pktHeaderLen++];
switch (macHdr.Bits.MType)
{

It should be noted that we have also removed calls to modes we are not using by default to
simplify the task.

Moreover, some other initialized context is needed to avoid any unwanted crashes happening
when parsing, deciphering the messages, or processing missing queues in the code. This results
are in the following main() function:

void main (int argc, char *argv[])
{
LoRaMacCryptoNvmEvent * cryptoNvmCtxChanged;

FILE *fp;
char buff[500]; // larger enough to mess with that

if (argc == 2)
{
fp = fopen(argv[1l], "r");
fgets (buff, 256, (FILE*)fp); // a little big than the MAX size
of a LoRaWAN packet, but let’s find some bugs on the code...

LoRaMacCryptoInit (cryptoNvmCtxChanged) ;

MacCtx.NvmCtx = malloc(sizeof (LoRaMacNvmCtx t));

MacCtx.MacCallbacks = malloc(sizeof (LoRaMacCallback t)) ;

LoRaMacInitialization2(); // a derivate function without
architecture specific calls

RxDoneParams.Payload = buff;

RxDoneParams.Size = strlen (buff) ;

ProcessRadioRxDone () ;

}

After compiling a code that will process a packet provided in the argument line, we can start
thinking about how we can process it when fuzzing this stack.

Fuzzing the stack

Proposed design

For our purpose, we will combine the generation that will allow us to cover as many code paths
as possible with legitimate and dumb fuzzing using the AFL++ framework (evolution of AFL) that
supplies some instrumentation for pseudorandomly mutating the bits, bytes, words.

First, we generate and capture legitimate packets coming from the LoRaWAN network; these are
mostly downlink packets since we are studying the end-node stack. Captured and generated
packets will then be saved in independent byte files that will be reduced using a minimizer that
will filter the input that is useless to mutate (based on the code path coverage). Essential inputs
will be fed to an AFL++ fuzzer that instruments a different binary base on the strategy and
produces crashes. Produced crashes are then classified by the type of vulnerability and its
backtrace, and then they are minimized to the smallest useful payload that can be debugged.

We explain the main points of this architecture in the following sections. Figure 7 shows the
whole architecture that we have designed for our fuzzing tests:

LoRaMac- 3 AF++ compiler SN « Insg:g‘ﬁ:;m

node src + strategy options

Generation

—
t |
LoRaPWN AFL inputs AF++ fuzzer
LoRaPWN packets ? minimizer + strategy options 2 ||| crashes
N
Capture
3 processing l
LoRaPWN ” Minimized
cleaned packets CREEity crashes

‘ Payload
w || I minimizer

Figure 7. Fuzzing architecture design for radio protocol layer as applied to LoORaWAN

Generation and captures

To cover as much code path as possible, we needed to collect every type of message that could
be interpreted by the parser. The first approach consists of capturing messages using our
LoRaPWN framework, which works as follows:

Time (s)

Frequency (MHz)

Relative Gain (d8)

LG {Wwwmf("".'

o i s o ey aniraial Frequency (MHz)

Figure 8. Capturing and processing packets with the LoRaPWN framework

We can then arrange or generate the captured packet using the interactive mode of the
framework:

~>>> ABPpkt

<LoRa Preamble=0x1 PHDR=0xe312 PHDR CRC=0x0 MType=Unconfirmed Data Up
RFU=0 Major=0 DevAddr=[<DevAddrElem NwkID=0x6e NwkAddr=0x260117 |>]
FCtrl=[<FCtrl Link ADR=1 ADRACKReq=0 ACK=0 UpClassB DownFPending=0
FOptsLen=0 |>] FCnt=9 FPort=1

ULDataPayload="'\x9%ec) Egc\xdb\x9a\x8cT\xde\xd3wF\xa9\xce\xc8"
MIC=0xecc33bc4 CRC=0x922 |>

~>>> ABPpkt .MType=0

~>>> ABPpkt

<LoRa Preamble=0x1 PHDR=0xe312 PHDR CRC=0x0 MType=Join-request RFU=0
Major=0 Join Request Field=None MIC=0xecc33bc4 CRC=0x922 |>

Binary instrumentation and strategies

Fuzzing is a very long process. We must use as much CPU as possible to parallelize the work
and gain some time, or try different strategies to trigger as many bugs and/or crashes as possible.
For that, AFL++ allows us to use main and secondary fuzzers with “-M” and “-S” options:

afl-fuzz -M 01 -i finput -o fout -- ./Fuzzy2 Q@

For secondary fuzzers, it is better to use variations, unless we want to fuzz the exact same
thing. AFL++ allows interesting variation compilations, as listed here:

e With sanitizers activated (export AFL_USE_ASAN=1 ; export AFL_USE_UBSAN=1 ;
export AFL_USE_CFISAN=1;)

o CMPLOG/redqueen

o laf-intel/ COMPCOV

Other secondary sessions could also be run, such as

e A third- to a half-session with the MOpt mutator enabled, -L O
e Using different a power schedule, like explore (default), fast, coe, lin, quad, exploit,
mmopt, rare, and seek (for example, -p seek)

Optimizing fuzzing with persistent mode

The persistent mode is used to increase the fuzzing process speed from by x2 to by x20. Using
this mode, the fuzzer feeds test cases in separate long-lived processes, avoiding costs when
fork()ing the program.

We have performed the following changes to use the persistent mode in the main.c binary:

18al9

> #include <limits.h>

2130a2132

> AFL FUZZ INIT();

2133a2136

>

2137a2141,2146

> #ifdef AFL HAVE MANUAL CONTROL

> AFL INIT();

> #endif

>

> while (_AFL_LOOP (UINT MAX)) f{
>

2141,2142c2150,2151

< fp = fopen(argv[l], "r"):;

< fgets (buff, 256, (FILEY*)fp):

> //fp = fopen(argv[1l], "r");

> //fgets (buff, 256, (FILE*)fp):;
2155,2157¢c2164,2170

< RxDoneParams.Payload = buff;

< RxDoneParams.Size = strlen (buff);
< ProcessRadioRxDone () ;

> RxDoneParams.Payload = AFL FUZZ TESTCASE BUF;
> RxDoneParams.Size = AFL FUZZ TESTCASE LEN;

> if (RxDoneParams.Size < 256)

>

> ProcessRadioRxDone () ;

>}

>}

Note that this mode is not as stable as the standard mode. That is why we keep to different
versions of instrumented main.c source code.

Classifications

The classification part can be considerably helpful when dealing with the many "uniq crash files
found in a repository:

american fuzzy lop ++3 (lafall-pt-fast-default)

Figure 9. Example of a fuzzing session on LoRaMAC-node with AFL++

Figure 10. Use of 32 thread CPU to fuzz seriously

Even if only nine unique crashes out of 22.1 thousand have been detected, by debugging these
nine crashes taken in a short period against the AddressSanitizer (ASan)*® compiled binary, we
can directly see that two "uniqg crashes" recorded by AFL++ are in fact the same (thanks to
backtrace information):

$../binaries/Fuzzy-afl-clang-fast-default default-fast-
default/crashes/id:000000,sig:11,src:000000,time: 92, op:havoc, rep:8
UndefinedBehaviorSanitizer:DEADLYSIGNAL

==34307==ERROR: UndefinedBehaviorSanitizer: SEGV on unknown address
0x000000000000 (pc 0x000000427897 bp 0x000000000001 sp O0x7fff£f3ff8adbl
T34307)

==34307==The signal is caused by a READ memory access.

==34307==Hint: address points to the zero page.

#0 0x427897 in GetElement

/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/LoRaMacConfirmQueue.c:145:30

#1 0x427897 in LoRaMacConfirmQueueIsCmdActive
/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/LoRaMacConfirmQueue.c:309:9

#2 0x4244df in ProcessRadioRxDone
/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/main.c:1561:21

#3 0x4244df in main

/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/main.c:2157:3

#4 0x7£771c8120b2 in libc start main /build/glibc-eX1tMB/glibc-
2.31/csu/../csu/libc-start.c:308:16

#5 0x4034dd in start

(/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/binaries/Fuzzy-afl-clang-fast-default+0x4034dd)

UndefinedBehaviorSanitizer can not provide additional info.
SUMMARY: UndefinedBehaviorSanitizer: SEGV
/home/fluxius/Projects/LoRa/LoRaPWN_ tool/tools/stacks/LoRaMac-node-
Fuzz/LoRaMacConfirmQueue.c:145:30 in GetElement

==34307==ABORTING

$../binaries/Fuzzy-afl-clang-fast-default default-fast-
default/crashes/id:000001,sig:11,src:000000,time:175, 0op:havoc, rep:8 1
d

UndefinedBehaviorSanitizer:DEADLYSIGNAL

==34343==ERROR: UndefinedBehaviorSanitizer: SEGV on unknown address
0x000000000000 (pc 0x000000427897 bp 0x000000000001 sp 0x7ffc05236f10
T34343)

==34343==The signal is caused by a READ memory access.
==34343==Hint: address points to the zero page.

#0 0x427897 in GetElement

/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/LoRaMacConfirmQueue.c:145:30

#1 0x427897 in LoRaMacConfirmQueuelIsCmdActive
/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/LoRaMacConfirmQueue.c:309:9

#2 0x4244df in ProcessRadioRxDone
/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/main.c:1561:21

#3 0x4244df in main

/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/main.c:2157:3

#4 0x7fa22e1810b2 in libc start main /build/glibc-eX1tMB/glibc-

2.31/csu/../csu/libc-start.c:308:16

#5 0x4034dd in start

(/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/binaries/Fuzzy-afl-clang-fast-default+0x4034dd)

UndefinedBehaviorSanitizer can not provide additional info.
SUMMARY: UndefinedBehaviorSanitizer: SEGV
/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Fuzz/LoRaMacConfirmQueue.c:145:30 in GetElement

==34343==ABORTING

Here, only the address of the __libc_start_main function differs in the call stack, which can be
irritating when one is dealing with many files. To resolve this small inconvenience, we processed
the output of the ASan display and created a unique MD5 hash based on the call stack, excluding
__libc_start_main, to get a unique crash trace.

After determining if a crash is unigue given the unique ID hash, we classify the crash by its type
as detected by ASan. A crash can be classified as either a leak type or a buffer overflow type,
among others.

This helps us to focus not only on the most interesting bugs first, but also on the "quick wins."

To finish, we also need to know which payload does not crash a non-instrumented binary. This
also helps us focus directly on the most interesting bugs. That step can simply be achieved using
a GDB script that will run, show a backtrace, and quit the debugging process:

$ cat run.gdb
r

bt

quit

It can be run as follows:

$ gdb --batch --command=scripts/run.gdb --args binaries/Original-gcc
foutput/default-fast-
default/crashes/id:000000,sig:11,src:000000,time:92, op:havoc, rep:8 1
ltesttest[Inferior 1 (process 35433) exited normally]
scripts/run.gdb:2: Error in sourced command file:

No stack.

In this context, we see that the crash is not triggered with a non-instrumented binary, so it is
possible that this payload should be analyzed later.

The result from our classification engine is then recorded into an HTML report file as follows:

AFL++ Crash report

Confirmed GCC crashes

Hash: 5aa23650442ae42a70505cd1f1809ed4b

il

rnbice b

File: fhome/ fluxius/Projects/LoRa/LoRaPWNS5/tools/stacks/LoRaMac-node-Fuzz/foutput/lafall-pt-fast-
default/crashes/id:000000,sig: 11,5rc:000000 time: 3,0p:havoc, repcB

Trace:

Program received signal SIGSEGY, Segeentation fault.

BxBEEASS5S5555c5a1 A AES_CMAC Update [CEx=Bx7ffTTrffd6ed, Cara=ex7fTTIrITT988 , len=S9645] at src
a5 ¥OR[data, ctx-=x);

#8 GwBEBGS5555555c5al in AES CMAL Update (ctx=8x77ff{fffdéed, data=uT
#1 BwBBBGS5555555chb30 in ComputeCmac (micBaBuffer=8x8, buffer=8u7f I Ifdd68 "6", sire=85533, key
#2 GwBBBGS5S5555555ce8d in SecureElementiverifyhesCmac (buffers frefrrediee "a", sizes 33, expec
#1 ExBBBES55555555d230 in SecureElementProcessJoinhccept {joinReqType=30IN_REQ., joinEui=8x555629ad
#4 GxBBBGSS5555558956 in LoRaMacCryptolandleloindccept |jodnReqType=JOIN_REQ, joinEUl=8«S55828a8
¥5 ExBBBGSSSSSSESEEN4 in ProcessRadicRsDone () at main.ciis2?

#6 ExBEBESSSSS555TER! in main (argo=2, argu=ExTIPFrfffdcis) at main.c:2158

A debugging session 1s active.

TIAFEfTeaE | len=SD645) at

@

Inferior 1 [process 1333243] will be killed.

Quit anyway? [y or n] [answered ¥ input not from terminal]

Confirmed ASaN crashes

Hash: 988824111995bfc283bf641e345872e9

File: fhome/fluxius/Projects/LoRa/LoRaPWNS/tools/stacks/LoRaMac-node-Fuzz /foutput/default-fast-
MOpt/crashes/id:000003,5ig:11,5rc:000000 time:441,0p:MOpt_havoc rep:8
Type: LeakSanitizer

Trace:

==1333111=—FRROR: LeakSanitizer: detected memory Leaks

oirect leak of 32 byte(s) in 1 object{s) allocated from:
#8 Bx493acd in malloc {homesTluxius/Projects/LofaLokaPeld, tools, scacks/LofaMac -node - FuzzFuz
#1 BxdciTac in LoRaMacInitializationZ Shome/fluxius/Projects/LoRasLoRaPWi4./tools/stacks/LoRaMa
#2 Bx4c55d9 in main JhoweSfluxius/Projects/LoRa/LoRaPwhi4/ tools/ stacks/LoRabac - node-Fuzz/main.c
#3 Bx77208b1578b2 in libc_start_main /buildfglibc-ZKOST4/glibc-2. 3i/csus . fosuflibc-start.c:

Direct leak of 32 byte{s) in 1 object{s) allocated from:
#9 Badd3acd in malloc {/homestlusius/Projects/LofaLofaFeld/ tools, s cacks/LofaMac -node - Fuzz Fuz
#1 Bx4c3797 in LoRaMacInitislizacion? Shome/flukius/Prodects/LoRa/LoRaPuN4./tools seacks/LoRaMa
#2 B¥4C5509 1n main JhomeSrLUNius/Projects/LoRa/LoRAPHNAS E001s/ STac ks LoRakas - node - Fuzz/madn .o
#3 BaTFI0BEASTEEZ in __libe_start_madn fbuildsglibe.ZNOST4/giibe.2.38/csud . . fosuflibe.start .o

SUMMARY: AddressSanitizer: 64 byte(s) leaked in 2 allocarion(s).

File: fhome/ fluxius/Projects/LoRa/LoRaPWNS/tools/stacks/LoRaMac-node-Fuzz/foutput/default-fast-
MOpt/crashes/id:000005,5ig:11,5rc:000000,time:1089,0p:MOpt_havoc,rep:16

Type: LeakSanitizer
Trace:

1335128 detected memory leaks

Direct leak of 32 byte{s) in 1 object{s) allocated from:
#8 Bx403aed in malloc (/home/flurius/Projects/LoRasLoRaPWi4/toolss stacks/LoRaMac -node -Fuzz/Fuz
#1 Bxdc3Tac in LoRaMacInitialization2 /home/fluxius/Projects/LoRasLoRafWi4/tools stacks/LoRaMa
#2 B¥4C5509 1n main JhomeSrLUNius/Projects/LoRa/LoRAPHNAS E001s/ STac ks LoRakas - node - Fuzz/madn .o

#% DuTANTICASAGORA in Tdke T T T MR

Figure 11. Results of the classification crash report when fuzzing before v4.5.1 of LoRaMac-
node®

Payload minimalization

There are two ways to minimalize the payload. One is through corpus minimalization and another
is by test case minimalization.

Corpus minimalization can be performed with the afl-cmin tool, which will find the smallest subset
of files that will perform as much coverage as possible. The test case minimalization offered by
afl-tmin offers a way to remove much of the data while keeping the same state of covered path
or crash.

This takes time, but some tools are also available to speed up the process:

e https://github.com/googleprojectzero/halfempty
e https://github.com/MarkusTeufelberger/afl-ddmin-mod
e https://qgithub.com/ilsani/afl-pytmin

We will consider integrating these tools into the architecture in the future.

Emulation

Fuzzing source code with AFL++ is the most scalable technique when the payloads are generated
to pass as much code path as they can and are also reduced to the minimum size. But as we saw
earlier, the code is compiled to a different architecture than x86-64, as well as with a specific cross
compiler containing specific options. Therefore, if we try to prove the vulnerability by exploiting it,
more time will be wasted adapting the exploit to the right architecture.

Some firmware can also be closed-source, so we need different methods other than static
analysis to continue automatic bug finding.

Introducing stubs during debugging with GDB Python scripts or using Fridal’ on a few
architectures supported by the tool is one method out of many that exist. Emulating with
multiplatform engines such as Unicorn*® or Qiling'® is another.

For this article, we have decided to demonstrate the use of the Qiling framework, which is a
valuable tool used to quickly develop proof-of-concept emulators for multiple types of
architectures.

Building a LoRaMAC-node stack for a target

To demonstrate the tool in a straightforward way and with symbols, we chose the LoRaMAC-node
project, which is open-source but compiled in ARM and mostly supported by the following
platforms:

e NAMote72
e NucleoLxxx
e SKiM880B, SKiIM980A, SKiM881AXL

https://github.com/googleprojectzero/halfempty
https://github.com/MarkusTeufelberger/afl-ddmin-mod
https://github.com/ilsani/afl-pytmin

e SAMR34

To begin, we compiled this stack for the NucleoL476 platform with a LR1110MB1DIS MBED
shield (since it is the supported platform for this project):

$ cmake -DCMAKE BUILD TYPE=Release \
-DTOOLCHAIN PREFIX="/usr/bin/" \
-DCMAKE TOOLCHAIN FILE="../cmake/toolchain-arm-none-
eabi.cmake" \
-DAPPLICATION="LoRaMac" \
-DSUB_PROJECT="periodic-uplink-1lpp" \
-DCLASSB_ENABLED="ON" \
-DACTIVE REGION="LORAMAC REGION EU868" \
-DREGION_EU868="ON" \
—DREGION_USQISZ"OFF"
-DREGION_CN779="OFF"
—DREGION_EU433:"OFF"
—DREGION_AU915:"OFF"
—DREGION_A8923:"OFF"
-DREGION_CN470="OFF"
—DREGION_KR920:"OFF"
—DREGION_IN865:"OFF"
—DREGION_RU864:"OFF"
-DBOARD="NucleoL476" \
-DMBED RADIO SHIELD="LR1110MB1XXS" \
-DSECURE_ELEMENT="LR1110 SE" \
-DSECURE_ELEMENT PRE PROVISIONED="ON" \
-DUSE_RADIO_ DEBUG="ON"

P A

So, we got a hinary file that looks as follows:

S file LoRaMac-periodic-uplink-lpp*

LoRaMac-periodic-uplink-1lpp: ELF 32-bit LSB executable, ARM, EABIS
version 1 (SYSV), statically linked, with debug info, not stripped
LoRaMac-periodic-uplink-lpp.bin: data

LoRaMac-periodic-uplink-lpp.hex: ASCII text, with CRLEF line
terminators

The good thing about building this way is that we also have an ELF file that directly provides us
with the entry point of our binary with section details. This could help us with the emulation part.

First run with Qiling

Qiling supports this architecture, as well as many others:

o XB86

e X86_64

e Arm

e Armo64

e MIPS (only MSB for from now)
e 8086

This framework also provides many examples to run executables for many file formats:

e PE

e MachO
e ELF

e COM

e MBR

The Qiling documentation provides many examples and shows how to fuzz a complete binary
using exotic architectures like those in routers. 2° Doing the same, we adapted the provided lines
in the documentation with our own binary. The results are as follows:

gl = Qiling([“LoRaMac-periodic-uplink-1lpp”], ".") # argl=binary path,
arg2=rootfs
gl.run ()

But running the binary directly with the few lines is not enough. Indeed, we can see that our binary
crashes after some emulated code:

$ python3
emulate demo.py

[x]r0: 0x20000000
[x]rl: 0xe000edOO
[x]r2: 0x20003064
[x]r3: 0x20003064
[x]
[x]
[x]
[x]

r4: 0x0
r5: 0x0
ro: 0x0
r7: 0x0

r8:
ro:

sp:
1L g

pc:

T T T N

)

[x]PC
[x]

rl0:
rll:
rl2:

CpSr:
cl cO0 2:
cl3 cO0 3:
fpexc:

0x0
0x0

0x0

0x0

0x0
0x20018000
0x800bfa3
0x800bfc8
0x600001f3
0x£f00000

0x0
0x40000000

= 0x800bfc8
(/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-

node-Emulate/LoRaMac-periodic-uplink-1pp+0x800bfc8)

(=] [+]
(=] [+]

bS /home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-

Start End

Perm.

08000000 - 08014000 - r-

Path

node-Emulate/LoRaMac-periodic-uplink-1pp
(/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Emulate/LoRaMac-periodic-uplink-1pp)

[=][+] 20000000 - 20004000 -

rw- /home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-
node-Emulate/LoRaMac-periodic—uplink-1pp
(/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Emulate/LoRaMac-periodic-uplink-1pp)

[=][+] 20004000 - 20006000 - rwx [hook mem]

[=][+] 7££0d000 - 7f£3d000 - rwx [stack]

[=]1[+] ££££0000 - f££££1000 - rwx [arm tls]

[x]['0Oxf', 'Ox49', 'Oxdl', '0Oxf8', '0x88', '0x30', '0Ox43', 'Oxf4']
[=]

[=]10x0800bfc8

{/home/fluxius/Projects/LoRa/LoRaPWN tool/tools/stacks/LoRaMac-node-
Emulate/LoRaMac-periodic-uplink-1lpp + 0x00bfc8} 0f 49 dl1 £f8 88 30 43
f4 70 03 cl1 £8 88 30 0d 4b la 68 00 20 42 f0 01 02 1la 60 98 60 la 68
22 f0 a8 52 22 f4 10 22 la 60 4f f4 80 52 da 60 la 68 22 f4 80 22 1la
60 98 61 4f f0 00 63 8b 60 70 47 1dr rl, [pc, #0x3c]

> 1dr [rl, #0x88]

orr r3, r3, #0xf00000

str.w r3, [rl, #0x88]

ldr r3, [pc, #0x34]

ldr r2, [r3]
movs r0, #0
orr r2, r2,
str r2, [r3]

.w r3,

#1

vV V V V V V V

str r0, [r3, #8]
ldr r2, [r3]
bic r2, r2, #0x15000000
bic r2, r2, #0x90000
str r2, [r3]
mov.w r2, #0x1000
str r2, [r3, #0xc]
ldr r2, [r3]
bic r2, r2, #0x40000
str r2, [r3]
str r0, [r3, #0x18]
mov.w r3, #0x8000000
str r3, [rl, #8]
bx 1r
Traceback (most recent call last):
File "emulate demo.py", line 4, in <module>
gl.run ()
File "/home/fluxius/.local/lib/python3.8/site-
packages/giling/core.py", line 756, in run
self.os.run ()
File "/home/fluxius/.local/lib/python3.8/site-
packages/giling/os/linux/linux.py", line 118, in run
self.gl.emu start(self.qgl.loader.elf entry, self.exit point,
self.gl.timeout, self.gl.count)
File "/home/fluxius/.local/lib/python3.8/site-
packages/giling/core.py", line 897, in emu start
self.uc.emu start (begin, end, timeout, count)
File "/usr/local/lib/python3.8/dist-packages/unicorn/unicorn.py",
line 318, in emu start
raise UcError (status)
unicorn.unicorn.UcError: Invalid memory read (UC ERR READ UNMAPPED)

V VVVVVYVVVVVYVYVYV

Patching the execution

To solve the issue, we need to dynamically allocate memory by adding the following function:

def memory fix(gl, access, addr, size, value):
if mem map force is True:
gl.log.debug ("[] Mapping "+str (size)+" bytes at
"+hex (addr)+" | access: "+ str(access)+" | wvalue: "+ str(value))
gl .mem.map (addr//4096*4096, 4096)
gl.mem.write (addr, struct.pack(">I",value)) # memory
packing is OS dependant
else:

print (("Auto-Memmap disabled for this address"))
return

After this, we use an unmapped memory hook to call our function each time the problem
“reading or writing to an unmapped memory” happens:

gl.hook mem unmapped (memory fix)

We also make use of trace function with the power of the Capstone engine?! to disassemble all
instruction if we want to, as well as disable the initial debugging output to have something custom:

[...]
from capstone import *
from binascii import hexlify
from capstone.arm import *
[...]
if enable trace is
outputd = "off"
enable trace =
gl = Qiling([binary file], ".",
output=outputd,
stdout=1 if enable trace else None,
stderr=1 if enable trace else None,
console = if enable trace else)
md = Cs(CS_ARCH ARM, CS_MODE THUMB)
count = [0]
[...]
def trace cb(gl, address, size, count):
dis = disasm(count, gl, address, size)
if dis is not None:
gl.log.debug(dis)
count[0] += 1
if enable trace:
gl.hook code(trace cb, count)

By fixing the memory, our program runs like a charm — except that it runs like an infinite loop
after the BLX on R3 at address 0x08010758:

[+] 00003F9F 08010758: 98

477 blx r3

== [] Mapping 1 bytes at 0x0 | access: 21 | value: O
[+] 00003FAO 00000000: 00 00 00

00 movs r0, r0

[5R]] 00003FAL 00000004: 00 00 00

00 movs r0, ro0

[+] 00003FA2 00000008: 00 00 00
00 movs r0, r0
[+] 0O0003FA3 0000000C: 00 00 00
00 movs r0, r0
[+] 00003FA4 00000010: 00 00 00
00 movs r0, ro0
[+] 00003FAS 00000014: 00 00 00
00 movs rO0, r0

[...]

Using Ghidra, we can clearly see at this address that a call to the arm_set_fast_math function is
done, but the address is missing:

LAE DBOLOY42 ¥REF[1]: BEO1OT 3
08010742 09 4e ldr ré, [-= do_global _dtors_aux_fini_array entryl
02010744 09 4d ldr rs,[-=_ preinit_array_end]
08010746 76 1b sub rG, ré, rs
peglo74e 01 fo 76 fc bl _init
0801074c b 10 asr rE, ré, #0x2
0801074e 06 dO beq LAE 0BO1OVSe
0EOLAETSO 00 24 moy rd,#0x0
LAE BBOLOYSZ2 ¥REF[1]: 0BO107S
0BOLAETSZ2 01 34 add rd, #0x1
0B01e754 55 f8 04 3b ldr.w r3, [rs],#0xd4=> preinit array end
pSGIG?SS ag 47 blx re==_arm set fast math
DB01075a a6 42 cmp rE, rd
0801075c 9 dl bne LAB 0BO1OYSZ2

Figure 12. A missing address call

Based on Ghidra, however, the function clearly exists:

undefined arm_set fast math()

assume LRset = Ox0O
assume TMode = Oxl
undefined ré:1 <RETLRN=
__arm_set _fast math XREF[3]: _libe_
_ libc_
cdebug_
08000188 fl ee 10 3a mrc plo,Gx7, r3,crl, cri, Ox0
020001l8c 43 fO 80 73 orr r3, r3,#0x1000000
DEOO0190 el ee 10 3a vmsr fpscr, r3
02000194 70 47 b 1r
02000198 00 27 0Gh

08000187 bf 7 BFh

Figure 13. Existing function inside the binary

To resolve this, we made a quick fix with a new hook:

def fix arm set fmath addr(gl):
gl.reg.r3 = 0x08000188

gl.hook address(fix arm set fmath addr, 0x08010758)

But that was not the last problem in our journey. Indeed, many registers will require fixes to run
the program properly:

[+] 00003F9F 08010758: 98

47 blx r3

[+] 00003FAO 08000188: f1 ee 10

3a vmrs r3, fpscr

[+] [] Mapping 1 bytes at 0x843bd54 | access: 21 | value: O
[+] 00003FA1L 0843BD54: 00 00 00

00 movs rO, r0

[+] 00003FAZ2 0843BD58: 00 00 00

00 movs rO, r0

Although we do not go through all of these issues, we will talk about other problems that might
come up with regard to platform-specific calls that could waste time. The following are examples:

e Boardinit()

e SecureElementlnit()

e Ir1110 radio_set lora_sync_word()
o GpioWrite()

e TimerStart()

We can simply get rid of all these calls using a function that will patch all call instructions doing
NOPs (a specific instruction that does nothing) proper to ARM. If there are issues, we can also
use the Keystone engine? that could give the right operation code for the targeted instruction set,
as seen here:

S kstool thumb "nop"
nop = [00 bf]

This results in the following patch:

[...]
nop addresses = { #0x0800bf% : b"\x00\xbf" * 2,
0x0800bfa2 : b"\x00\xbf" * 2,
#0x0800aaa2 : b"\x00\xbf" * 2,
0x08002b32 : b"\x00\xbf" * 2, # BoardInit ()
#0x08002b36 : b"\x00\xbf" * 2, # BoardInitPeriph ()
0x08005bc8 : b"\x00\xbf", # bypass
LORAMAC STATUS REGION NOT SUPPORTED condition
0x08005e3a : b"\x00\xbf", # RadioInit ()
#0x08005€40 : b"\x00\xbf" * 2, #SecureElementInit ()
0x0800a72e : b"\x00\xbf" * 18, # 1rl1110 * in
SecureElementInit ()
0x0800918a : b"\x00\xbf" * 3, # RadioStandby () +
result in r0
0x08009192 : Db"\x00\xbf"™ * 2, #
1rl1l0 system get random number
0x08009742 : b"\x00\xbf" # RadioSetModem ()
0x0800a066 : b"\x00\xbf" #
1rl1110 radio set lora sync word()->1rlll0 hal write ()
0x08005e7e : b"\x00\xbf", # RadioSleep ()
0x08000cec : b"\x00\xbf", # Skip branch
0x08000d8a : b"\x00\xbf", # force
LORAMAC HANDER SUCCESS
0x0800522c : b"\x00\xbf" * 2, #
BoardCriticalSection ()
0x0800523c : b"\x00\xbf"™ * 2, #
BoardCriticalSectionEnd ()
0x08005242 : b"\x00\xbf", # bypassing Event check
0x08005306 : b"\x00\xbf", # bypassing Event check 2
0x08005368 : b"\x00\xbf", # RadioSleep ()
0x080087ae : b"\x00\xbf" * 2, #
SecureElementProcessJoinAccept ()
0x080087b4 : b"\x00\xbf", # Force
SECURE ELEMENT SUCCESS
0x080056dc : b"\x00\xbf", # Force
LORAMAC CRYPTO SUCCESS
0x08002a54 : b"\x00\xbf", # OnRXData->GpioWrite ()
0x08002ab5e : b"\x00\xbf", # OnRXData-->TimerStart ()

* 2,
* 2,

[...]
def skip it(gl, list instru): # patch broken instructions
for instru, rcode in list instru.items():
gl.patch(instru, rcode)

skip it (gl, nop addresses)

After all the fixes, we can run the program without a problem and finish its execution:

[...]

[+]100013B4E08005622: 9a 07 1sls r2, r3,
#0x1le

[+]100013B4F08005624: 08

d5s bpl #0x8005638

[+]100013B5008005638: 94 f8 8c 34 ldrb.w r3, [r4,
#0x48c]

[+]100013B510800563C: 02 2b cmp r3,

#2

[+]100013B520800563E: 01

di bne #0x8005644

[+100013B5308005644: 29 b0 add sp,
#0xa4d

[+]100013B5408005646: bd 8 f0 8f pop.w {rd4, r5, ro,

r7, r8, sb, sl, fp, pc}

Reimplementing some functions

Notably, reading such instructions can be exhausting. This is why user-friendly debugging
methods are always welcome. Indeed, we can see that the binary also makes use of some printf()
functions as follows:

08002bo8 fe f7 7c f8 bl LmHandlerInit

08002boc 04 46 mov rd, ro

08002b%e 18 bl chz ri, LAE_08002bas

08002bald 42 48 ldr ri==s L oRaMac_wasn't _properly initiali 08012ca...
08002ba2 0d fO 4d fe bl printf

Figure 14. printf() function in the binary

We can therefore use these calls to make some hooks to a homemade function in Python that
will take the arguments past the function and simply print everything as it should be:

def hijack printf(ql):
new str = ""

fmt = gl.mem.string(gl.os.function arg[0])
matches = re.findall ("\%\w+", fmt)
count = 0
for sp in fmt.split ("%"):
if count ==
new str += sp
else:
if matches[count-1] == "%s":
new str +=
gl.mem.string(gl.os.function arg[count])+ sp[l:]

elif matches[count-1] == "%d" or matches[count-1] ==
"%i":
new str += "%d" % int(gl.os.function arg[count])+

spll:]
count += 1
print (new str)

We can then have these beautiful prints when running the binary:

$ python3 emul LoRaMacNode.py -b LoRaMac-periodic-uplink-lpp -
v

R I S s e e b

Application name : periodic-uplink-1lpp
Application version: 1.2.0

GitHub base version: 4.5.0

FHAFHE =====—===—============================= {{#{###

But this is not finished yet. We also need to emulate the binary and input packets to parse there,
and we have not even made use of the parser yet.

Parsing LoRaWAN packets

To parse our packet, we make use of a pipe (as used in the fuzzing demonstration with AFL that
we discuss in later sections):

[oool
class MyPipe () :
def _ init (self):
self.buf = b''

def write(self, s):
self.buf += s

def read(self, size):
if size <= len(self.buf):

ret = self.buf[: size]

self.buf = self.buf[size:]
else:

ret = self.buf

self.buf = "'

return ret

def fileno (self) :
return 0

def show (self) :
pass

def clear (self) :
pass

def flush (self) :
pass

def close (self) :
self.outpipe.close ()

def fstat(self):
return stdin fstat
[...]
def main(binary file, enable trace=False, enable verbose=False,
message bytes=b"", input file=None, output file=None) :
global mem map force
global inject addr

stdin = MyPipe ()
for unicorn afl

outputd = "debug"
if enable trace is False:

outputd = "off"
enable trace = True
end

gl = Qiling([binary file], ".",
output=outputd,
stdin=stdin,
stdout=1 if enable trace else None,
stderr=1 if enable trace else None,
console = True if enable trace else False)

md = Cs(CS ARCH ARM, CS MODE THUMB)
count = [0]

[...]

This allows us to provide an input packet with our command line, but we also need to use the
parser, inject the message, and process it. To do so, we will use a new hook that will jump to the
parser after the initialization of the binary to get a stable context:

[...]
def jump2parser (gl) :
global mem map force
mem map force = False # Don't force map anything from now
inject msg(message bytes)
Jump to the parser
gl.reg.pc = 0x08005225 # thump jump to parser
[...]
gl.hook address (jump2parser, 0x08002bb6)
[...]

Adding other debugging hooks allows us to parse a join-accept type packet, resulting in the
following:

$ python3 emul LoRaMacNode2.py -b LoRaMac-periodic-uplink-lpp -v -s
[JOINT ACCEPT PKT]

I e 8 B

Application name : periodic-uplink-1lpp

Application version: 1.2.0

GitHub base version: 4.5.0

#H###E ====—===—===—===—======================== {######

Mapping payload at: 0x1000
Parsing case: FRAME TYPE JOIN ACCEPT
Parsing case: FRAME TYPE DATA UNCONFIRMED DOWN

This is perfect for us if we find some bugs that we want to confirm as exploitable vulnerabilities.
We can make an exploit without tweaking the payload too much, depending on the context
(mitigations and address space).

These are not the only features available in Qiling, however. In fact, we can also use Qiling with
a patched Unicorn Engine stub with AFL to do some fuzzing tests. But before delving into fuzzing,
let us first optimize the execution to speed up the fuzzing process also.

Optimize execution speed

Qiling has a notable feature called snapshot?® that can speed up the execution process. To make
use of it, we can snapshot the execution of the binary when we want to jump into our parser with
the save() function of Qiling, as follows:

def jump2parser (ql) :
global mem map force
mem map force = # Don't force map anything from now
inject msg(message bytes)
Jump to the parser
gl.save (reg= ;, Cpu_context= , snapshot="snapshot.bin")
gl.reg.pc = 0x08005225 # thump jump to parser

After one run, a snapshot should be written in the current directory:

$ 1s -1h snapshot.bin
-rw-rw-r——- 1 fluxius fluxius 340K févr. 26 09:45 snapshot.bin

For the next runs, we can restore the snapshot, disable the unmapped memory hooks, and directly
run at the packet parser’s address and define an end to the execution (as seen in the following).
Then, we can start fuzzing the proper way with Qiling.

[...]
md = Cs(CS_ARCH ARM, CS MODE_ THUMB)
count = [0]

gl.restore (snapshot="snapshot.bin")

[...]

#gl.hook mem unmapped (memory fix)

[...]

#gl.run ()

gl.run (begin=0x08005225, end=0x800563e)
[...]

Fuzzing with Qiling

Qiling brings the UnicornAFL? feature to the game, so we not only use the framework to emulate,
but also fuzz an emulated binary of a different platform.

Using the feature is a straightforward matter. First, we need to load a patched Unicorn version,
define a function to start AFL, and finally, use a hook at the address that should start the fuzzing
process:

import unicornafl
unicornafl.monkeypatch ()
[..]

def start afl(gl: Qiling):

mman

Callback from inside
We start our AFL forkserver or run once if AFL is not
available.
This will only return after the fuzzing stopped.
try:
#print ("Starting afl fuzz().")
if not gl.uc.afl fuzz(input file=input file,
place input callback=place input callback,
exits=[gl.os.exit point]):
print ("Ran once without AFL attached.™)
os. exit (0) # that's a looot faster than tidying up.
except unicornafl.UcAflError as ex:
if ex != unicornafl.UC AFL RET CALLED TWICE:
raise
[...]
Fuzzing hook
gl.hook address(start afl, 0x800522c)
#gl.run ()
gl.run (begin=0x08005225, end=0x800563¢e)

To finish, we write a starting script to launch all the things in an easy manner:

#!/bin/bash

if [! -d ./AFLplusplus]; then
git clone https://github.com/AFLplusplus/AFLplusplus.git
cd AFLplusplus
make
cd ./unicorn mode
./build unicorn support.sh
cd ../../
fi

AFL AUTORESUME=1 AFL PATH="S (realpath ./AFLplusplus)"

PATH="SAFL PATH:SPATH" afl-fuzz -t <some fuzzy values> -i afl inputs -
o afl outputs -U -- python3 emul LoRaMacNode.py -b LoRaMac-periodic-
uplink-lpp --fuzz input Q@

But at the end, even with optimization, we face the limitations of the framework in Python 3,
leading with just 1.54 executions per second on an i7 vPro 10th Gen computer:

american fuzzy lop ++43.00c (default)

, 15
, 14

Figure 15. AFLUnicorn with Qiling

Unicorn Engine emulation in C would be a better candidate for this task after doing the quick
proof-of-concept with Qiling in Python. Nevertheless, Qiling can be considered for fuzzing smaller
code paths, or by making more optimizations than what is shown in this example.

Emulating and fuzzing with Ghidra

We have seen architecture supported by Unicorn and Qiling, which gives us the ability to emulate
and fuzz ARM architecture. But when it comes to emulating and fuzzing gateways, the
architecture that is often encountered is MIPS MSB, which is not yet handled by Unicorn and
Qiling. As a result, we opted for Ghidra for these architectures.

It is also possible to use Ghidra with official processors as an alternative.?®> For example, users
can perform emulation with extended processors like Xtensa?® on Espressif chips.

It should be noted that to emulate the parsing function of a LoORaWAN gateway, the parsing
function must be enabled to act in standalone mode. In LoRaWAN, it is rare to find a gateway
parsing the packet from an end-node, but this situation can happen if the gateway is put in
standalone mode and it is able to parse packets in this mode.

To emulate the parsing function that will be working in MIPS MSB architecture, we can make use
of Ghidra by creating either a Python or a Java module.

For this section, we have quickly adapted the script from a very detailed article by John Toterhi
about Ghidra PCode emulation in X86.%" First, we import modules like the emulation helper, as
well as the module that can help us give pointers to some symbol names. Then we define helpers
that will simplify getting the list of registers and addresses of symbols:

adapted code from John Toterhi's article
from ghidra.app.emulator import EmulatorHelper
from ghidra.program.model.symbol import SymbolUtilities

== Helper functions

def getAddress (offset):

return
currentProgram.getAddressFactory () .getDefaultAddressSpace () .getAddress
(offset)

def getSymbolAddress (symbolName) :
symbol = SymbolUtilities.getLabelOrFunctionSymbol (currentProgram,
symbolName,)

if (symbol !=)t
return symbol.getAddress ()
else:
raise Exception("Failed to locate label:
{}1".format (symbolName))

def getProgramRegisterList (currentProgram) :
pc = currentProgram.getProgramContext ()
return pc.registers

We will then create a main() function that will, once called, get the address of the
LoRaMacParserData() function that will be called by filling PC registers with its address:

def main () :

CONTROLLED RETURN OFFSET = O

mainFunctionEntry = getSymbolAddress (" LoRaMacParserData ")

emuHelper = EmulatorHelper (currentProgram)

Set controlled return location so we can identify return from
emulated function

controlledReturnAddr = getAddress (CONTROLLED RETURN OFFSET)

Set initial PC

mainFunctionEntryLong = int ("0x{}".format (mainFunctionEntry), 16)

emuHelper.writeRegister (emuHelper.getPCRegister (),
mainFunctionEntryLong)

Afterward, we finish our main() function that will make use of a monitor to single-step the emulated
instruction one by one, until we reach the 0x0 invalid address:

registers = getProgramRegisterList (currentProgram)

Here's a list of all the registers we want printed after each
instruction. Modify this as you see fit, based on your
architecture.
reg filter = |
"zero", "at", "vO", "v1", "alO",
"ali", "a2", "a3", "to", "t1l",
"2", "t3", "t4", "t5", "te",
"t7", "sO", "sl1", "s2", "s3",
"s4", "s5", "so", "s7", "t8",
"t9", "kO", "k1", "gp", "sp",
"s8", "ra", "pc",

print ("Emulation starting at O0x{}".format (mainFunctionEntry))
while monitor.isCancelled() is False:

Check the current address in the program counter, if it's
zero (our “CONTROLLED RETURN OFFSET value) stop emulation.
Set this to whatever end target you want.

executionAddress = emuHelper.getExecutionAddress ()
if (executionAddress == controlledReturnAddr) :
print ("Emulation complete.")
return

Print current instruction and the registers we care about
print ("Address: 0x{} ({})".format (executionAddress,
getInstructionAt (executionAddress)))
for reg in reg filter:
reg value = emuHelper.readRegister (reg)
print (" {} = {:#018x}".format (reg, reg value))

single step emulation

success = emuHelper.step (monitor)

if (success == False):
lastError = emuHelper.getlLastError ()
printerr ("Emulation Error: '{}'".format (lastError))
return

Cleanup resources and release hold on currentProgram
emuHelper.dispose ()

By running this script, we get the first result as follows:

O F = @ - x| [Fsbecomplie: LoRaMacParserData - (lora_pki_fwd2)
. , a |l

i 00411:150‘"(? 1‘7‘0 fa .ﬁ . ””h . 0x3 r 2 |undefined4 LoRaMacParserData(int *macMsq)
00411d84 6 07 b Oc addiu vL.pc, Bx3e0c e
00411des f4 00 32 40 s11 V0, 0x10 - def d ¥ -
60411d8c e2 69 addu V0, V1 ol intivars e
60411d8e 64 5 save 0x28, ra, s0-s1 Sl brte ey
00411d90 65 9a nove ol e b
041192 d2 04 Sw)_val o ot e
00411d94 24 4f beqz . 3 00411e34 ho uint3 uvard. ’
00411d96 Sc 20 1w . 0x0(nacMsg) h1 o
00411d98 25 4d beaz 00411634 12| if ((nacWsg = (int #)0x0) & (puvarS = (undefined ¥)macksg, puvarS != (undefined +)0x0)) {
004119 35 40 Leu ars) 13| *(undefined *} ((int)nachsg + 5) = ¥pulars:
00411d9c 67 04 nove ha bVarl = puvarS[l]; ’
00411d9e cd 45 sb ,0xS(nackisg) e méc‘!—\s(lz‘] L intibvard
00411da0 a5 81 Tbu nactisg, 0x1 (puvars) - sl s i

e uVars = CONCATLL(puvars (2], bvarl);
88:3332 27 fe nove el h7 nackisgl2l = (uintluva
a4 dg 82 sw nacttsg, 0x8(<0) 18| ulard = CONCATI2(puVarSI3], uVar3);
00411da6 a5 62 by 1.0x2(puvars) o Dachsgl2] — (intIve e
00411das f0 f0 O f8 1w 42, -0:708(a3) =>PTR._nencpyl+1_0043d I 50| machegia] - CONGRTI3(putarstal , varay;
00411dac 33 60 s11 v1,vl,0x8 by b¥arl = puvarsls]: o
0041ldae ec 6d or nachsg, v1 iy *‘)(ma(MSq 13 = bvart
00411dbo dg 82 sw machsg, 0x&(s0) 23 bVar2 = puvarsi6l; '
Goatidha 20 43 Lo -Ox3{puvars) T3] *(ushort +) (Cintimschisg + oxe) = (ushort)bvara:
i 1oxf mlls| et w ; o ot)
00411db6 32 40 11 V0.0, 08 L 25 ushort #) ((int)macMsg + Gxe) = CONCAT1L(puVarS[7].bvar2):
ez B v |25 mencpyltmachsg + 4.puvarS + 8,bVarl & Oxf, (undefined *)0x412249, 0xdd5bo0);

,W, o7 ivare = (*(byte *) (nacksg + 3) & Oxf) + 8

2 Console - Seripting

gp = 0xG000000000445h90
sp = 0x00000000f FfFfde
S8 = 0xE000000000OD0000
ra = 0x0000000000000000
pc = 0xG000000000411e34
Address: 0x00411e36 (jr ra)
2ero = ©x00OB0AOEOD00000D
at = 0xG000OOOOCOD0000
v0 = 0x0000000000445b90
vl = 0xG00000000415h90
a0 = 0x0000000000000000

Figure 16. Emulation with Ghidra

Some memory contexts will be required to run the function properly or to force cases (exactly like
with Qiling). We will then have to make use of emuHelper.write* helpers to set up registers and
memory with a proper state.

To perform the fuzzing, we look to an informative project of Flavian Dola from Airbus.?® The project
was published running a trampoline program with AFL++ to forward input to the target, as seen
in Figure 17.

y |
E RANDOM DATA INPUT b]
0011011011... 1 s)
T |
D
% 1 -} ’_Li =
PIPES 3 & L 2 =
AFL++ SHARED MEMORY g = ?‘1
-
] o] 3
= o =
o S . d
= 2
® 3
BLOC ADDRESS & ﬁ

END EXECUTION STATUS
GHIDRA EMULATOR

Figure 17. AFL Ghidra emulator PoC architecture

To go further, we encourage the reader to take a look at the documentation of this project where
Airbus also gives examples of Xtenza and PPC targets.?°

Conclusion and Recommendations

It is important to trust the LoRaWAN protocol stack implementation, and this level of trust can only
be achieved by constantly testing it against memory corruptions and logical bugs. To do so, it is
recommended to first choose a protocol stack that was approved by the community and also
tested by security researchers. Afterward, it is important to invest in resources and spend time

fuzzing environments to check if the libraries used are resistant to most of the test cases
scenarios, as shown in the previous sections using different techniques.

In our report, we covered only targeted parser fuzzing, but complete fuzzing scenarios must be
also integrated into the audits and stress tests of the whole application to certify the robustness
of the stack.

The image here shows an example of how fuzzing tests can be integrated in the battery of tests
usually done before releasing the product.

1
10 <
OO0

Chosen LoRaWAN stack

| Fail

e

Fuzzing parsers Patch the library
Faif

L

—> ~

@ ; i @ 9

Project Logical, encryption, Network fuzzing Final product
configuration tests

Using
the stack Fail

Figure 18. Fuzzing integrated into the battery of tests

By imagining ourselves with an attacker's mindset, we are able to understand possible security
issues and flaws and find additional attack vectors that were not covered by our previous
research. Although we have already highlighted the complexity of these security issues in the
previous sections of this technical brief, we also want to mention the complexity of the exploitation

itself.

Ultimately, the attacker would have to know precisely what the target is, how it was compiled, or
(by chance) get a dump of the firmware. Nevertheless, despite this high level of complexity, this
class of bugs must be taken seriously if we want to guarantee solid security inside industrial
factories or smart city environments using LoRaWAN technology.

References

1Sébastien Dudek. (Jan. 26, 2021). Trend Micro Security Intelligence Blog. “Low Powered and
High Risk: Possible Attacks on LoRaWAN Devices.” Accessed on Jan. 6, 2022, at
https://www.trendmicro.com/en_us/research/21/a/Low-Powered-but-High-Risk-Evaluating-
Possible-Attacks-on-LoRaWAN-Devices.html.

2Sébastien Dudek. (Feb. 19, 2021). Trend Micro Security Intelligence Blog. “Gauging LoRaWAN
Communication Security with LoraPWN.” Accessed on Jan. 6, 2022, at
https://www.trendmicro.com/en_us/research/21/b/gauging-lorawan-communication-security-
with-lorapwn.html.

3Sébastien Dudek. (March 30, 2021). Trend Micro Security Intelligence Blog. “Protecting
LoRaWAN Hardware from Attacks in the Wild.” Accessed on Jan. 6, 2022, at
https://www.trendmicro.com/en_us/research/21/c/protecting-lorawan-hardware-from-attacks-in-
the-wild.html.

4Sébastien Dudek. (Feb. 5, 2021). YouTube. “LoRaPWNing: Practical radio attacks on
LoRaWAN.” Accessed on Jan. 6, 2022, at https://www.youtube.com/watch?v=z-jSiR3-xW4.

SAmerican Fuzzy Lop plus plus. (Jul. 19, 2021). GitHub. “AFL++.” Accessed on Jan. 6, 2022, at
https://github.com/AFLplusplus/AFLplusplus.

8Qiling.io. (Dec. 29, 2021). GitHub. “Qiling Advanced Binary Emulation Framework.” Accessed
on Jan. 6, 2022, at https://github.com/qgilingframework/qiling.

'Semtech. (May 31, 2021). GitHub. “LoRaMac-node.” Accessed on Jan. 6, 2022, at
https://github.com/Lora-net/LoRaMac-node.

8LoRa Basics™ Station. (June 6, 2020). GitHub. “Basics Station.” Accessed on Jan. 6, 2022, at
https://github.com/lorabasics/basicstation.

°The Things Network. (n.d.). The Things Network. “The Things Network.” Accessed on Jan. 6,
2022, at https://www.thethingsnetwork.org/.

10The Things Network. (Feb. 5, 2021). YouTube. “The Things Network Upgrades to The Things
Stack V3.” Accessed on Jan. 6, 2022, at https://www.youtube.com/watch?v=TtDE 5JNAGS.

"semtech. (n.d.). GitHub. “packet forwarder of Dragino LG308.” Accessed on Jan. 6, 2022, at
https://github.com/dragino/dragino-packages/blob/lg02/lora-
gateway/src/lora_pkt fwd/src/lora pkt fwd.c.

12Sébastien Dudek. (Feb. 19, 2021). Trend Micro Security Intelligence Blog. “Gauging
LoRaWAN Communication Security with LoraPWN.” Accessed on Jan. 6, 2022, at
https://www.trendmicro.com/en_us/research/21/b/gauging-lorawan-communication-security-
with-lorapwn.html.

1BBsébastien Dudek. (n.d.). Scapy. “loraphy2wan Scapy Layer.” Accessed on Jan. 6, 2022, at
https://scapy.readthedocs.io/en/latest/api/scapy.contrib.loraphy2wan.html.

https://www.trendmicro.com/en_us/research/21/a/Low-Powered-but-High-Risk-Evaluating-Possible-Attacks-on-LoRaWAN-Devices.html
https://www.trendmicro.com/en_us/research/21/a/Low-Powered-but-High-Risk-Evaluating-Possible-Attacks-on-LoRaWAN-Devices.html
https://www.trendmicro.com/en_us/research/21/b/gauging-lorawan-communication-security-with-lorapwn.html
https://www.trendmicro.com/en_us/research/21/b/gauging-lorawan-communication-security-with-lorapwn.html
https://www.trendmicro.com/en_us/research/21/c/protecting-lorawan-hardware-from-attacks-in-the-wild.html
https://www.trendmicro.com/en_us/research/21/c/protecting-lorawan-hardware-from-attacks-in-the-wild.html
https://github.com/AFLplusplus/AFLplusplus
https://github.com/qilingframework/qiling
https://github.com/Lora-net/LoRaMac-node
https://github.com/lorabasics/basicstation
https://www.thethingsnetwork.org/
https://www.youtube.com/watch?v=TtDE_5JNAGs
https://github.com/dragino/dragino-packages/blob/lg02/lora-gateway/src/lora_pkt_fwd/src/lora_pkt_fwd.c
https://github.com/dragino/dragino-packages/blob/lg02/lora-gateway/src/lora_pkt_fwd/src/lora_pkt_fwd.c
https://www.trendmicro.com/en_us/research/21/b/gauging-lorawan-communication-security-with-lorapwn.html
https://www.trendmicro.com/en_us/research/21/b/gauging-lorawan-communication-security-with-lorapwn.html
https://scapy.readthedocs.io/en/latest/api/scapy.contrib.loraphy2wan.html

1Jonathan Salwan. (April 27, 2020). GitHub. “Triton Framework.” Accessed on Jan. 6, 2022, at
https://github.com/JonathanSalwan/Triton.

LLVM. (n.d.) Clang LLVM. “Clang 13 Documentation AddressSanitizer.” Accessed on Jan. 6,
2022, at https://clang.llvm.org/docs/AddressSanitizer.html.

18] ora-net. (April 16, 2020). GitHub. “LoRaMAC-node commit patching CVE-2020-11068.”
Accessed on Jan. 6, 2022, at https://github.com/Lora-net/LoRaMac-
node/commit/e3063a91daa7ad8a687223efa63079f0c24568e4.

YFrida. (n.d.). Frida. “Frida.” Accessed on Jan. 6, 2022, at https://frida.re/.

8Unicorn. (n.d.). Unicorn Engine. “Unicorn Engine.” Accessed on Jan. 6, 2022, at
https://www.unicorn-engine.org/.

19Qiling. (n.d.). Qiling.io. “Qiling Framework.” Accessed on Jan. 6, 2022, at https:/qgiling.io/.

20Qiling Framework Documentation. (n.d.). Qiling.io. “Getting started.” Accessed on Jan. 6,
2022, at https://docs.qgiling.io/en/latest/howtol/.

21Capstone. (n.d.). Capstone Engine. “Capstone The Ultimate Disassembler.” Accessed on Jan.
6, 2022, at https://www.capstone-engine.orq/.

22Keystone. (n.d.). Keystone Engine. “Keystone Engine The Ultimate Assembler.” Accessed on
Jan. 6, 2022, at https://www.keystone-engine.org/.

2Qiling Framework Documentation. (n.d.). Qiling.io. “Qiling Snapshot.” Accessed on Jan. 6,
2022, at https://docs.qiling.io/en/latest/snapshot/.

24UnicornAFL. (n.d.). GitHub. “AFL bindings for Unicorn-Engine.” Accessed on Jan. 6, 2022, at
https://github.com/AFLplusplus/unicornafl.

2National Security Agency. (n.d.). GitHub. “Ghidra Processors.” Accessed on Jan. 6, 2022, at
https://github.com/NationalSecurityAgency/ghidra/tree/master/Ghidra/Processors.

28EDiroll. (n.d.). GitHub. “Ghidra Xtenza Extension." Accessed on Jan. 6, 2022, at
https://github.com/Ebiroll/ghidra-xtensa.

27John Toterhi. (Jan. 27, 2020). Medium. “Emulating Ghidra’s PCode: Why/How.” Accessed on
Jan. 6, 2022, at https://medium.com/@cetfor/emulating-ghidras-pcode-why-how-dd736d22dfb.

ZFlavian Dola. (April 27, 2021). Airbus. “Fuzzing exotic arch with AFL using ghidra emulator.”
Accessed on Jan. 6, 2022, at https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-
using-ghidra-emulator/.

2Flavian Dola. (April 27, 2021). Airbus. “Fuzzing exotic arch with AFL using ghidra emulator.”
Accessed on Jan. 6, 2022, at https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-
using-ghidra-emulator/.

https://github.com/JonathanSalwan/Triton
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/Lora-net/LoRaMac-node/commit/e3063a91daa7ad8a687223efa63079f0c24568e4
https://github.com/Lora-net/LoRaMac-node/commit/e3063a91daa7ad8a687223efa63079f0c24568e4
https://frida.re/
https://www.unicorn-engine.org/
https://qiling.io/
https://docs.qiling.io/en/latest/howto/
https://www.capstone-engine.org/
https://www.keystone-engine.org/
https://docs.qiling.io/en/latest/snapshot/
https://github.com/AFLplusplus/unicornafl
https://github.com/NationalSecurityAgency/ghidra/tree/master/Ghidra/Processors
https://github.com/Ebiroll/ghidra-xtensa
https://medium.com/@cetfor/emulating-ghidras-pcode-why-how-dd736d22dfb
https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-using-ghidra-emulator/
https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-using-ghidra-emulator/
https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-using-ghidra-emulator/
https://airbus-cyber-security.com/fuzzing-exotic-arch-with-afl-using-ghidra-emulator/

