
Numaan Huq, Philippe Lin, Roel Reyes, Charles Perine

A Survey of Cloud-Based GPU
Threats and Their Impact on
AI, HPC, and Cloud Computing

A Survey of Cloud-Based GPU Threats and Their Impact on AI, HPC, and Cloud ComputingPage 2 of 31

Contents

Published by
Trend Research

Written by
Numaan Huq, Philippe Lin,
Roel Reyes, Charles Perine

 Impacts of GPU Attacks ..04

 GPU Attack Risk Assessment Matrix06

 Threat Mitigation Strategies08

 Conclusion ... 10

 Appendix .. 11

Graphics processing units (GPUs) are the hardware engines driving the AI revolution. Large language model (LLM)-

powered generative AI (GenAI) became mainstream with the public release of OpenAI’s ChatGPT. AI usage has given rise

to innovative AI-powered applications for businesses, productivity, image generation, video generation, data analysis,

and social media, among others. Powering AI applications are GPUs, which are specialized microchips designed to

accelerate computer graphics and image processing. GPUs are also useful for non-graphics tasks, especially parallel

processing problems. GPUs are designed for parallel processing and can run thousands of simple compute tasks

simultaneously, as opposed to a central processing unit (CPU), which is designed for a few complex tasks at a time.

NVIDIA introduced a C-like programming language called Compute Unified Device Architecture (CUDA) that opened up

GPU programming to developers. Similar to CUDA, AMD GPUs support a programming language called OpenCL, which

aims to be a vendor-independent language for multiple platforms.

ChatGPT is an LLM, which is a class of AI that helps generate human-like responses. LLMs are competent in many

applications such as language translation, content generation, sentiment analysis, data analysis, chatbots, and more.

LLMs are complex neural networks with vast numbers of interconnected nodes performing repeated calculations

and adjustments. GPUs excel at the massive parallel computations that are fundamental to neural network training

and inference. Training complex LLMs could take tens of years on CPUs, whereas GPUs reduce that period to a more

manageable duration of months. Specialized GPUs like NVIDIA’s, which come equipped with Tensor Cores, are designed

for matrix operations, which are extensively used in deep learning and LLMs. GPUs also have on-chip high-speed device

memory that is crucial for processing the enormous training datasets.

Similar to AI applications, GPUs are extensively used in high-performance computing (HPC). HPC tackles problems

such as analyzing massive datasets and running complex simulations. These tasks have a high degree of parallelism,

which makes them well-suited for GPUs. Simulations such as weather prediction, drug modeling, fluid dynamics, and

protein folding require an immense number of calculations at each step, and GPUs accelerate this process. This allows

researchers to experiment rapidly, test hypotheses, and gain valuable insights quicker. GPUs are often more energy-

efficient than CPUs for HPC tasks, allowing more computation within the same power envelope. Many HPC applications

integrate machine learning and deep learning, as combining these techniques leads to new scientific insights and

accelerated discovery. We already discussed how GPUs are very good at processing artificial intelligence and machine

learning (AI/ML) tasks, so using GPUs to solve tasks that involve both HPC and AI/ML is a natural choice.

As AI training and processing as well as HPC applications become more important for businesses, they are switching to

cloud-based GPUs versus an on-site setup. Cloud-based GPUs provide scalability and flexibility, which is great for bursty

workloads, especially when there is a spike in the need for massive compute power followed by low usage periods. There

is no upfront investment in expensive hardware and maintenance, as cloud services operate on a pay-as-you-go model.

With cloud-based GPUs, users get access to the latest GPU chips available in the market. This is critical in fields like

AI, where hardware advances greatly accelerate processing tasks. Another advantage is global access to shared GPU

resources without worrying about hardware logistics.

Given the increasing reliance on GPUs for everyday business tasks, this paper explores the security threats GPUs face

and what actions can be taken to mitigate the risks. As the reliance on cloud-based GPU instances grows, so does the

importance of ensuring their security. The threats are multifaceted, ranging from data breaches and unauthorized

access to more sophisticated attacks like reading GPU memory. By examining these security challenges, this research

aims to provide insights into the current threat landscape for cloud-based GPUs. It will discuss both the vulnerabilities

inherent in these systems and strategies for protecting them against cyberattacks.

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud ComputingPage 4 of 31

Impacts of GPU Attacks
GPU attacks signal a shift in the cybersecurity landscape for AI/ML, LLMs, and HPC, all of which heavily rely on GPUs for

their processing power. Cloud-based GPU systems, the backbone of these technologies, are becoming a prime target for

sophisticated attacks that are specially crafted to exploit the unique architectural traits of GPUs, threatening the integrity,

confidentiality, and availability of these systems. In this section, we explore the following impacts of GPU attacks:

• Increased risk of data leakage and intellectual property theft. Sophisticated attacks on cloud-based GPUs increases

the risk of data leakage, including exfiltration of sensitive data processed by AI and ML models. Such attacks can lead to

the theft of intellectual property, including proprietary algorithms and datasets, undermining the competitive advantage

and confidentiality of businesses and research institutions.

• Erosion of model integrity and trust. Attacks that modify the behavior of AI and ML models or compromise the

integrity of computations performed by HPC systems can have far-reaching consequences. Such modifications can

result in flawed decision-making, incorrect data analysis, or biased outcomes, eroding trust in these models.

• Threats in multitenant cloud environments. Given the shared nature of cloud-based GPU resources, attacks exploiting

vulnerabilities in the hypervisor can lead to cross-tenant data access or leakage. This amplifies the impact of attacks, as

a single breach could potentially compromise the data and systems of multiple users.

• Exploitation of parallel processing architectures. The parallel processing capabilities of GPUs, while great for

performance, also offer attackers a means to execute more sophisticated and hard-to-detect cyberattacks. This includes

parallel execution of malicious payloads, GPU-based code obfuscation, or leveraging GPU resources for tasks such as

cryptojacking or complex data analyses that support further attacks.

• Risks of cryptominers and GPU malware. Cryptominers and other forms of GPU malware present significant risks, as

attackers could exploit cloud-based GPU resources for unauthorized cryptocurrency mining, exhausting computational

resources and potentially causing financial losses and system instability. Cryptomining is by far the most common motive

for attackers attempting to hijack cloud-based GPU resources.

• Vulnerability to denial-of-service (DoS) attacks. Cloud-based GPU servers are susceptible to DoS attacks aimed

at overwhelming GPU resources, leading to service degradation or complete service unavailability. Such attacks could

disrupt critical AI-powered services or HPC tasks, resulting in operational and financial impacts.

• Impact on the development of AI and HPC applications. Security concerns related to cloud-based GPU attacks could

slow the adoption, development, and deployment of AI and HPC applications. Organizations need to invest in additional

security measures, conduct more rigorous testing, or even reconsider the use of cloud-based GPUs for mission critical

applications.

As AI, ML, LLM, and HPC applications continue to develop and proliferate, securing the underlying GPU infrastructure against

sophisticated attacks will be paramount to protecting the integrity, confidentiality, and availability of these technologies. Until

now, we have talked extensively about the impacts of GPU attacks, especially on cloud-based GPUs. However, challenges in

detecting and mitigating GPU-based attacks arise as traditional cybersecurity solutions might not be equipped to monitor

and protect GPU resources. The detection of attacks that target or leverage GPUs will require specialized monitoring tools and

techniques that can deeply inspect GPU resources. Additionally, organizations relying on cloud-based GPUs for processing

Page 5 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

sensitive data must consider the regulatory and compliance implications of potential security breaches. This includes obligations

under data protection laws and industry-specific regulations, which might necessitate additional security controls and measures.

For a deeper understanding of common threats in this area, Trend Micro has published some excellent research on cloud security1

and cloud computing2 that we recommend as a valuable resource that complements our discussion in this paper by outlining the full

gamut of cloud security vulnerabilities.

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud ComputingPage 6 of 31

GPU Attack Risk Assessment Matrix
We explored 10 different types of GPU attacks (please refer to Appendix 2 for a technical discussion of these GPU attacks), including

those that target the GPU itself, as well as attacks that use the GPU’s processing power. Understanding the impact of these attacks

is crucial for the security of GPU-powered systems across cloud, AI, and HPC domains. We created a risk matrix that assesses the

likelihood and potential impacts of GPU attacks that were discussed previously. The risk matrix looks at the general impact as well

as impacts specific to cloud-based GPUs, AI, and HPC applications, as those deployments are exponentially growing in size and

stakeholders will need to understand the risks and allocate resources effectively.

Threat Type Risk Level Likelihood
General
Impact

Cloud Impact AI Impact HPC Impact

GPU Side-Channel
Attacks

High Medium
Attacks are
possible, but
not trivial to
execute.

High
Potential for
significant
data leakage
and security
breaches.

High
Potentially
exposes data
across users
in shared
environments.

High
Risk of leaking
sensitive
inference data
or insights
into model
internals.

High
Could lead to
the disclosure
of sensitive
computation
or simulation
results.

GPU Rootkits Medium Low
Sophisticated
attacks, less
frequent in
well-monitored
environments.

High
Can have
far-reaching
effects through
system
compromise.

High
Can evade
detection and
persistently
compromise
cloud services.

High
Threatens the
integrity of AI
models and the
confidentiality
of proprietary
information.

Medium
Possible
disruption to
HPC tasks; the
impact varies
by the specific
use case.

API Abuse
and Kernel
Manipulation

High Medium
Vulnerabilities
can exist, and
attackers might
leverage them.

High
Potential for
severe system
compromise
and data
manipulation.

Medium
Potential for
exploiting
vulnerabilities,
mitigated by
cloud platform
securities.

High
Direct
manipulation
could
compromise
AI models and
data.

High
Directly
affects the
integrity and
execution of
computational
tasks.

Denial-of-Service
Attacks

High High
These attacks
are common and
can be easily
launched.

High
Disrupt service
availability,
potentially
causing
significant
losses.

High
Directly
impact service
availability,
affecting
multiple users.

High
Can render
AI services
inoperative,
critically
affecting
availability.

High
Severely
restrict
access to
computational
resources,
disrupting
operations.

GPU Malware for
Cryptomining

Medium High
Malware is
prevalent and
targets any
accessible
resources.

Medium
Mainly impacts
system
performance
and costs.

High
Consumes
computational
resources,
leading to
increased costs
and degraded
performance.

Low
Mainly a
resource drain;
indirect impact
unless AI tasks
are severely
resource
constrained.

Low
Similar to
AI, mainly a
resource drain
with limited
direct impact.

Page 7 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

Threat Type Risk Level Likelihood
General
Impact

Cloud Impact AI Impact HPC Impact

Exploiting
Vulnerabilities in
GPU Drivers

High Medium
Vulnerabilities
exist, but
patching and
mitigations are
common.

High
Compromise
can have
severe
consequences
for system and
data integrity.

Medium
Cloud
platforms
might mitigate
some risks, but
vulnerabilities
can lead
to system
compromise.

High
Potentially
compromises
the integrity
and
confidentiality
of AI processes.

High
Unauthorized
access or
disruption
of tasks is a
significant
threat.

GPU Assisted Code
Obfuscation

Medium Low
Requires
specialized
techniques, not
as common as
basic malware.

Medium
Can hinder
security
analysis and
delay incident
response.

Medium
Complicates
malware
detection
within
the cloud
infrastructure.

Medium
Can obscure
malicious
activities
affecting AI
model integrity.

Medium
Could hide the
presence of
unauthorized
computations
or data
manipulations.

Overdrive Fault
Attacks

Medium Low
Requires
physical access
or specialized
manipulation
techniques.

Medium
Can impact
accuracy and
reliability, more
targeted in
nature.

Low
Rare in
controlled
cloud
environments
but could
occur through
hardware
manipulation.

Medium
Specific
attacks might
subtly alter the
outcomes of AI
models.

High
Precision
tasks might be
compromised,
affecting
critical results.

Memory Snooping/
Cross-Virtual
Machine (VM)
Attacks in vGPU
Environments

High Medium
Attacks are
possible on
virtualized GPUs,
especially if
not properly
configured.

High
Potential for
major data
breaches
and loss of
confidentiality.

High
Breaks
isolation
between users,
undermining
cloud security.

High
Unauthorized
access to AI
datasets and
models poses
a serious
confidentiality
risk.

High
Data leakage
is a major
concern,
especially
in shared
computational
environments.

Compromised AI
Models/Trojaning

High Medium
Attacks rely
on model
distribution
channels and
user trust.

High
Can lead to
incorrect or
malicious
outputs with
significant
consequences.

Medium
Cloud
infrastructure
might not
be directly
impacted but
facilitates
model
distribution.

High
Directly affects
model integrity,
leading to
incorrect or
malicious
decisions.

Medium
Indirect impact
initially, but
a growing
concern
during model
deployment
impacting HPC.

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud ComputingPage 8 of 31

Threat Mitigation Strategies
To safeguard cloud-based GPU environments against cyberattacks, it’s imperative to deploy a robust set of protection measures.

These defensive measures span from hardware enhancements to software-level precautions, aiming to secure the AI, ML, LLM, and

HPC applications that use cloud-based GPUs as their processing backbone. The following is by no means an exhaustive list of threat

mitigation strategies; instead, it is an exploration of macro-level strategies that IT security practitioners can choose to implement in

a layered defense framework.

• Advanced virtualization security. Use hypervisor-level security enhancements to safeguard environments against cross-VM

attacks in virtualized GPU (vGPU) environments. This includes stricter isolation policies, memory encryption, and sophisticated

access controls to prevent unauthorized access to shared GPU resources.

• Robust kernel isolation. Implement strong isolation measures for GPU kernels to protect these against API abuse and kernel

manipulation attacks. This could involve using containerization technologies with enhanced security features or adopting vGPUs

that provide better isolation between computing tasks.

• Enhanced memory management. Use advanced memory management techniques to prevent memory snooping and

leakage vulnerabilities. Techniques such as memory randomization, encryption, and timely clearing of GPU memory after task

completion can help mitigate the risk of sensitive data exposure.

• Secure code execution frameworks. Use secure execution frameworks for running GPU-accelerated code, ensuring that

the code is verified and authenticated before execution. This helps protect frameworks against malicious code execution and

trojaned AI models.

• Driver and firmware security. Maintain up-to-date GPU drivers and firmware with the latest security patches. Rigorous updates

and a patch management process are critical to protect environments against exploits targeting vulnerabilities in GPU drivers

and firmware.

• GPU usage monitoring and anomaly detection. Deploy monitoring tools that can detect anomalous GPU usage patterns

that are indicative of attacks such as cryptojacking, DoS, or excessive resource consumption. Integrating AI/ML techniques can

improve the detection of sophisticated attacks.

• Application-level security measures. Apply application-level security best practices, including secure coding techniques, to

mitigate risks associated with GPU-accelerated applications. This includes validating input data to prevent injection attacks and

ensuring that AI/ML models are robust against poisoning and evasion techniques.

• Hardware Security Modules (HSMs) for sensitive operations. For critical cryptographic operations or sensitive data

processing, use dedicated HSMs3 instead of general-purpose GPUs. HSMs offer higher security guarantees and are designed to

resist tampering and leakage.

• Access control policies. Enforce strict access control policies for GPU resources, limiting access to authorized users and

applications only. Implement role-based access control (RBAC)4 and audit trails to monitor access to GPU resources and detect

unauthorized attempts.

Page 9 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

• Education and awareness. Raise awareness about potential security risks associated with cloud-based GPU usage. Providing

training on secure development practices for GPU-accelerated applications and how to recognize signs of GPU-related attacks

can be an effective preventive measure.

Securing cloud-based GPUs against sophisticated cyberattacks requires a multifaceted, multilayered approach that encompasses

hardware, software, and procedural safeguards. By implementing these measures, organizations can enhance the security of their

cloud-based GPU servers, protecting the integrity, confidentiality, and availability of their AI, ML, LLM, and HPC applications.

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud ComputingPage 10 of 31

Conclusion
The fast-paced evolution of GPU attacks poses a direct and complex threat to the cybersecurity of AI, ML, LLM, and HPC applications,

all of which rely on GPU acceleration. Attackers are crafting sophisticated exploits that target the unique architecture of GPUs

and the shared infrastructure of cloud computing environments. These attacks can jeopardize the integrity, confidentiality, and

availability of GPU resources and sensitive data. During our research, we identified the following top security concerns specific to

cloud-based GPUs:

• Cloud-based GPUs are powerful but vulnerable. Attackers can exploit various components of a cloud-based GPU system,

targeting memory management, processing units, and special function units.

• Side-channel attacks pose a stealthy threat. These attacks can extract sensitive information by exploiting physical properties

of GPUs, particularly the cache organization in multi-GPU systems.

• GPU rootkits can be difficult to detect. Pieces of malicious software like Jellyfish can establish a persistent presence on

GPUs, manipulating operations and evading traditional security tools.

• API abuse and GPU kernel manipulation are potential risks. Weaknesses in GPU programming frameworks like CUDA or

OpenCL can be leveraged for unauthorized access or disruption of legitimate processes.

• Cryptomining and distributed denial-of-service (DDoS) attacks are expensive and disruptive. Cloud-based GPUs offer

immense massive power, making them targets for resource-draining cryptojacking and large-scale DDoS attacks that disrupt

services and cause financial losses.

Defense against GPU threats needs a proactive strategy that integrates cybersecurity technologies with well-defined operational

best practices. As AI and HPC deployments in the cloud grow, GPU security becomes paramount. Addressing these security

challenges requires a collaborative approach: Cloud service providers must implement robust measures, including GPU-specific

intrusion detection and anomaly monitoring, while developers need to prioritize secure coding practices and understand potential

attack vectors when using cloud-based GPUs. Regular security audits and penetration testing are also crucial for proactively

identifying and patching vulnerabilities. In conclusion, the transformative potential of cloud-based GPUs is clear in the age of AI and

HPC applications. By being vigilant toward GPU security threats (a collection of which we explored in this paper) and implementing

proactive countermeasures, we can protect both the critical infrastructure and sensitive data.

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud ComputingPage 11 of 31

Appendix

Appendix 1: GPU Technical Primer
Graphics processing units (GPUs) are specialized chips designed to accelerate the rendering of images, videos, and animations. They

have a parallel processing architecture and an on-chip memory that make them efficient at manipulating and transforming data to

speed up image creation. This is in contrast to central processing units (CPUs), which are general-purpose processors designed to

perform a wide range of computational tasks and are optimized for sequential processing. CPUs and GPUs have completely different

architectures. CPUs consist of a few cores optimized for sequential processing, making them well-suited for complex tasks and

general computing. In contrast, GPUs contain thousands of smaller cores designed for parallel processing. This parallel processing

architecture allows GPUs to perform the enormous volumes of calculations required for graphics rendering and other data-intensive

tasks faster and more efficiently than CPUs.

Figure 1. Simplified GPU architecture5

The simplified GPU architecture diagram presented in Figure 1 shows the key GPU components and their hierarchical organization.

This includes a grid, thread blocks, streaming multiprocessors (SMs), cores, and GPU device memory.

Grid and Thread Blocks
At the highest level, the GPU organizes computation into a grid that consists of multiple thread blocks (labeled B1, B2…Bn). These

blocks are batches of threads, the smallest execution unit that can be executed in parallel. The grid is the overall structure that

defines the entire space over which a kernel (a GPU function) operates.

Page 12 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

Streaming Multiprocessors
Each thread block is associated with a multiprocessor (MP), also commonly referred to as a streaming multiprocessor (SM), which is

responsible for executing all the threads within that block. An SM is a processing unit within the GPU containing multiple cores and

specialized functional units. It is designed to handle multiple threads concurrently, allowing the GPU to process operations in parallel.

SMs manage groups of threads, known as warps on NVIDIA GPUs and wavefronts on AMD GPUs, which are scheduled and executed

together to optimize processing efficiency.

Cores and Functional Units
Within each SM, there are several types of cores and functional units, including the following:

• Integer Unit (IU). This handles integer operations, fundamental to various computational tasks, especially those that do not

require floating-point calculations.

• Scalar Processors (SPs). These are the actual cores that perform arithmetic computations. The high number of SPs in an SM

allow the GPU to execute large numbers of floating-point operations simultaneously.

• Special Function Units (SFUs). These units handle special mathematical functions such as sine, cosine, reciprocal, and square

root operations. SFUs perform these complex operations more efficiently than general-purpose scalar processors.

Single Instruction, Multiple Data Architecture
GPUs use single instruction, multiple data (SIMD) execution for efficient processing. In SIMD, a single instruction is executed across

multiple data points simultaneously. This is key to GPU efficiency; by executing the same operation on different data concurrently,

GPUs significantly accelerate data-parallel tasks. This approach is beneficial for graphics rendering, scientific computations, and

applications in artificial intelligence and machine learning (AI/ML), where the same operations are applied to large datasets.

GPU Device Memory
The GPU device memory is high-speed memory accessible to all SMs. It is used to store data that is processed by the kernels running

on the GPU. This memory, along with registers, shared memory within the SM, and various levels of cache, plays a vital role in

performance by storing and quickly accessing the data required for computation.

Execution Flow
The execution flow begins with the distribution of thread blocks across the available SMs. Each SM executes its assigned block of

threads, with individual threads handled by the SPs and SFUs under the control of the IU. The parallel execution of these threads

across all SMs results in high computational throughput.

Summary
This simplified GPU architecture explains the parallel processing capabilities of GPUs. With their optimized architecture, GPUs

excel at tasks that can be reduced into many smaller parallel operations. The use of diverse device memory types, efficient warp/

thread scheduling mechanisms, and SIMD execution enhances the GPU’s parallel processing prowess. While GPUs offer significant

advantages in parallel processing, they also face challenges such as power consumption, heat generation, and the complexity of

programming for parallel architectures.

Page 13 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

Appendix 2: GPU Attacks
GPUs, with their parallel processing architecture consisting of thousands of cores, are designed to handle massive volumes of

simultaneous compute operations. This architecture, while boosting computational efficiency in applications like graphics rendering,

AI/ML, and, among others, HPC, also introduces unique vulnerabilities. Attacks exploiting these leverage different elements of the

GPU, such as its memory management (global, shared, local, and texture memory), SMs, IUs and SPs, and SFUs.

In this section, we explore 10 different types of GPU attacks, including those that target the GPU itself as well as attacks that use the

GPU’s processing power. This is by no means a comprehensive list of all possible GPU attacks, but rather a survey of the different

types of attacks possible with or against GPUs.

1. GPU Side-Channel Attacks
GPU side-channel attacks exploit the physical properties of GPUs to collect sensitive information about computer systems and/

or running applications without directly accessing them. These attacks target unique characteristics of the GPU architecture, such

as the cache hierarchy and parallel processing capabilities, which can be used to infer information about the data being processed

by the system. GPU side-channel attacks are a threat to data security because they can compromise sensitive information such

as cryptographic keys or other confidential data without being detected by traditional security measures. Attackers can use these

attacks to gain unauthorized access to system resources, steal sensitive data, or disrupt processes. In this section, we present an

overview of how side-channel attacks are executed, focusing on multi-GPU systems and data compression vulnerabilities.

Cache Organization in Multi-GPU Systems
High-performance computing, especially deep learning, necessitates the use of multi-GPU systems. These systems provide high

throughput and interconnect bandwidth, which is essential for maximizing the performance of neural network training. For example,

NVIDIA’s DGX-1 system uses a hybrid cube-mesh network topology with NVLink interconnects.6 Modern GPUs like NVIDIA’s Tesla

P100 feature a two-level data cache (L1 and L2)7 with data loading primitives that allow bypassing the L1 cache.8 By leveraging these

primitives, attackers can bypass the L1 cache and directly access the L2 cache,9 leading to increased vulnerability. In multi-GPU

systems, attackers can exploit the cache organization to execute side-channel attacks by taking advantage of differences in cache

behaviour between local and remote GPUs. Attackers can use these to distinguish between cache hits and misses, and measure

access times for different cache levels.

Attack Execution
1. Profiling cache hierarchy.10, 11 The first step involves profiling the cache hierarchy’s timing characteristics. Attackers perform

tests to determine the timing differences between cache hits and misses for both local and remote GPU accesses. This involves

allocating buffers in GPU memory, and by measuring access times for different cache levels and stride sizes, attackers can

determine which buffers are cached in L1 and L2 caches, respectively. Modern GPUs also have data-loading primitives that

enable fetching data directly from memory without requiring a cache miss.12 These primitives can be used by the attackers to

bypass the cache hierarchy and access data directly.

2. Exploiting cache timing for information leakage.13, 14 With cache timing mapped out, attackers can launch timing attacks.

By strategically accessing buffers to induce contention between remote and local GPU caches, they can measure timing

discrepancies. These discrepancies reveal information about data being processed by other applications on the same physical

machine, or even applications running in a separate virtual machine (VM). By measuring the time it takes to access their own

data, the attacker can infer whether their data was evicted from cache due to the victim’s activity. Timing variations gives the

Page 14 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

attacker clues about what the victim process might be doing, data it might be accessing, and specific code paths being executed,

among others. In some scenarios, attackers can use these timing variations to break encryption, inferring secret keys15, 16 based

on the victim’s cache usage patterns during cryptographic operations.

3. Utilizing data compression vulnerabilities.17, 18 All modern GPUs employ data compression for optimization. This vendor-specific

compression can be exploited to leak visual data from GPUs. Attackers manipulate pixel data through web browsers, applying

specialized scalable vector graphics (SVG) filters to make certain textures highly compressible or uncompressible, and then

measure how long it takes the GPU to render these manipulated images. Since compression takes time, the rendering time

indirectly reveals whether the GPU found the data easy to compress, and this leaks information about the original pixel’s

content. A well-known example of this type of attack is the GPU.zip attack19, 20. This type of compression vulnerability attack

demonstrates a web-based method to attack GPUs, and highlights the risk that even seemingly harmless optimization features

can give rise to unexpected vulnerabilities.

2. GPU Rootkits
GPU rootkits21 like Jellyfish22, 23 are a sophisticated class of malware that leverages the GPU for malicious purposes. Jellyfish operates

by deploying malware that intercepts system calls made to the GPU, allowing an attacker to execute unauthorized commands and

manipulate GPU operations stealthily. Jellyfish does not provide direct access to the GPU itself, rather it uses techniques such as

LD_PRELOAD and OpenCL APIs to intercept and manipulate system calls made by applications to the GPU.

A technical breakdown of how such an attack would work, based on the concepts introduced by the Jellyfish rootkit and general

principles of how malware works, is as follows:

1. Initial infection. The attack begins with the Jellyfish rootkit infecting the target system. This can be achieved through infection

vectors such as phishing, vulnerability exploitation, or other tried-and-tested infection vectors.

2. LD_PRELOAD technique. Jellyfish uses the LD_PRELOAD technique, a method in Linux environments that allows users

to specify additional dynamic libraries to be loaded before others. The LD_PRELOAD technique allows an attacker to load

a malicious shared object into the linker’s cache, which can then be used to intercept and manipulate system calls made by

applications to the GPU. Using this technique, an attacker can gain control over the GPU and manipulate systems calls made to

the GPU.

3. OpenCL APIs. Jellyfish uses OpenCL, a vendor-independent GPU programming framework, to interact with the GPU. Jellyfish

uses OpenCL API calls to execute parallel computations on the GPU. This allows it to evade detection by traditional security tools

as it is running on the GPU versus running on the CPU.

4. Stealth and persistence. One of the key advantages of GPU-based rootkits like Jellyfish is their ability to evade detection.

Traditional malware analysis tools are not always equipped to analyze GPU memory and operations, making malware detection

in the GPU difficult. Also, the malicious code can reside in GPU memory, maintaining persistence.

5. Data siphoning and disruption. With control over the GPU, attackers can perform malicious activities, such as “snooping” on

the host CPU memory via direct memory access (DMA), siphoning data processed by the GPU, and disrupting operations by

inserting malicious compute shaders into GPU queues.

The experimental nature of Jellyfish and its implications for GPU security were disclosed at the seventh USENIX Workshop on

Offensive Technologies (WOOT) conference in 2013. For a detailed technical exploration, it is recommended to review the Jellyfish

source code and related documentation on GitHub.24, 25

Page 15 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

3. API Abuse and Kernel Manipulation
API abuse and kernel manipulation attacks in GPUs focus on misusing programming frameworks like CUDA26, 27 or OpenCL28 to

perform unauthorized operations. This type of attack could exploit weaknesses in the GPU programming framework to access

memory or execute operations that disrupt and/or monitor legitimate GPU processes. In this section, we explore how such an attack

could be carried out.

• Step 1: Exploring weaknesses. The attacker begins by identifying some weakness in GPU programming frameworks such as

CUDA or OpenCL. This could involve a range of issues such as buffer overflows, logic flaws, improper memory management,

and other API weaknesses that could be used to escalate privileges, corrupt data, or execute unauthorized code. For example,

a buffer overflow in a CUDA kernel (a CUDA kernel is a function that gets executed on NIVIDA GPUs29) that does not correctly

check the size of input data could allow an attacker to overwrite memory. Buffer overflow is just one type of exploitable API

misuse; memory management flaws or logic errors in API calls can also be used as entry points. It is important to note that the

vast majority of GPU security issues stem from improper use of APIs rather than exploitable flaws in the framework themselves.

• Step 2: Crafting the malicious payload. With a viable weakness identified, the attacker crafts a payload designed to exploit

this weakness. This might involve creating a CUDA kernel (on NVIDIA GPU) that performs unauthorized memory access or

malicious operations. Alternatively, the attacker could manipulate API call parameters from a seemingly legit application to

achieve malicious outcomes without needing to inject a full malicious kernel. Here is a simple example, a CUDA kernel designed

to cause a buffer overflow and inject malicious code:

__global__ void badKernel(int *buffer, int size) {

 int id = threadIdx.x;

 if (id == 0) {

 // Intentionally write beyond the buffer size to cause overflow

 buffer[size] = 0xdeadbeef; // Overwrite adjacent memory

 }

|}

• Step 3: Executing the attack. The attacker executes the attack, which can mean running a malicious kernel or manipulating

API call parameters in a legitimate application to exploit the identified vulnerability. The malicious code disrupts the intended

operation, leading to unauthorized access to system resources or data.

• Step 4: Exploiting the system. Once the attack is successful, the attacker can exploit their unauthorized access for malicious

purposes such as:

 ° Data exfiltration. Using the unauthorized access to snoop on GPU operations and extract sensitive data

 ° System disruption. Disrupting legitimate GPU operations, potentially leading to denial of service

 ° Privilege escalation. Escalating privileges on the host system by exploiting the GPU’s access to system memory and

resources

Page 16 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

Unauthorized access to sensitive data and system resources via API abuse and kernel manipulation can lead to security breaches,

undermining the confidentiality and integrity of the data involved. Legitimate applications that rely on GPU resources might face

disruptions or even complete failure, affecting their functionality. Also, attackers can exploit the compromised GPU resources for

other malicious activities, such as cryptomining, which divert valuable computing power and further degrade system performance.

4. Denial-of-Service Attacks
Denial-of-service (DoS) attacks target the availability of services by overwhelming them with excessive requests or computational

demands, leading to a slowdown in performance or a system crash. DoS attacks targeting GPUs30, 31, 32, 33, 34 aim to overload the

processing capabilities or memory bandwidth of the GPU, rendering them unavailable for users. We explore some of the attack

techniques that can be used to launch a DoS on GPUs.

GPUs excel at parallel processing, handling numerous threads simultaneously. DoS attacks leverage this by submitting a massive

number of computationally expensive tasks, overwhelming the GPU’s ability to execute them efficiently. We present a step-by-step

breakdown of this attack:

• Target identification. The attacker identifies a vulnerable system. This could include a cloud-based server with GPU acceleration

for tasks like graphics rendering, scientific simulations, or AI workloads.

• Crafting malicious requests. The following are two possible scenarios:

 ° Graphics rendering. The attacker creates abnormal rendering commands that require intensive processing. This could

include high-polygon 3D models with complex geometry, textures with excessive resolution or details, and shaders with

computationally expensive operations (such as excessive lighting calculations). Using libraries like OpenGL or Vulkan,

attackers can generate complex 3D models with intricate geometries and high-resolution textures.

 ° General-purpose computing. In non-graphical cases, attackers might deploy kernels that do unnecessary computations

or redundant operations. In CUDA or OpenCL, creating kernels with unnecessary loops could overload the GPU. Also,

loading large datasets will overload the GPU’s memory bandwidth during processing.

• Request amplification. In some cases, attackers exploit vulnerabilities in the target system to amplify the attack. This might

involve the following:

 ° Resource intensive computation. The attacker crafts requests designed to trigger extremely complex or inefficient

calculations on the GPU, such as a ray tracing request in a convoluted scene.

 ° Reflected DoS attacks. The attacker tricks the server into reflecting the malicious requests back to itself, exponentially

increasing the traffic.

• Weaponizing the requests. The attacker leverages various methods to bombard the target system(s) with these requests,

such as:

 ° Botnets. This involves using botnets to send large volume of requests simultaneously.

 ° Stress-testing tools. This involves modifying stress-testing tools originally designed for performance evaluation (such as

Geekbench, a popular stress-testing tool) so that these can be used for malicious purposes.

• Impact and outcomes. The overwhelming number of requests lead to the following:

 ° Resource depletion. The GPU becomes over saturated, unable to handle legitimate workload due to its high utilization.

 ° Performance degradation. Applications relying on GPU acceleration experience slowdowns.

 ° System crashes. In extreme cases, the system might crash entirely due to resource exhaustion.

Page 17 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

For example, a GPU DoS attack targets a gaming service’s graphics servers. The attacker uses botnets to send a flood of complex

rendering commands to these servers. These commands are designed to be resource-intensive, requiring significant GPU processing

power to render. The sheer volume of requests can cause the servers to significantly slow down or crash, disrupting the gaming

service for legitimate users. Beyond gaming servers, cloud-based GPU servers are used for tasks like scientific simulation and AI

applications. Highlighting this wider attack surface is important, as adversaries can target these other applications for disruption.

5. GPU Malware for Cryptomining
Cryptomining malware (also called cryptojacking) stealthily uses the GPU’s computational power on a victim machine to mine

cryptocurrencies like Bitcoin, Ethereum, Monero, and others. Attackers often target mining cryptocurrencies that offer more

privacy and use algorithms well-suited to GPU acceleration (such as cryptocurrencies) that use Proof-of-Work consensus algorithms.

Monero is a popular choice for cryptomining along with Bitcoin,35 which is now mostly mined using specialized ASIC hardware.36, 37

The attacker uses cryptomining code, written in JavaScript for web-based attacks, or low-level languages like C/C++ with CUDA or

OpenCL for more sophisticated standalone malware.

Infection Vectors
• Website compromise with WebGL.38 Attackers identify websites with exploitable vulnerabilities, allowing them to inject malicious

JavaScript. Web Graphics Library (WebGL) is used to accelerate and render 3D graphics inside a web browser. Cryptomining

scripts leverage WebGL to access the victim’s GPU without needing additional plug-ins. The following is an example code snippet

using Coinhive (now defunct) to demonstrate how a JavaScript based cryptominer is executed:

<script src="htpps://authedmine.com/lib/coinhive.min.js"></script>

<script>

 var miner = new CoinHive.Anonymous('YOUR_SITE_KEY');

 miner.start();

</script>

• Standalone malware.39 Malware disguised as legitimate software, cracks, or game cheats gets downloaded and executed by

the victim. In some cases, the malware infects a system when the victim visits a compromised site.

Operational Stages
1. Code injection/Execution. When the victim machine visits a compromised website, or gets infected by a cryptomining malware,

the mining code starts executing.

2. Miner activation. The code connects to a mining pool, often using the attacker’s own cryptocurrency wallet address to receive

the mined rewards.

3. Mining process. The miner allocates GPU resources and begins solving the complex cryptographic puzzle required to mine the

target cryptocurrency.

4. Masking activity. The miner will use different techniques to hide its presence. Techniques include throttling resource usage to

avoid noticeable performance issues and running only when the device is idle, among others.

Page 18 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

Impact
GPU cryptomining malware can severely impact the victim system. It causes performance degradation that leads to reduced system

responsiveness and overall slowdown. Additionally, the constant high utilization of the GPU leads to increased power consumption,

resulting in higher electricity bills. Over time, the prolonged strain on the GPU contributes to hardware wear, potentially shortening

the lifespan of the graphics card.

TeamTNT
In 2021, Trend published a blog entry40 discussing how TeamTNT is focusing on exploiting Kubernetes and GPU environments

for cryptomining. This strategic shift to GPUs is in response to lower reward returns for cryptocurrency mining, necessitating

higher computational power to sustain profits. TeamTNT’s tactics involve the deployment of malware optimized for GPUs in cloud

infrastructures, significantly boosting mining efficiency and illicit earnings. This approach not only demonstrates the group’s

adaptation to the changing digital currency landscape, but also represents a broader trend where attackers are exploiting high-

performance computing resources for illicit gains.

6. Exploiting Vulnerabilities in GPU Drivers
GPU drivers bridge the operating system (OS) with GPU hardware, and hence is a lucrative target for attackers. Drivers handle

everything from memory allocation on the GPU to scheduling kernel execution. Security flaws in drivers can have serious

consequences. A single vulnerability in a GPU driver, if exploited correctly, could allow an attacker to break out of the security sandbox

meant to isolate normal programs, gaining the ability to execute code directly on the GPU. Common vulnerabilities found in GPU

drivers41, 42, 43 include buffer overflows, memory management errors, improper input handling, and logic flaws. These vulnerabilities

can be exploited to manipulate the driver’s behavior, leading to DoS attacks, privilege escalation, information leak, and the ability

execute malicious code on the GPU itself.44, 45

In this section, we explore common GPU driver vulnerabilities. This is by no means a complete list, but rather a survey of driver

vulnerability that regularly recur. Some of these vulnerabilities are unique to GPU drivers, while others apply to all drivers in general.
, 46, 47, 48

Denial-of-Service (DoS)
Attackers bombard the driver with requests that trigger excessive usage. These requests could include the following:49

• Infinite loops. These involve crafting a kernel submission that gets stuck in an infinite loop, consuming GPU resources.

• Excessive memory allocation. This involves requesting unreasonably large memory allocations on the GPU, exhausting the

available memory resulting in performance degradation.

• Unnecessary synchronization. This involves triggering the driver to perform excessive synchronizations, disrupting the

smooth flow of tasks and impacting overall system responsiveness.

Attackers will send malformed data designed to crash the driver. These can be corrupted GPU kernel parameters, which can

potentially lead to undefined behavior and crashes. Also, they could send requests that instruct the driver to access invalid memory

locations, which triggers a memory access violation and causes a crash.

Page 19 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

Privilege Escalation

• Buffer overflows. Similar to classic buffer overflows,50 attackers send excessive data to overrun buffers in the GPU driver or

within GPU-side code. If input validation is poor, this could overwrite critical data structures in GPU memory. The goal often is to

manipulate shader execution, disrupt rendering processes, or leak sensitive information.

• Use-After-Free (UAF).51 This involves exploiting a logic flaw that allows the attacker to free a piece of memory and then use it

again before the driver has a chance to properly mark it as free. This could allow the attacker to manipulate the freed memory’s

contents and potentially overwrite data structures controlling access rights.

• Direct Kernel Object Manipulation (DKOM).52 If the GPU driver offers ways to interact directly with kernel objects, then

attackers might find ways to modify these objects in a way that compromises security. This could involve modifying memory

mappings, task queues, or other sensitive structures managed by the GPU driver, potentially leading to data leaks or unauthorized

access to the GPU.

• Logic flaws.53 Bugs in how the GPU driver handles access control, resource allocation, or virtualization layers can introduce

loopholes. Attackers exploit these logical flaws to bypass security checks and escalate privileges, among others.

Information Disclosure
Out-of-bound reads54 target vulnerabilities that allow attackers to read data from memory locations outside the intended boundaries,

both within system memory and the GPU's own memory regions. This could involve creating kernel submissions that access memory

containing sensitive information like cryptographic keys or other confidential data. The data read via an out-of-bounds vulnerability

might not always be directly valuable. However, it could give the attacker clues about the memory layout or expose underlying data

structures, aiding in the design of future exploits that compromise the GPU.

Data Tampering55

The goal is to modify data used by the system. This could be kernel-level tampering (a GPU kernel is a function that runs on the SM),

which alters the input arguments passed to GPU kernels resulting in manipulation of data being processed or affect calculations

being performed. Data tampering can disrupt simulations, corrupt scientific computations, or alter the outcomes of machine-

learning tasks running on the GPU. There are also indirect kernel modifications where attackers target the driver’s internal data

structures that control how kernels are launched or scheduled. By modifying these structures, they could potentially influence how

data is processed on the GPU. If a GPU driver allows for shared memory regions between user-mode applications and the kernel,56

attackers might try corrupting data in user-mode memory, which is then used by the GPU, leading to altered results.

Code Execution
We already discussed buffer overflow attacks where the attacker overwrites the driver’s control flow with malicious code that gets

executed in the driver memory space with potentially escalated privilege. There are also format string vulnerabilities57 that arise

from improper handling of user-supplied format strings. Attackers craft a format string that triggers the driver to call unintended

functions or reveal sensitive data from memory.

Improper Access Control58, 59

Logic bypass targets flaws in how the driver determines which resources are accessible to a particular process. This could involve

permission spoofing, where an attacker tricks the driver into believing their process has higher privileges than it actually does,

granting them unauthorized access to GPU resources. There are also race conditions where attackers take advantage of timing

Page 20 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

vulnerabilities in the driver’s access control mechanism. By carefully timing their requests, an attacker might be able to exploit a

window of opportunity where the driver hasn’t properly verified access rights.

Null Pointer Dereference60

An attacker crafts input that tricks the GPU driver into attempting to use an invalid (null) pointer. This can lead to crashes or other

unpredictable behavior, such as the following:

• Denial of service. Crashes are the most common outcome of null pointer deference attacks. Attackers often use these crashes

to create system instability, potentially opening up opportunities for other attacks.

• Hypervisor attacks. In virtualized environments, triggering crashes in the hypervisor responsible for GPU management could

compromise the security isolation between virtual machines.

• Memory probing. A crash caused by a null pointer dereference could leak information about the driver’s memory layout.

This information, while limited in scope, could potentially be used in conjunction with other vulnerabilities to build a more

sophisticated attack chain.

Buffer Overflows
A buffer overflow occurs when data being written exceeds the buffer’s capacity, leading to adjacent memory overwrite. This

compromises the driver’s execution flow, allowing attackers to manipulate the control flow of the program. By exploiting a buffer

overflow vulnerability, attackers can execute unauthorized code inside the GPU’s operational environment, breaching its security

protocols. The following are two common methods of triggering buffer overflow:

• Return-Oriented Programming (ROP).61, 62 This is an exploitation technique where attackers leverage existing code snippets

within the driver, known as “gadgets,” to execute arbitrary code. This method circumvents protection against code injection by

using the driver’s own codebase against it. Attackers craft the payload to manipulate the stack, redirecting the execution flow

without introducing new code, thus bypassing security checks.

• Heap overflow.63, 64 Attacker input causes an overflow of dynamically allocated memory (the heap) within the GPU driver or

in GPU-side code. This tactic doesn’t directly hijack the program’s control flow, but it corrupts data structures or variables in

the heap to influence the application’s behavior, potentially leading to unauthorized code execution or altered logic flow. By

carefully crafting the overflow content, attackers can manipulate the application’s execution path, setting the stage for more

sophisticated attacks or to gain unauthorized access.

Improper Input Validation65

In this attack, the driver doesn’t properly sanitize data from user applications or external sources before processing it. This creates

an open door for attacks. Exploitable scenarios include unexpected data types where the driver might be expecting an integer, but

the attacker instead provides a string. This mismatch between expected and input data can lead to unforeseen code paths and

memory manipulation depending on how the driver is coded.66 Another method involves triggering error conditions where attackers

intentionally provide malformed data in an attempt to force the driver into an error state, potentially exposing exploitable memory

corruption or side-channel leaks.

Page 21 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

Resource Management Errors
Attackers craft requests designed to consume excessive system resources. Examples include memory fragmentation67 - forcing

the driver to allocate and free memory in a specific pattern that leaves it with many small unusable chunks, even though total free

memory size is large. Another method is kernel execution stalls, where submitting long-running kernels prevent the GPU from

processing other tasks68, 69 because of memory pipeline stalls, essentially starving other applications of the GPU’s processing power.

Aside from these, attackers could also target other GPU-related resources such as bandwidth, hardware queues, or processing

channels.

Final Thoughts
In real-world attacks, multiple vulnerabilities are combined to form a chain-of-exploits. The effectiveness of certain exploits depends

on the specific vulnerabilities present in the driver, the GPU architecture, as well as other factors such as the operating system and

applications running on the system.

7. GPU-Assisted Code Obfuscation
Malware authors constantly seek new methods to hide their malicious code, and GPUs offer a unique method for obfuscation.

Traditional methods for code obfuscation are well understood and many algorithms have been reverse engineered. Most antivirus

scanners are able to emulate and unpack binaries packed with popular commercial packers, as well as flag binaries packed with

unknown packers. In this cat-and-mouse game, GPU-assisted obfuscation70, 71 introduces a new level of complexity, aiming to hinder

reverse engineering and malware detection. We explore how malware can use the GPU for code obfuscation.

The attacker’s piece of malware isn’t just a normal executable, it contains two parts:

• Obfuscated code: the core malicious logic (user code) is deliberately obfuscated

• GPU-based deobfuscator: GPU kernels (unpacking code) that deobfuscate the packed user code

When the malware is run, the packed user code is not executed directly on the CPU. Parts of it or the entire obfuscated/packed code

is sent to the GPU depending on the decryption strategy. The GPU kernels execute, applying complex transformations (decryption,

unpacking, among others) to deobfuscate the user code. The deobfuscated code is sent back to the CPU, or executed directly on

the GPU itself if the malware’s functionality allows for that. The deobfuscation logic lives on the GPU, making static analysis of the

malware on disk difficult. The effectiveness of the deobfuscation might depend on GPU-specific hardware, making analysis even

more difficult if the researcher doesn’t have the exact GPU hardware available. Also, understanding the GPU kernels embedded in

the malware code requires knowledge of GPU programming, which raises the bar for analysis.

Malware types using GPU-based obfuscation already exist, but they are not widespread. Detection often relies on behavioral analysis

instead of static signature scans. This is an active area where attackers develop new GPU-based tricks while security researchers

find ways to counter them. While the focus of this section was on malware, GPU-based obfuscation can also be used by legitimate

software developers to protect their intellectual property from being reverse engineered.

Page 22 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

8. Overdrive Fault Attacks
To optimize power and performance, GPUs dynamically adjust their voltage and clock speeds. Overdrive features give users control

over these parameters. Pushing GPUs beyond their operational limits via overdrive can induce errors in computation. Attackers aim

to exploit this in a controlled manner.72, 73, 74 This isn’t about crashing the GPU but more about causing very specific, predictable errors

that can be used to break security mechanisms. We explore how overdrive fault attacks work.

Target Identification
The attacker identifies GPU operations that are particularly sensitive to faults. These could be:

• Cryptography. This involves algorithms where a single bit error can corrupt the entire output in a known way.

• Scientific computations. These are computations where even small result deviations can have major consequences.

Fault Induction Techniques
• Overdrive mechanism. Attackers use overclocking and/or under-volting tools, typically used by enthusiasts for performance

enhancements, to deliberately introduce computational errors. Attackers do this by increasing or decreasing the GPU’s power

consumption or manipulating the GPU’s voltage and clock speeds.

• Threshold calibration. The goal is to find the threshold where errors start to appear consistently, but the GPU doesn’t fully

crash. Finding this happy medium requires a lot of experimentation.

Attack Execution Strategy
• Synchronization and timing. The attacker needs their fault injection to coincide with the exact moment the target code is

running on the GPU.

• Manipulation methods. This could involve the attacker’s code making intensive GPU requests right before the victim’s sensitive

operation to force aggressive power adjustments.

Example Attack
An attacker wants to disrupt a GPU accelerated encryption process.75 By precisely timing a fault — achieved through manipulating

the GPU’s operational parameters such as its voltage and clock speeds — the attacker introduces errors into the cryptographic

computation. This is not a blunt-force attack aimed at triggering a system failure, but a sophisticated strategy designed to exploit the

GPU’s dynamic performance scaling features. By pushing the GPU beyond its safe operational limits using overdrive/overclocking,

the attacker can cause the GPU to execute erroneous computations. If done correctly, these induced faults can lead to partial or

complete compromise of the cryptographic operation’s security, such as exposing the encryption key or corrupting the encrypted

data in a way that is beneficial to the attacker. This method of overdrive leverages precise control over the GPU’s environment to

alter the outcome of high security operations.

Page 23 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

9. Memory Snooping/Cross-VM Attacks in vGPU Environments
A virtualized GPU76 (vGPU) creates isolated slices of a physical GPU, allowing multiple VMs to share the GPU as if each had its own

dedicated GPU. The physical GPU is shared through time-sharing or hardware-level partitioning of resources (registers, memory,

among others) into multiple vGPUs, each presented to a VM as if it were a dedicated device. This resource sharing is managed by

a virtualization layer overseen by the hypervisor, which handles memory mapping, scheduling, and enforcing security boundaries.

Major vendors like NVIDIA, AMD, and Intel offer vGPU solutions, each with their own implementation details. While essential for cloud

environments, the complexity of vGPUs introduces potential vulnerabilities.77, 78 Flaws in the virtualization layer,79, 80 the GPU driver,

or even the underlying GPU hardware can jeopardize memory isolation, opening the door to attacks such as cross-VM memory

snooping. Attacks are vendor-specific due to differences in vGPU implementations.

Attack Scenarios
• Hypervisor/Virtualization layer breach.81, 82 The hypervisor orchestrates the GPU virtualization layer, essentially acting as a

“traffic police” for GPU access. Vulnerabilities in how it maintains separate address spaces for each VM could be exploited. An

attacker might trick the hypervisor into inadvertently exposing memory regions belonging to another VM, granting unauthorized

access to sensitive data.

• GPU driver vulnerability. The GPU driver is responsible for translating requests from VMs into actions executed by the GPU.

Flaws in its memory management or scheduling mechanisms could be used as an attack vector. An attacker might craft requests

specifically designed to exploit these flaws, allowing them to read or modify data residing within another VM’s allocated GPU

memory.

• Hardware-level exploits. These are less common, but vulnerabilities in the GPU hardware itself also pose a threat. Flaws in the

GPU’s memory management unit (MMU),83 which is responsible for enforcing address boundaries, could become backdoors for

attackers. Exploiting these types of vulnerabilities requires a high degree of sophistication, but if it is done correctly, it allows an

attacker to bypass security measures implemented at the software level. Successful hardware-level exploits are difficult to pull

off, and therefore are less frequently seen in the wild compared to software-level attacks.

Hypothetical Example
• Setup: Two VMs (VM-A and VM-B) are sharing a physical GPU via vGPU. VM-A is controlled by the attacker, while VM-B belongs

to a legitimate user. A vulnerability exists in the hypervisor’s page table management — mappings between virtual memory

addresses (used by VMs) and the GPU’s physical memory.

• Attack methods:

 ° Reverse engineering. The attacker, operating inside VM-A, analyzes the hypervisor’s behavior to understand its memory

allocation strategies. They look for patterns in how page tables are assigned as VMs issue GPU requests.

 ° Exploit development. The attacker crafts memory requests through VM-A designed to exploit the vulnerability in the

hypervisor’s page table management. The goal is to trick the hypervisor into misinterpreting these requests, mapping them

into memory belonging to VM-B.

 ° Data theft. If successful, the attacker’s VM-A can now issue read commands to the incorrectly mapped addresses inside

VM-B. The attacker operates like they are accessing their own VM’s data, but they are actually reading sensitive data

residing in VM-B’s GPU memory. Sensitive data processed on the GPU could include financial information, private images,

and intermediate results of neural network training (allowing the attacker to potentially steal the model itself).

Page 24 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

10. Compromised AI Models/Trojaning
We begin with an analogy. Imagine AI models as complex machines built from thousands of interconnected parts. Trojaning is subtly

altering a few critical components or instructions they follow, causing the entire machine to behave erratically and produce incorrect

results. This manipulation can occur at different stages: Attackers might contaminate/poison84, 85 the raw materials (data) used to

construct the machine, directly modify its internal workings after construction, or sabotage the environment in which the machine

operates. These attacks can lead to the AI model (our complex machine) making incorrect decisions, exhibiting discriminatory

biases, or exposing private information (training data) — much like a tampered machine might malfunction, produce faulty items,

or even cause physical harm. In this section, we explore these types of attacks against AI using GPUs. We also present our findings

experimenting with the LeftoverLocals86 vulnerability, which can be exploited to recover a victim’s interactive session with an LLM

from the GPU’s local memory (that is, device memory).

Training Data Poisoning
Attackers design triggers to manipulate AI models during GPU-accelerated training. These triggers must be reliably detectable by

the model, yet they remain virtually imperceptible to humans. (Note: Designing undetectable yet reliable triggers needs extensive

trial-and-error by the attacker.) This could involve overlaying high-frequency noise patterns onto images,87 embedding textual

watermarks that exploit natural language processing (NLP) model parsing quirks, or strategically modifying timing or values in

time-series or sensor data. To inject these triggers, attackers employ techniques like label flipping (simply mislabeling; for example,

designating “malignant” images as “healthy” images) or, for higher stealth, subtly blending triggers into clean data samples. GPUs

play a crucial role in enabling these attacks. Attackers with GPU access can create vast amounts of poisoned data variations to

find the most potent triggers. GPU-enabled training on huge datasets makes it more difficult to identify poisoned samples pre-

deployment.

Trojaning
Trojaning,88, 89, 90 the practice of directly manipulating a trained AI model, is a serious threat in GPU-centric environments. Successful

attacks often require the attacker to possess detailed knowledge of the target model’s architecture, a sample of the original training

data, and a GPU setup similar to the original training environment. Attackers might target specific neurons or weights within the

model, altering their values to introduce hard-to-detect changes in decision-making. Alternatively, they might strategically fine-tune

the compromised model with a poisoned dataset, further embedding malicious behaviors. GPUs accelerate the fine-tuning process,

allow the attacker to rapidly adapt the model, and embed Trojan functionality. This manipulation targets the very heart of the

model, corrupting its output in ways that could have unexpected or malicious consequences in real-world applications where these

models are deployed and executed. These attacks are tailored to the victim AI model, dataset, and the GPU architecture it runs on;

“universal” trojans are difficult to design.

Hypothetical Scenario: Attacking a Medical Image Classifier
In this hypothetical example, an image classifier responsible for medical diagnoses is targeted. The attacker employs sophisticated

techniques to embed triggers that extend beyond simple visual patterns. Manipulating image metadata (like EXIF fields) that is

typically ignored by humans, yet processed by the model, becomes an attack vector. Also, the attacker might alter pixels within a color

channel that the human eye is less sensitive to, making the trigger virtually undetectable. During deployment, these trigger-laden

images can have malicious consequences — they could crash medical equipment reliant on the model, obstructing vital diagnoses via

DoS. Worse, specific trigger patterns might lead to deliberate misdiagnoses, flagging “heathy” images as having severe conditions

and potentially triggering unnecessary and harmful treatments. This threat isn’t limited to 2D images; a similar attack could target

Page 25 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

3D models used by GPU-powered medical scanners, where the trigger becomes subtle, malicious noise embedded within the 3D

geometry itself running on the GPU.

LeftoverLocals
The LeftoverLocals vulnerability exposes a weakness in the memory isolation mechanism of Apple, Qualcomm, AMD, and Imagination

GPUs.91 This flaw allows attackers to recover sensitive data from GPU local memory, even across different processes or containers.

In their blog, the authors published a proof of concept that recovers a victim’s interactive session with an LLM from GPU local

memory.92 This vulnerability poses a serious risk to the security of LLMs and other ML models. Attackers could exploit this to extract

large amounts of data, potentially reconstructing LLM responses or derive the proprietary weights within ML models. The authors

discussed possible attack on cloud platforms, but they have not done the experiments. Therefore, we decided to reproduce their

findings on Amazon Web Services (AWS).

We confirmed that EC2 instances with NVIDIA GPUs, such as the G4dn (NVIDIA T4), are not impacted. The NVIDIA GPU on our

laptop, a GeForce M550, is also not impacted. We tested G4ad instances (AMD Radeon Pro V520) and could recover most of the

conversation between a user and the LLM. Table 1 summarizes the test environment and our results. Only OpenCL (CLBLAST) was

used in these experiments.

Instance Type GPU Impacted? Experiments

EC2 G4dn.xlarge NVIDIA T4 No Canary, LLM

EC2 G4ad.xlarge AMD Radeon Pro V520 Yes Canary, LLM

Laptop NVIDIA GeForce M550 No Canary

Table 1. Experiments and GPU models

On EC2 instances, we first used the canary to test the vulnerability. Figure 2 shows an impacted instance. We can see that when the

canary value was changed from 123 to 456, the user also observed the change.

Figure 2. Impacted instance

We tested the proof of concept of the interception of dialogs with an LLM running locally on our EC2 instance. We can confirm that

on a multi-user cloud instance, user-LLM dialog can be sniffed. We also tested privileged Docker and confirmed that an LLM dialog

running in Docker can be sniffed from another Docker, or from the host. This is because all users and Docker containers have to read

and write data from the same GPU hardware.

Page 26 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

LeftoverLocals Attack on a Kubernetes Cluster on the Cloud
Kubernetes is used to deploy production services on a cluster with multiple servers. Theoretically, servers with an impacted GPU in

a Kubernetes cluster should also be vulnerable to a LeftoverLocals attack. We proved this on a very simplified deployment with only

one control node and one worker node, running Kubernetes 1.28.7 and Docker Community Edition 25.0.3. Our configuration was as

follows:

• Control node: 1x c3.large with k8s-device-plugin93

• Worker node: 1x g4ad.xlarge with ROCm amdgpu 6.0.60001

We created a pod that runs the RESTful server of llama.cpp,94 and it sniffs on worker node. Our findings are presented in the

screenshots in Figure 3.

Figure 3. LeftoverLocals attack on an LLM running in a Kubernetes cluster

The first screenshot shows that the llama.cpp container is successfully launched in a pod. In the second screenshot, we used cURL to

pose a question to the LLM, while another process sniffed the conversation on the host. We asked the same question multiple times,

and the answer was mostly recovered, as displayed in the second screenshot. Our successful experiments with the LeftoverLocals

vulnerability underscore the critical need for rigorous security audits across all components of the AI/ML development stack.95

Page 27 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

Endnotes

1 Morton Swimmer et al. (April 8, 2020). Trend Micro. "Untangling the Web of Cloud Security Threats." Accessed on
April 2, 2024, at: Link.

2 David Fiser. (Oct. 26, 2020). Trend Micro. "Supply Chain Attacks in the Age of Cloud Computing: Risks, Mitigations,
and the Importance of Securing Back Ends." Accessed on April 2, 2024, at: Link.

3 Thales. (n.d.). Thales. "Hardware Security Modules (HSMs)." Accessed on April 2, 2024, at: Link.

4 rolyon et al. (March 12, 2024). Microsoft Learn. "What is Azure role-based access control (Azure RBAC)?" Accessed on
April 2, 2024, at: Link.

5 Satish Chikkagoudar, Kai Wang, and Mingyao Li. (May 2011). ResearchGate. "GENIE: A software package for gene-gene
interaction analysis in genetic association studies using multiple GPU or CPU cores." Accessed on April 2, 2024, at:
Link.

6 Mark Harris. (April 5, 2017). NVIDIA Developer. "NVIDIA DGX-1: The Fastest Deep Learning System." Accessed on April
2, 2024, at: Link.

7 NVIDIA. (n.d.). NVIDIA. "NVIDIA Tesla P100." Accessed on April 2, 2024, at: Link

8 Sankha Baran Dutta et al. (March 30, 2022). arXiv. "Spy in the GPU-box: Covert and Side Channel Attacks on Multi-
GPU Systems." Accessed on April 2, 2024, at: Link.

9 NVIDA Developer Forums. (March 20, 2015). NVIDA Developer Forums. “Switch off L1 cache.” Accessed on April 2,
2024, at: Link.

10 Dag Arne Osvik, Adi Shamir, and Eran Tromer. (Aug. 14, 2005). International Association for Cryptologic Research.
"Cache Attacks and Countermeasures: the Case of AES." Accessed on April 2, 2024, at: Link.

11 Sankha Baran Dutta et al. (March 30, 2022). arXiv. "Spy in the GPU-box: Covert and Side Channel Attacks on Multi-
GPU Systems." Accessed on April 2, 2024, at: Link.

12 Adam Thompson and CJ Newburn. (Aug. 6, 2019). NVIDIA Developer. "GPUDirect Storage: A Direct Path Between
Storage and GPU Memory." Accessed on April 2, 2024, at: Link.

13 Sankha Baran Dutta et al. (March 30, 2022). arXiv. "Spy in the GPU-box: Covert and Side Channel Attacks on Multi-
GPU Systems." Accessed on April 2, 2024, at: Link.

14 Abid Shahzad and Alan Litchfield. (2015). Australasian Conference on Information Systems. "Virtualization Technology:
Cross-VM Cache Side Channel Attacks make it Vulnerable." Accessed on April 2, 2024, at: Link.

15 Chao Luo et al. (Dec. 17, 2015). IEEE. "Side-channel power analysis of a GPU AES implementation." Accessed on April
2, 2024, at: Link.

16 Chao Luo, Yunsi Fei, and David Kaeli. (Aug. 2019). Association for Computing Machinery. "Side-channel Timing Attack
of RSA on a GPU." Accessed on April 2, 2024, at: Link.

17 Sankha Baran Dutta et al. (March 30, 2022). arXiv. "Spy in the GPU-box: Covert and Side Channel Attacks on Multi-
GPU Systems." Accessed on April 2, 2024, at: Link.

18 Bill Toulas. (Sept. 27, 2023). BleepingComputer. "Modern GPUs vulnerable to new GPU.zip side-channel attack."
Accessed on April 2, 2024, at: Link.

19 Sankha Baran Dutta et al. (March 30, 2022). arXiv. "Spy in the GPU-box: Covert and Side Channel Attacks on Multi-
GPU Systems." Accessed on April 2, 2024, at: Link.

https://documents.trendmicro.com/assets/white_papers/wp-untangling-the-web-of-cloud-security-threats.pdf
https://documents.trendmicro.com/assets/white_papers/supply-chain-attacks-in-the-age-of-cloud-computing.pdf
https://cpl.thalesgroup.com/encryption/hardware-security-modules
https://learn.microsoft.com/en-us/azure/role-based-access-control/overview
https://www.researchgate.net/publication/51168475_GENIE_A_software_package_for_gene-gene_interaction_analysis_in_genetic_association_studies_using_multiple_GPU_or_CPU_cores
https://developer.nvidia.com/blog/dgx-1-fastest-deep-learning-system
https://stack.watch/product/nvidia/virtual-gpu
https://arxiv.org/pdf/2203.15981.pdf
https://forums.developer.nvidia.com/t/switch-off-l1-cache/37274
https://eprint.iacr.org/2005/271.pdf
https://arxiv.org/pdf/2203.15981.pdf
https://developer.nvidia.com/blog/gpudirect-storage
https://arxiv.org/pdf/2203.15981.pdf
https://arxiv.org/ftp/arxiv/papers/1606/1606.01356.pdf
https://ieeexplore.ieee.org/document/7357115
https://dl.acm.org/doi/fullHtml/10.1145/3341729
https://arxiv.org/pdf/2203.15981.pdf
https://www.bleepingcomputer.com/news/security/modern-gpus-vulnerable-to-new-gpuzip-side-channel-attack
https://arxiv.org/pdf/2203.15981.pdf

Page 28 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

20 Bill Toulas. (Sept. 27, 2023). BleepingComputer. "Modern GPUs vulnerable to new GPU.zip side-channel attack."
Accessed on April 2, 2024, at: Link.

21 Evangelos Ladakis et al. (2013). Columbia University. "You Can Type, but You Can’t Hide: A Stealthy GPU-based
Keylogger." Accessed on April 2, 2024, at: Link.

22 Dan Goodin. (May 7, 2015). Ars Technica. "GPU-based rootkit and keylogger offer superior stealth and computing
power." Accessed on April 2, 2024, at: Link.

23 Eduard Kovacs. (May 8, 2015). SecurityWeek. "PoC Linux Rootkit Uses GPU to Evade Detection." Accessed on April 2,
2024, at: Link.

24 nwork. (n.d.). GitHub. “GPU rootkit PoC.” Accessed on April 2, 2024, at: Link.

25 vineetgaurav. (n.d.). GitHub. "Windows GPU rootkit PoC." Accessed on April 2, 2024, at: Link.

26 Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. (n.d.). arXiv. "CUDA Leaks: Information Leakage in GPU
Architectures." Accessed on April 2, 2024, at: Link.

27 Andrea Miele. (n.d.). arXiv. "Buffer overflow vulnerabilities in CUDA: a preliminary analysis." Accessed on April 2,
2024, at: Link.

28 Wentao Li et al. (Feb. 2022). ScienceDirect. "CVFuzz: Detecting complexity vulnerabilities in OpenCL kernels via
automated pathological input generation." Accessed on April 2, 2024, at: Link.

29 Pradeep Gupta. (June 26, 2020). NVIDIA Developer. "CUDA Refresher: The CUDA Programming Model." Accessed on
April 2, 2024, at: Link.

30 Sparsh Mittal, S.B. Abhinaya, Manish Reddy, and Irfan Ali. (March 31, 2018). arXiv. "A Survey of Techniques for
Improving Security of GPUs." Accessed on April 2, 2024, at: Link.

31 Yongdong Wu et al. (Jan. 2015). ResearchGate. "Software Puzzle: A Countermeasure to Resource-Inflated Denial-of-
Service Attacks." Accessed on April 2, 2024, at: Link.

32 Muhammad Zuhair. (Aug. 12, 2023). Wccf tech. "Intel Arc GPUs Become Victim of a New Vulnerability, Leading to
Denial of Service." Accessed on April 2, 2024, at: Link.

33 The Cyber Express. (Nov. 17, 2022). The Cyber Express. "NVIDIA GPU Driver Vulnerability May Cause DoS Attack."
Accessed on April 2, 2024, at: Link.

34 Nelson Lungu, Daliso Banda, and Luka Ngoyi. (Feb. 2023). International Research Journal of Modernization in
Engineering Technology and Science. "Sidebar Attacks on GPUs." Accessed on April 2, 2024, at: Link.

35 D-Central. (Oct 8, 2023). LinkedIn. "Picking the Top Cryptocurrency to Mine in 2023: Why Bitcoin Remains Supreme."
Accessed on April 2, 2024, at: Link.

36 JASMINER. (n.d.). Sunlune Ltd. "JASMINER." Accessed on April 2, 2024, at: Link.

37 BITMAIN. (n.d.) BITMAIN Technologies Holding Company. "BITMAIN." Accessed on April 2, 2024, at: Link.

38 davidawad. (n.d.). GitHub. "Distributed Client Side Bitcoin Miner." Accessed on April 2, 2024, at: Link.

39 Kevin Y. Huang. (July 5, 2017). Trend Micro. "Security 101: The Impact of Cryptocurrency-Mining Malware." Accessed
on April 2, 2024, at: Link.

40 David Fiser and Alfredo Oliveira. (Nov. 11, 2021). Trend Micro. "TeamTNT Upgrades Arsenal, Refines Focus on
Kubernetes and GPU Environments." Accessed on April 2, 2024, at: Link.

41 NVIDIA. (n.d.). NVIDIA. "Product Security." Accessed on April 2, 2024, at: Link.

42 AMD. (n.d.). Advanced Micro Devices, Inc. "AMD Product Security." Accessed on April 2, 2024, at: Link.

https://www.bleepingcomputer.com/news/security/modern-gpus-vulnerable-to-new-gpuzip-side-channel-attack
http://www.cs.columbia.edu/~mikepo/papers/gpukeylogger.eurosec13.pdf
https://arstechnica.com/information-technology/2015/05/gpu-based-rootkit-and-keylogger-offer-superior-stealth-and-computing-power
https://www.securityweek.com/poc-linux-rootkit-uses-gpu-evade-detection
https://github.com/nwork/jellyfish
https://github.com/vineetgaurav/WIN_JELLY
https://ar5iv.labs.arxiv.org/html/1305.7383
https://ar5iv.labs.arxiv.org/html/1506.08546
https://www.sciencedirect.com/science/article/abs/pii/S0167739X21003526
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model
https://arxiv.org/pdf/1804.00114.pdf
https://www.researchgate.net/publication/273395827_Software_Puzzle_A_Countermeasure_to_Resource-Inflated_Denial-of-Service_Attacks
https://wccftech.com/intel-arc-gpus-become-victim-of-a-new-vulnerability-leading-to-denial-of-service
https://thecyberexpress.com/nvidia-gpu-drivers-vulnerability-with-cve-2022-34666
https://www.irjmets.com/uploadedfiles/paper/issue_2_february_2023/33377/final/fin_irjmets1675836151.pdf
https://www.linkedin.com/pulse/picking-top-cryptocurrency-mine-2023-why-bitcoin-remains
https://www.jasminer.com/#/home/index
https://www.bitmain.com
https://github.com/davidawad/DistributedBitcoinMiner
https://www.trendmicro.com/vinfo/de/security/news/cybercrime-and-digital-threats/security-101-the-impact-of-cryptocurrency-mining-malware
https://www.trendmicro.com/en_us/research/21/k/teamtnt-upgrades-arsenal-refines-focus-on-kubernetes-and-gpu-env.html
https://www.nvidia.com/en-us/security
https://www.amd.com/en/resources/product-security.html#security

Page 29 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

43 Qualcomm. (April 1, 2024). Qualcomm Technologies, Inc. "April 2024 Security Bulletin." Accessed on April 2, 2024, at:
Link.

44 Ionut Ilascu. (Aug. 31, 2021). BleepingComputer. "Cybercriminal sells tool to hide malware in AMD, NVIDIA GPUs."
Accessed on April 2, 2024, at: Link.

45 Aleksandar Kostovic. (Sept. 1, 2021). Tom's Hardware. "Cyberhack Hides Malicious Code in Your Graphics Card's
VRAM." Accessed on April 2, 2024, at: Link.

46 DOMARS, mhopkins-msft, and aviviano. (Aug. 31, 2023). Microsoft Learn. "Threat modeling for drivers." Accessed on
April 2, 2024, at: Link.

47 Common Weakness Enumeration. (n.d.). Common Weakness Enumeration. "CWE - Common Weakness Enumeration."
Accessed on April 2, 2024, at: Link.

48 Exploit Database. (n.d.) Exploit Database. "Exploit Database." Accessed on April 2, 2024, at: Link.

49 ScienceDirect. (2022). ScienceDirect. "Denial of Service Attack." Accessed on April 2, 2024, at: Link.

50 Nsrav. (n.d.). The OWASP Foundation. "Denial of Service." Accessed on April 2, 2024, at: Link.

51 Snyk. (n.d.). Snyk Learn. "Use after free." Accessed on April 2, 2024, at: Link.

52 Jamie Butler. (n.d.). Black Hat. "DKOM (Direct Kernel Object Manipulation)." Accessed on April 2, 2024, at: Link.

53 RootKid. (July 27, 2023). Medium. "Mastering the Art of Logic Flaws: Unraveling Cyber Mysteries !!!" Accessed on
April 2, 2024, at: Link

54 Stack Overflow. (Nov. 20, 2020). Stack Overflow. "CUDA is it possible to have out-of-bound access that results in no
error?" Accessed on April 2, 2024, at: Link.

55 Aaron Klotz. (March 1, 2024). Tom's Hardware. "Nvidia publishes eight security flaws patched by new drivers — update
to fix the issues." Accessed on April 2, 2024, at: Link.

56 Man Yue Mo. (July 27, 2022). GitHub Blog. "Corrupting memory without memory corruption." Accessed on April 2,
2024, at: Link.

57 meir555. (n.d.). The OWASP Foundation. "Format string attack." Accessed on April 2, 2024, at: Link.

58 NVIDIA Corporation. (Nov. 2, 2023). National Vulnerability Database. "CVE-2023-31020 Detail." Accessed on April 2,
2024, at: Link.

59 NVIDIA Corporation. (Feb. 15, 2017). National Vulnerability Database. "CVE-2017-0311 Detail." Accessed on April 2,
2024, at: Link.

60 The OWASP Foundation. (n.d.). The OWASP Foundation. "Null Dereference." Accessed on April 2, 2024, at: Link.

61 Saif El-Sherei. (n.d.). Exploit Database. "Return-Oriented-Programming (ROP FTW)." Accessed on April 2, 2024, at:
Link.

62 Andrea Miele. (n.d.). arXiv. "Buffer overflow vulnerabilities in CUDA: a preliminary analysis." Accessed on April 2,
2024, at: Link.

63 Sergei Glazunov. (Nov. 24, 2022). Google Project Zero. "CVE-2022-4135: Chrome heap buffer overflow in validating
command decoder." Accessed on April 2, 2024, at: Link.

64 Aviral Srivastava. (Dec. 31, 2022). Medium. "Heap-Based Buffer Overflow Attacks: The Stealthy Threat to Your
System’s Security." Accessed on April 2, 2024, at: Link.

65 Common Weakness Enumeration. (n.d.). Common Weakness Enumeration. "CWE-20: Improper Input Validation."
Accessed on April 2, 2024, at: Link.

https://docs.qualcomm.com/product/publicresources/securitybulletin
https://www.bleepingcomputer.com/news/security/cybercriminal-sells-tool-to-hide-malware-in-amd-nvidia-gpus
https://www.tomshardware.com/news/code-hides-in-gpu-memory
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers
https://cwe.mitre.org
https://www.exploit-db.com
https://www.sciencedirect.com/topics/computer-science/denial-of-service-attack
https://owasp.org/www-community/attacks/Denial_of_Service
https://learn.snyk.io/lesson/use-after-free
https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
https://medium.com/nest-infosec/mastering-the-art-of-logic-flaws-unraveling-cyber-mysteries-for-beginners-537c5e57f0e5.
https://stackoverflow.com/questions/64930876/cuda-is-it-possible-to-have-out-of-bound-access-that-results-in-no-error
https://www.tomshardware.com/pc-components/gpus/nvidia-publishes-eight-security-flaws-patched-by-new-drivers-update-to-fix-the-issues
https://github.blog/2022-07-27-corrupting-memory-without-memory-corruption
https://owasp.org/www-community/attacks/Format_string_attack
https://nvd.nist.gov/vuln/detail/CVE-2023-31020
https://nvd.nist.gov/vuln/detail/CVE-2017-0311
https://owasp.org/www-community/vulnerabilities/Null_Dereference
https://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
https://ar5iv.labs.arxiv.org/html/1506.08546
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2022/CVE-2022-4135.html
https://medium.com/@aviral23/heap-based-buffer-overflow-attacks-the-stealthy-threat-to-your-systems-security-423e36429865
https://cwe.mitre.org/data/definitions/20.html

Page 30 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

66 Vumetric Cyber Portal. (July 4, 2023). Vumetric Cyber Portal. "CVE-2023-25522 - Improper Input Validation
vulnerability in Nvidia DGX A100 Firmware and DGX A800 Firmware." Accessed on April 2, 2024, at: Link.

67 NVIDA Developer Forums. (Oct. 13, 2009). NVIDA Developer Forums. “Memory fragmentation.” Accessed on April 2,
2024, at: Link.

68 Hongwen Dai et al. (2022). North Carolina State University. "Accelerate GPU Concurrent Kernel Execution by
Mitigating Memory Pipeline Stalls." Accessed on April 2, 2024, at: Link.

69 Xiuhong Li and Yun Liang. (2016). Peking University. "Efficient Kernel Management on GPUs." Accessed on April 2,
2024, at: Link.

70 eversinc33. (March 18, 2023). eversinc33. "Abusing the GPU for Malware with OpenCL." Accessed on April 2, 2024, at:
Link.

71 Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. (2010). IEEE. "GPU-assisted malware." Accessed on
April 2, 2024, at: Link.

72 Majid Sabbagh, Yunsi Fei, and David Kaeli. (2020). IEEE. "A Novel GPU Overdrive Fault Attack." Accessed on April 2,
2024, at: Link.

73 Sayandeep Saha. (July 25, 2020). YouTube. "2-minute Video about a DAC paper: A Novel GPU Overdrive Fault Attack."
Accessed on April 2, 2024, at: Link.

74 Majid Sabbagh, Yunsi Fei, and David Kaeli. (2021). IEEE. "Overdrive Fault Attacks on GPUs." Accessed on April 2, 2024,
at: Link.

75 Canhui Wang and Xiaowen Chu. (Feb. 14, 2019). arXiv. "GPU Accelerated AES Algorithm." Accessed on April 2, 2024,
at: Link.

76 NVIDIA. (n.d.). NVIDIA. "Unlock Next Level Performance with Virtual GPUs." Accessed on April 2, 2024, at: Link.

77 StackWatch. (n.d.). StackWatch. "NVIDIA Virtual Gpu Manager." Accessed on April 2, 2024, at: Link.

78 StackWatch. (n.d.). StackWatch. "NVIDIA Virtual Gpu." Accessed on April 2, 2024, at: Link.

79 Abid Shahzad and Alan Litchfield. (2015). arXiv. "Virtualization Technology: Cross-VM Cache Side Channel Attacks
make it Vulnerable." Accessed on April 2, 2024, at: Link.

80 Microsoft Corporation. (July 14, 2020). National Vulnerability Database. "CVE-2020-1032 Detail." Accessed on April 2,
2024, at: Link.

81 Charles F. Goncalves, Xavier Mendes, and Marco Vieira. (n.d.). Centre for Informatics and Systems of the University of
Coimbra. "Hypervisors Vulnerabilities Analysis: Causes, Effects and Consequences." Accessed on April 2, 2024, at:
Link.

82 HiTechNectar. (n.d.). HiTechNectar. "An Overview of Hypervisor Vulnerabilities." Accessed on April 2, 2024, at: Link.

83 Yong Wang. (Aug. 2023). Black Hat. "Make KSMA Great Again: The Art of Rooting Android devices by GPU MMU
features." Accessed on April 2, 2024, at: Link.

84 Cindy Casey. (n.d.). Bucks County Community College. "AI poisoning attacks." Accessed on April 2, 2024, at: Link.

85 Audra Simons. (Oct. 3, 2023). Forcepoint. "Data Poisoning: The Newest Threat to Generative AI." Accessed on April 2,
2024, at: Link.

86 Tyler Sorensen and Heidy Khlaaf. (Jan. 16, 2024). Trail of Bits. "LeftoverLocals: Listening to LLM responses through
leaked GPU local memory." Accessed on April 2, 2024, at: Link.

87 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. (March 20, 2015). arXiv. "Explaining and Harnessing
Adversarial Examples." Accessed on April 2, 2024, at: Link.

https://cyber.vumetric.com/vulns/CVE-2023-25522/improper-input-validation-vulnerability-in-nvidia-dgx-a100-firmware-and-dgx-a800-firmware
https://forums.developer.nvidia.com/t/memory-fragmentation/12745
https://hzhou.wordpress.ncsu.edu/files/2022/12/HPCA18.pdf
https://ceca.pku.edu.cn/media/lw/5df1ac882a53fccbf3f3049280822d59.pdf
https://eversinc33.com/posts/gpu-malware
https://ieeexplore.ieee.org/document/5665801
https://ieeexplore.ieee.org/document/9218690
https://www.youtube.com/watch?v=Du0ph9Qs9OU
https://ieeexplore.ieee.org/document/9525520
https://arxiv.org/pdf/1902.05234.pdf
https://www.nvidia.com/en-us/data-center/virtual-solutions
https://stack.watch/product/nvidia/virtual-gpu-manager
https://stack.watch/product/nvidia/virtual-gpu
https://arxiv.org/ftp/arxiv/papers/1606/1606.01356.pdf
https://nvd.nist.gov/vuln/detail/CVE-2020-1032
https://www.cisuc.uc.pt/download-file/16657/XBPb4BAII7BIFHqE47Tz
https://www.hitechnectar.com/blogs/hypervisor-vulnerabilities
https://i.blackhat.com/BH-US-23/Presentations/US-23-WANG-The-Art-of-Rooting-Android-devices-by-GPU-MMU-features.pdf?ref=blog.isosceles.com
https://www.bucks.edu/media/bcccmedialibrary/con-ed/itacademy/fos2022/Casey-AI-Poisoning-pdf.pdf
https://www.forcepoint.com/blog/x-labs/data-poisoning-gen-ai
https://blog.trailofbits.com/2024/01/16/leftoverlocals-listening-to-llm-responses-through-leaked-gpu-local-memory
https://arxiv.org/pdf/1412.6572.pdf

Page 31 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

For more information visit trendmicro.com

©2024 by Trend Micro Incorporated. All rights reserved. Trend Micro, and the Trend Micro t-ball logo, OfficeScan and Trend Micro Control Manager are trademarks or registered trademarks of Trend Micro Incorporated. All other company and/or
product names may be trademarks or registered trademarks of their owners. Information contained in this document is subject to change without notice. [REP01_Research_Report_Template_A4_221206US]

For details about what personal information we collect and why, please see our Privacy Notice on our website at: trendmicro.com/privacy

88 Alex Polyakov. (Aug. 6, 2019). Towards Data Science. "How to attack Machine Learning (Evasion, Poisoning, Inference,
Trojans, Backdoors)." Accessed on April 2, 2024, at: Link.

89 Akul Arora. (May 4, 2023). University of California, Berkeley. "AI Safety: Model Trojaning and Benchmarking."
Accessed on April 2, 2024, at: Link.

90 Jie Wang, Ghulam Mubashar Hassan, and Naveed Akhtar. (n.d.). arXiv. "A Survey of Neural Trojan Attacks and
Defenses in Deep Learning." Accessed on April 2, 2024, at: Link.

91 Tyler Sorensen and Heidy Khlaaf. (Jan. 16, 2024). Trail of Bits. "LeftoverLocals: Listening to LLM responses through
leaked GPU local memory." Accessed on April 2, 2024, at: Link.

92 trailofbits. (n.d.). GitHub. "LeftoverLocals." Accessed on April 2, 2024, at: Link.

93 ROCm. (n.d.). GitHub. "AMD GPU device plugin for Kubernetes." Accessed on April 2, 2024, at: Link.

94 ggerganov. (n.d.). GitHub. "LLaMA.cpp HTTP Server." Accessed on April 2, 2024, at: Link.

95 Sharon Goldman. (Dec. 15, 2023). VentureBeat. "Why Anthropic and OpenAI are obsessed with securing LLM model
weights." Accessed on April 2, 2024, at: Link.

https://towardsdatascience.com/how-to-attack-machine-learning-evasion-poisoning-inference-trojans-backdoors-a7cb5832595c
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-64.html
https://ar5iv.labs.arxiv.org/html/2202.07183
https://blog.trailofbits.com/2024/01/16/leftoverlocals-listening-to-llm-responses-through-leaked-gpu-local-memory
https://github.com/trailofbits/LeftoverLocalsRelease
https://github.com/ROCm/k8s-device-plugin
https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md
https://venturebeat.com/ai/why-anthropic-and-openai-are-obsessed-with-securing-llm-model-weights

