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Graphics processing units (GPUs) are the hardware engines driving the AI revolution. Large language model (LLM)-

powered generative AI (GenAI) became mainstream with the public release of OpenAI’s ChatGPT. AI usage has given rise 

to innovative AI-powered applications for businesses, productivity, image generation, video generation, data analysis, 

and social media, among others. Powering AI applications are GPUs, which are specialized microchips designed to 

accelerate computer graphics and image processing. GPUs are also useful for non-graphics tasks, especially parallel 

processing problems. GPUs are designed for parallel processing and can run thousands of simple compute tasks 

simultaneously, as opposed to a central processing unit (CPU), which is designed for a few complex tasks at a time. 

NVIDIA introduced a C-like programming language called Compute Unified Device Architecture (CUDA) that opened up 

GPU programming to developers. Similar to CUDA, AMD GPUs support a programming language called OpenCL, which 

aims to be a vendor-independent language for multiple platforms.

ChatGPT is an LLM, which is a class of AI that helps generate human-like responses. LLMs are competent in many 

applications such as language translation, content generation, sentiment analysis, data analysis, chatbots, and more. 

LLMs are complex neural networks with vast numbers of interconnected nodes performing repeated calculations 

and adjustments. GPUs excel at the massive parallel computations that are fundamental to neural network training 

and inference. Training complex LLMs could take tens of years on CPUs, whereas GPUs reduce that period to a more 

manageable duration of months. Specialized GPUs like NVIDIA’s, which come equipped with Tensor Cores, are designed 

for matrix operations, which are extensively used in deep learning and LLMs. GPUs also have on-chip high-speed device 

memory that is crucial for processing the enormous training datasets.

Similar to AI applications, GPUs are extensively used in high-performance computing (HPC). HPC tackles problems 

such as analyzing massive datasets and running complex simulations. These tasks have a high degree of parallelism, 

which makes them well-suited for GPUs. Simulations such as weather prediction, drug modeling, fluid dynamics, and 

protein folding require an immense number of calculations at each step, and GPUs accelerate this process. This allows 

researchers to experiment rapidly, test hypotheses, and gain valuable insights quicker. GPUs are often more energy-

efficient than CPUs for HPC tasks, allowing more computation within the same power envelope. Many HPC applications 

integrate machine learning and deep learning, as combining these techniques leads to new scientific insights and 

accelerated discovery. We already discussed how GPUs are very good at processing artificial intelligence and machine 

learning (AI/ML) tasks, so using GPUs to solve tasks that involve both HPC and AI/ML is a natural choice.

As AI training and processing as well as HPC applications become more important for businesses, they are switching to 

cloud-based GPUs versus an on-site setup. Cloud-based GPUs provide scalability and flexibility, which is great for bursty 

workloads, especially when there is a spike in the need for massive compute power followed by low usage periods. There 

is no upfront investment in expensive hardware and maintenance, as cloud services operate on a pay-as-you-go model. 

With cloud-based GPUs, users get access to the latest GPU chips available in the market. This is critical in fields like 

AI, where hardware advances greatly accelerate processing tasks. Another advantage is global access to shared GPU 

resources without worrying about hardware logistics.

Given the increasing reliance on GPUs for everyday business tasks, this paper explores the security threats GPUs face 

and what actions can be taken to mitigate the risks. As the reliance on cloud-based GPU instances grows, so does the 

importance of ensuring their security. The threats are multifaceted, ranging from data breaches and unauthorized 

access to more sophisticated attacks like reading GPU memory. By examining these security challenges, this research 

aims to provide insights into the current threat landscape for cloud-based GPUs. It will discuss both the vulnerabilities 

inherent in these systems and strategies for protecting them against cyberattacks.
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Impacts of GPU Attacks
GPU attacks signal a shift in the cybersecurity landscape for AI/ML, LLMs, and HPC, all of which heavily rely on GPUs for 

their processing power. Cloud-based GPU systems, the backbone of these technologies, are becoming a prime target for 

sophisticated attacks that are specially crafted to exploit the unique architectural traits of GPUs, threatening the integrity, 

confidentiality, and availability of these systems. In this section, we explore the following impacts of GPU attacks:

• Increased risk of data leakage and intellectual property theft. Sophisticated attacks on cloud-based GPUs increases 

the risk of data leakage, including exfiltration of sensitive data processed by AI and ML models. Such attacks can lead to 

the theft of intellectual property, including proprietary algorithms and datasets, undermining the competitive advantage 

and confidentiality of businesses and research institutions.

• Erosion of model integrity and trust. Attacks that modify the behavior of AI and ML models or compromise the 

integrity of computations performed by HPC systems can have far-reaching consequences. Such modifications can 

result in flawed decision-making, incorrect data analysis, or biased outcomes, eroding trust in these models.

• Threats in multitenant cloud environments. Given the shared nature of cloud-based GPU resources, attacks exploiting 

vulnerabilities in the hypervisor can lead to cross-tenant data access or leakage. This amplifies the impact of attacks, as 

a single breach could potentially compromise the data and systems of multiple users.

• Exploitation of parallel processing architectures. The parallel processing capabilities of GPUs, while great for 

performance, also offer attackers a means to execute more sophisticated and hard-to-detect cyberattacks. This includes 

parallel execution of malicious payloads, GPU-based code obfuscation, or leveraging GPU resources for tasks such as 

cryptojacking or complex data analyses that support further attacks.

• Risks of cryptominers and GPU malware. Cryptominers and other forms of GPU malware present significant risks, as 

attackers could exploit cloud-based GPU resources for unauthorized cryptocurrency mining, exhausting computational 

resources and potentially causing financial losses and system instability. Cryptomining is by far the most common motive 

for attackers attempting to hijack cloud-based GPU resources. 

• Vulnerability to denial-of-service (DoS) attacks. Cloud-based GPU servers are susceptible to DoS attacks aimed 

at overwhelming GPU resources, leading to service degradation or complete service unavailability. Such attacks could 

disrupt critical AI-powered services or HPC tasks, resulting in operational and financial impacts.

• Impact on the development of AI and HPC applications. Security concerns related to cloud-based GPU attacks could 

slow the adoption, development, and deployment of AI and HPC applications. Organizations need to invest in additional 

security measures, conduct more rigorous testing, or even reconsider the use of cloud-based GPUs for mission critical 

applications.

As AI, ML, LLM, and HPC applications continue to develop and proliferate, securing the underlying GPU infrastructure against 

sophisticated attacks will be paramount to protecting the integrity, confidentiality, and availability of these technologies. Until 

now, we have talked extensively about the impacts of GPU attacks, especially on cloud-based GPUs. However, challenges in 

detecting and mitigating GPU-based attacks arise as traditional cybersecurity solutions might not be equipped to monitor 

and protect GPU resources. The detection of attacks that target or leverage GPUs will require specialized monitoring tools and 

techniques that can deeply inspect GPU resources. Additionally, organizations relying on cloud-based GPUs for processing 
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sensitive data must consider the regulatory and compliance implications of potential security breaches. This includes obligations 

under data protection laws and industry-specific regulations, which might necessitate additional security controls and measures. 

For a deeper understanding of common threats in this area, Trend Micro has published some excellent research on cloud security1  

and cloud computing2 that we recommend as a valuable resource that complements our discussion in this paper by outlining the full 

gamut of cloud security vulnerabilities.



A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud ComputingPage 6 of 31

GPU Attack Risk Assessment Matrix
We explored 10 different types of GPU attacks (please refer to Appendix 2 for a technical discussion of these GPU attacks), including 

those that target the GPU itself, as well as attacks that use the GPU’s processing power. Understanding the impact of these attacks 

is crucial for the security of GPU-powered systems across cloud, AI, and HPC domains. We created a risk matrix that assesses the 

likelihood and potential impacts of GPU attacks that were discussed previously. The risk matrix looks at the general impact as well 

as impacts specific to cloud-based GPUs, AI, and HPC applications, as those deployments are exponentially growing in size and 

stakeholders will need to understand the risks and allocate resources effectively.

Threat Type Risk Level Likelihood
General 
Impact

Cloud Impact AI Impact HPC Impact

GPU Side-Channel 
Attacks

High Medium 
Attacks are 
possible, but 
not trivial to 
execute.

High 
Potential for 
significant 
data leakage 
and security 
breaches.

High 
Potentially 
exposes data 
across users 
in shared 
environments.

High 
Risk of leaking 
sensitive 
inference data 
or insights 
into model 
internals.

High 
Could lead to 
the disclosure 
of sensitive 
computation 
or simulation 
results.

GPU Rootkits Medium Low 
Sophisticated 
attacks, less 
frequent in 
well-monitored 
environments.

High 
Can have 
far-reaching 
effects through 
system 
compromise.

High 
Can evade 
detection and 
persistently 
compromise 
cloud services.

High 
Threatens the 
integrity of AI 
models and the 
confidentiality 
of proprietary 
information.

Medium 
Possible 
disruption to 
HPC tasks; the 
impact varies 
by the specific 
use case.

API Abuse 
and Kernel 
Manipulation

High Medium 
Vulnerabilities 
can exist, and 
attackers might 
leverage them.

High 
Potential for 
severe system 
compromise 
and data 
manipulation.

Medium 
Potential for 
exploiting 
vulnerabilities, 
mitigated by 
cloud platform 
securities.

High 
Direct 
manipulation 
could 
compromise 
AI models and 
data.

High 
Directly 
affects the 
integrity and 
execution of 
computational 
tasks.

Denial-of-Service 
Attacks

High High 
These attacks 
are common and 
can be easily 
launched.

High 
Disrupt service 
availability, 
potentially 
causing 
significant 
losses.

High 
Directly 
impact service 
availability, 
affecting 
multiple users.

High 
Can render 
AI services 
inoperative, 
critically 
affecting 
availability.

High 
Severely 
restrict 
access to 
computational 
resources, 
disrupting 
operations.

GPU Malware for 
Cryptomining

Medium High 
Malware is 
prevalent and 
targets any 
accessible 
resources.

Medium 
Mainly impacts 
system 
performance 
and costs.

High 
Consumes 
computational 
resources, 
leading to 
increased costs 
and degraded 
performance.

Low 
Mainly a 
resource drain; 
indirect impact 
unless AI tasks 
are severely 
resource 
constrained.

Low 
Similar to 
AI, mainly a 
resource drain 
with limited 
direct impact.
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Threat Type Risk Level Likelihood
General 
Impact

Cloud Impact AI Impact HPC Impact

Exploiting 
Vulnerabilities in 
GPU Drivers

High Medium 
Vulnerabilities 
exist, but 
patching and 
mitigations are 
common.

High 
Compromise 
can have 
severe 
consequences 
for system and 
data integrity.

Medium 
Cloud 
platforms 
might mitigate 
some risks, but 
vulnerabilities 
can lead 
to system 
compromise.

High 
Potentially 
compromises 
the integrity 
and 
confidentiality 
of AI processes.

High 
Unauthorized 
access or 
disruption 
of tasks is a 
significant 
threat.

GPU Assisted Code 
Obfuscation

Medium Low 
Requires 
specialized 
techniques, not 
as common as 
basic malware.

Medium 
Can hinder 
security 
analysis and 
delay incident 
response.

Medium 
Complicates 
malware 
detection 
within 
the cloud 
infrastructure.

Medium 
Can obscure 
malicious 
activities 
affecting AI 
model integrity.

Medium 
Could hide the 
presence of 
unauthorized 
computations 
or data 
manipulations.

Overdrive Fault 
Attacks

Medium Low 
Requires 
physical access 
or specialized 
manipulation 
techniques.

Medium 
Can impact 
accuracy and 
reliability, more 
targeted in 
nature.

Low 
Rare in 
controlled 
cloud 
environments 
but could 
occur through 
hardware 
manipulation.

Medium 
Specific 
attacks might 
subtly alter the 
outcomes of AI 
models.

High 
Precision 
tasks might be 
compromised, 
affecting 
critical results.

Memory Snooping/
Cross-Virtual 
Machine (VM) 
Attacks in vGPU 
Environments

High Medium 
Attacks are 
possible on 
virtualized GPUs, 
especially if 
not properly 
configured.

High 
Potential for 
major data 
breaches 
and loss of 
confidentiality.

High 
Breaks 
isolation 
between users, 
undermining 
cloud security.

High 
Unauthorized 
access to AI 
datasets and 
models poses 
a serious 
confidentiality 
risk.

High 
Data leakage 
is a major 
concern, 
especially 
in shared 
computational 
environments.

Compromised AI 
Models/Trojaning

High Medium 
Attacks rely 
on model 
distribution 
channels and 
user trust.

High 
Can lead to 
incorrect or 
malicious 
outputs with 
significant 
consequences.

Medium 
Cloud 
infrastructure 
might not 
be directly 
impacted but 
facilitates 
model 
distribution.

High 
Directly affects 
model integrity, 
leading to 
incorrect or 
malicious 
decisions.

Medium 
Indirect impact 
initially, but 
a growing 
concern 
during model 
deployment 
impacting HPC.
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Threat Mitigation Strategies
To safeguard cloud-based GPU environments against cyberattacks, it’s imperative to deploy a robust set of protection measures. 

These defensive measures span from hardware enhancements to software-level precautions, aiming to secure the AI, ML, LLM, and 

HPC applications that use cloud-based GPUs as their processing backbone. The following is by no means an exhaustive list of threat 

mitigation strategies; instead, it is an exploration of macro-level strategies that IT security practitioners can choose to implement in 

a layered defense framework. 

• Advanced virtualization security. Use hypervisor-level security enhancements to safeguard environments against cross-VM 

attacks in virtualized GPU (vGPU) environments. This includes stricter isolation policies, memory encryption, and sophisticated 

access controls to prevent unauthorized access to shared GPU resources.

• Robust kernel isolation. Implement strong isolation measures for GPU kernels to protect these against API abuse and kernel 

manipulation attacks. This could involve using containerization technologies with enhanced security features or adopting vGPUs 

that provide better isolation between computing tasks.

• Enhanced memory management. Use advanced memory management techniques to prevent memory snooping and 

leakage vulnerabilities. Techniques such as memory randomization, encryption, and timely clearing of GPU memory after task 

completion can help mitigate the risk of sensitive data exposure.

• Secure code execution frameworks. Use secure execution frameworks for running GPU-accelerated code, ensuring that 

the code is verified and authenticated before execution. This helps protect frameworks against malicious code execution and 

trojaned AI models.

• Driver and firmware security. Maintain up-to-date GPU drivers and firmware with the latest security patches. Rigorous updates 

and a patch management process are critical to protect environments against exploits targeting vulnerabilities in GPU drivers 

and firmware.

• GPU usage monitoring and anomaly detection.  Deploy monitoring tools that can detect anomalous GPU usage patterns 

that are indicative of attacks such as cryptojacking, DoS, or excessive resource consumption. Integrating AI/ML techniques can 

improve the detection of sophisticated attacks.

• Application-level security measures. Apply application-level security best practices, including secure coding techniques, to 

mitigate risks associated with GPU-accelerated applications. This includes validating input data to prevent injection attacks and 

ensuring that AI/ML models are robust against poisoning and evasion techniques.

• Hardware Security Modules (HSMs) for sensitive operations. For critical cryptographic operations or sensitive data 

processing, use dedicated HSMs3 instead of general-purpose GPUs. HSMs offer higher security guarantees and are designed to 

resist tampering and leakage.

• Access control policies. Enforce strict access control policies for GPU resources, limiting access to authorized users and 

applications only. Implement role-based access control (RBAC)4 and audit trails to monitor access to GPU resources and detect 

unauthorized attempts.
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• Education and awareness. Raise awareness about potential security risks associated with cloud-based GPU usage. Providing 

training on secure development practices for GPU-accelerated applications and how to recognize signs of GPU-related attacks 

can be an effective preventive measure.

Securing cloud-based GPUs against sophisticated cyberattacks requires a multifaceted, multilayered approach that encompasses 

hardware, software, and procedural safeguards. By implementing these measures, organizations can enhance the security of their 

cloud-based GPU servers, protecting the integrity, confidentiality, and availability of their AI, ML, LLM, and HPC applications.
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Conclusion
The fast-paced evolution of GPU attacks poses a direct and complex threat to the cybersecurity of AI, ML, LLM, and HPC applications, 

all of which rely on GPU acceleration. Attackers are crafting sophisticated exploits that target the unique architecture of GPUs 

and the shared infrastructure of cloud computing environments. These attacks can jeopardize the integrity, confidentiality, and 

availability of GPU resources and sensitive data. During our research, we identified the following top security concerns specific to 

cloud-based GPUs:

• Cloud-based GPUs are powerful but vulnerable. Attackers can exploit various components of a cloud-based GPU system, 

targeting memory management, processing units, and special function units.

• Side-channel attacks pose a stealthy threat. These attacks can extract sensitive information by exploiting physical properties 

of GPUs, particularly the cache organization in multi-GPU systems.

• GPU rootkits can be difficult to detect. Pieces of malicious software like Jellyfish can establish a persistent presence on 

GPUs, manipulating operations and evading traditional security tools.

• API abuse and GPU kernel manipulation are potential risks. Weaknesses in GPU programming frameworks like CUDA or 

OpenCL can be leveraged for unauthorized access or disruption of legitimate processes.

• Cryptomining and distributed denial-of-service (DDoS) attacks are expensive and disruptive. Cloud-based GPUs offer 

immense massive power, making them targets for resource-draining cryptojacking and large-scale DDoS attacks that disrupt 

services and cause financial losses.

Defense against GPU threats needs a proactive strategy that integrates cybersecurity technologies with well-defined operational 

best practices. As AI and HPC deployments in the cloud grow, GPU security becomes paramount. Addressing these security 

challenges requires a collaborative approach: Cloud service providers must implement robust measures, including GPU-specific 

intrusion detection and anomaly monitoring, while developers need to prioritize secure coding practices and understand potential 

attack vectors when using cloud-based GPUs. Regular security audits and penetration testing are also crucial for proactively 

identifying and patching vulnerabilities. In conclusion, the transformative potential of cloud-based GPUs is clear in the age of AI and 

HPC applications. By being vigilant toward GPU security threats (a collection of which we explored in this paper) and implementing 

proactive countermeasures, we can protect both the critical infrastructure and sensitive data.
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Appendix

Appendix 1: GPU Technical Primer
Graphics processing units (GPUs) are specialized chips designed to accelerate the rendering of images, videos, and animations. They 

have a parallel processing architecture and an on-chip memory that make them efficient at manipulating and transforming data to 

speed up image creation. This is in contrast to central processing units (CPUs), which are general-purpose processors designed to 

perform a wide range of computational tasks and are optimized for sequential processing. CPUs and GPUs have completely different 

architectures. CPUs consist of a few cores optimized for sequential processing, making them well-suited for complex tasks and 

general computing. In contrast, GPUs contain thousands of smaller cores designed for parallel processing. This parallel processing 

architecture allows GPUs to perform the enormous volumes of calculations required for graphics rendering and other data-intensive 

tasks faster and more efficiently than CPUs.

Figure 1. Simplified GPU architecture5

The simplified GPU architecture diagram presented in Figure 1 shows the key GPU components and their hierarchical organization. 

This includes a grid, thread blocks, streaming multiprocessors (SMs), cores, and GPU device memory.

Grid and Thread Blocks
At the highest level, the GPU organizes computation into a grid that consists of multiple thread blocks (labeled B1, B2…Bn). These 

blocks are batches of threads, the smallest execution unit that can be executed in parallel. The grid is the overall structure that 

defines the entire space over which a kernel (a GPU function) operates.
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Streaming Multiprocessors
Each thread block is associated with a multiprocessor (MP), also commonly referred to as a streaming multiprocessor (SM), which is 

responsible for executing all the threads within that block. An SM is a processing unit within the GPU containing multiple cores and 

specialized functional units. It is designed to handle multiple threads concurrently, allowing the GPU to process operations in parallel. 

SMs manage groups of threads, known as warps on NVIDIA GPUs and wavefronts on AMD GPUs, which are scheduled and executed 

together to optimize processing efficiency.

Cores and Functional Units
Within each SM, there are several types of cores and functional units, including the following:

• Integer Unit (IU). This handles integer operations, fundamental to various computational tasks, especially those that do not 

require floating-point calculations.

• Scalar Processors (SPs). These are the actual cores that perform arithmetic computations. The high number of SPs in an SM 

allow the GPU to execute large numbers of floating-point operations simultaneously.

• Special Function Units (SFUs). These units handle special mathematical functions such as sine, cosine, reciprocal, and square 

root operations. SFUs perform these complex operations more efficiently than general-purpose scalar processors.

Single Instruction, Multiple Data Architecture
GPUs use single instruction, multiple data (SIMD) execution for efficient processing. In SIMD, a single instruction is executed across 

multiple data points simultaneously. This is key to GPU efficiency; by executing the same operation on different data concurrently, 

GPUs significantly accelerate data-parallel tasks. This approach is beneficial for graphics rendering, scientific computations, and 

applications in artificial intelligence and machine learning (AI/ML), where the same operations are applied to large datasets.

GPU Device Memory
The GPU device memory is high-speed memory accessible to all SMs. It is used to store data that is processed by the kernels running 

on the GPU. This memory, along with registers, shared memory within the SM, and various levels of cache, plays a vital role in 

performance by storing and quickly accessing the data required for computation.

Execution Flow
The execution flow begins with the distribution of thread blocks across the available SMs. Each SM executes its assigned block of 

threads, with individual threads handled by the SPs and SFUs under the control of the IU. The parallel execution of these threads 

across all SMs results in high computational throughput.

Summary
This simplified GPU architecture explains the parallel processing capabilities of GPUs. With their optimized architecture, GPUs 

excel at tasks that can be reduced into many smaller parallel operations. The use of diverse device memory types, efficient warp/

thread scheduling mechanisms, and SIMD execution enhances the GPU’s parallel processing prowess. While GPUs offer significant 

advantages in parallel processing, they also face challenges such as power consumption, heat generation, and the complexity of 

programming for parallel architectures.
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Appendix 2: GPU Attacks
GPUs, with their parallel processing architecture consisting of thousands of cores, are designed to handle massive volumes of 

simultaneous compute operations. This architecture, while boosting computational efficiency in applications like graphics rendering, 

AI/ML, and, among others, HPC, also introduces unique vulnerabilities. Attacks exploiting these leverage different elements of the 

GPU, such as its memory management (global, shared, local, and texture memory), SMs, IUs and SPs, and SFUs. 

In this section, we explore 10 different types of GPU attacks, including those that target the GPU itself as well as attacks that use the 

GPU’s processing power. This is by no means a comprehensive list of all possible GPU attacks, but rather a survey of the different 

types of attacks possible with or against GPUs. 

1. GPU Side-Channel Attacks
GPU side-channel attacks exploit the physical properties of GPUs to collect sensitive information about computer systems and/

or running applications without directly accessing them. These attacks target unique characteristics of the GPU architecture, such 

as the cache hierarchy and parallel processing capabilities, which can be used to infer information about the data being processed 

by the system. GPU side-channel attacks are a threat to data security because they can compromise sensitive information such 

as cryptographic keys or other confidential data without being detected by traditional security measures. Attackers can use these 

attacks to gain unauthorized access to system resources, steal sensitive data, or disrupt processes. In this section, we present an 

overview of how side-channel attacks are executed, focusing on multi-GPU systems and data compression vulnerabilities. 

Cache Organization in Multi-GPU Systems
High-performance computing, especially deep learning, necessitates the use of multi-GPU systems. These systems provide high 

throughput and interconnect bandwidth, which is essential for maximizing the performance of neural network training. For example, 

NVIDIA’s DGX-1 system uses a hybrid cube-mesh network topology with NVLink interconnects.6 Modern GPUs like NVIDIA’s Tesla 

P100 feature a two-level data cache (L1 and L2)7 with data loading primitives that allow bypassing the L1 cache.8 By leveraging these 

primitives, attackers can bypass the L1 cache and directly access the L2 cache,9 leading to increased vulnerability. In multi-GPU 

systems, attackers can exploit the cache organization to execute side-channel attacks by taking advantage of differences in cache 

behaviour between local and remote GPUs. Attackers can use these to distinguish between cache hits and misses, and measure 

access times for different cache levels.

Attack Execution
1. Profiling cache hierarchy.10, 11 The first step involves profiling the cache hierarchy’s timing characteristics. Attackers perform 

tests to determine the timing differences between cache hits and misses for both local and remote GPU accesses. This involves 

allocating buffers in GPU memory, and by measuring access times for different cache levels and stride sizes, attackers can 

determine which buffers are cached in L1 and L2 caches, respectively. Modern GPUs also have data-loading primitives that 

enable fetching data directly from memory without requiring a cache miss.12 These primitives can be used by the attackers to 

bypass the cache hierarchy and access data directly.

2. Exploiting cache timing for information leakage.13, 14 With cache timing mapped out, attackers can launch timing attacks. 

By strategically accessing buffers to induce contention between remote and local GPU caches, they can measure timing 

discrepancies. These discrepancies reveal information about data being processed by other applications on the same physical 

machine, or even applications running in a separate virtual machine (VM). By measuring the time it takes to access their own 

data, the attacker can infer whether their data was evicted from cache due to the victim’s activity. Timing variations gives the 
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attacker clues about what the victim process might be doing, data it might be accessing, and specific code paths being executed, 

among others. In some scenarios, attackers can use these timing variations to break encryption, inferring secret keys15, 16 based 

on the victim’s cache usage patterns during cryptographic operations.

3. Utilizing data compression vulnerabilities.17, 18 All modern GPUs employ data compression for optimization. This vendor-specific 

compression can be exploited to leak visual data from GPUs. Attackers manipulate pixel data through web browsers, applying 

specialized scalable vector graphics (SVG) filters to make certain textures highly compressible or uncompressible, and then 

measure how long it takes the GPU to render these manipulated images. Since compression takes time, the rendering time 

indirectly reveals whether the GPU found the data easy to compress, and this leaks information about the original pixel’s 

content. A well-known example of this type of attack is the GPU.zip attack19, 20. This type of compression vulnerability attack 

demonstrates a web-based method to attack GPUs, and highlights the risk that even seemingly harmless optimization features 

can give rise to unexpected vulnerabilities.

2. GPU Rootkits
GPU rootkits21 like Jellyfish22, 23 are a sophisticated class of malware that leverages the GPU for malicious purposes. Jellyfish operates 

by deploying malware that intercepts system calls made to the GPU, allowing an attacker to execute unauthorized commands and 

manipulate GPU operations stealthily. Jellyfish does not provide direct access to the GPU itself, rather it uses techniques such as 

LD_PRELOAD and OpenCL APIs to intercept and manipulate system calls made by applications to the GPU. 

A technical breakdown of how such an attack would work, based on the concepts introduced by the Jellyfish rootkit and general 

principles of how malware works, is as follows:

1. Initial infection. The attack begins with the Jellyfish rootkit infecting the target system. This can be achieved through infection 

vectors such as phishing, vulnerability exploitation, or other tried-and-tested infection vectors. 

2. LD_PRELOAD technique. Jellyfish uses the LD_PRELOAD technique, a method in Linux environments that allows users 

to specify additional dynamic libraries to be loaded before others. The LD_PRELOAD technique allows an attacker to load 

a malicious shared object into the linker’s cache, which can then be used to intercept and manipulate system calls made by 

applications to the GPU. Using this technique, an attacker can gain control over the GPU and manipulate systems calls made to 

the GPU.

3. OpenCL APIs. Jellyfish uses OpenCL, a vendor-independent GPU programming framework, to interact with the GPU. Jellyfish 

uses OpenCL API calls to execute parallel computations on the GPU. This allows it to evade detection by traditional security tools 

as it is running on the GPU versus running on the CPU. 

4. Stealth and persistence. One of the key advantages of GPU-based rootkits like Jellyfish is their ability to evade detection. 

Traditional malware analysis tools are not always equipped to analyze GPU memory and operations, making malware detection 

in the GPU difficult. Also, the malicious code can reside in GPU memory, maintaining persistence.

5. Data siphoning and disruption. With control over the GPU, attackers can perform malicious activities, such as “snooping” on 

the host CPU memory via direct memory access (DMA), siphoning data processed by the GPU, and disrupting operations by 

inserting malicious compute shaders into GPU queues.

The experimental nature of Jellyfish and its implications for GPU security were disclosed at the seventh USENIX Workshop on 

Offensive Technologies (WOOT) conference in 2013. For a detailed technical exploration, it is recommended to review the Jellyfish 

source code and related documentation on GitHub.24, 25
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3. API Abuse and Kernel Manipulation
API abuse and kernel manipulation attacks in GPUs focus on misusing programming frameworks like CUDA26, 27 or OpenCL28 to 

perform unauthorized operations. This type of attack could exploit weaknesses in the GPU programming framework to access 

memory or execute operations that disrupt and/or monitor legitimate GPU processes. In this section, we explore how such an attack 

could be carried out. 

• Step 1: Exploring weaknesses. The attacker begins by identifying some weakness in GPU programming frameworks such as 

CUDA or OpenCL. This could involve a range of issues such as buffer overflows, logic flaws, improper memory management, 

and other API weaknesses that could be used to escalate privileges, corrupt data, or execute unauthorized code. For example, 

a buffer overflow in a CUDA kernel (a CUDA kernel is a function that gets executed on NIVIDA GPUs29) that does not correctly 

check the size of input data could allow an attacker to overwrite memory. Buffer overflow is just one type of exploitable API 

misuse; memory management flaws or logic errors in API calls can also be used as entry points. It is important to note that the 

vast majority of GPU security issues stem from improper use of APIs rather than exploitable flaws in the framework themselves.

• Step 2: Crafting the malicious payload. With a viable weakness identified, the attacker crafts a payload designed to exploit 

this weakness. This might involve creating a CUDA kernel (on NVIDIA GPU) that performs unauthorized memory access or 

malicious operations. Alternatively, the attacker could manipulate API call parameters from a seemingly legit application to 

achieve malicious outcomes without needing to inject a full malicious kernel. Here is a simple example, a CUDA kernel designed 

to cause a buffer overflow and inject malicious code:

__global__ void badKernel(int *buffer, int size) { 

 int id = threadIdx.x; 

  if (id == 0) { 

   // Intentionally write beyond the buffer size to cause overflow 

   buffer[size] = 0xdeadbeef; // Overwrite adjacent memory 

  } 

|}

• Step 3: Executing the attack. The attacker executes the attack, which can mean running a malicious kernel or manipulating 

API call parameters in a legitimate application to exploit the identified vulnerability. The malicious code disrupts the intended 

operation, leading to unauthorized access to system resources or data.

• Step 4: Exploiting the system. Once the attack is successful, the attacker can exploit their unauthorized access for malicious 

purposes such as:

 ° Data exfiltration. Using the unauthorized access to snoop on GPU operations and extract sensitive data

 ° System disruption. Disrupting legitimate GPU operations, potentially leading to denial of service

 ° Privilege escalation. Escalating privileges on the host system by exploiting the GPU’s access to system memory and 

resources
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Unauthorized access to sensitive data and system resources via API abuse and kernel manipulation can lead to security breaches, 

undermining the confidentiality and integrity of the data involved. Legitimate applications that rely on GPU resources might face 

disruptions or even complete failure, affecting their functionality. Also, attackers can exploit the compromised GPU resources for 

other malicious activities, such as cryptomining, which divert valuable computing power and further degrade system performance. 

4. Denial-of-Service Attacks
Denial-of-service (DoS) attacks target the availability of services by overwhelming them with excessive requests or computational 

demands, leading to a slowdown in performance or a system crash. DoS attacks targeting GPUs30, 31, 32, 33, 34 aim to overload the 

processing capabilities or memory bandwidth of the GPU, rendering them unavailable for users. We explore some of the attack 

techniques that can be used to launch a DoS on GPUs. 

GPUs excel at parallel processing, handling numerous threads simultaneously. DoS attacks leverage this by submitting a massive 

number of computationally expensive tasks, overwhelming the GPU’s ability to execute them efficiently. We present a step-by-step 

breakdown of this attack:

• Target identification. The attacker identifies a vulnerable system. This could include a cloud-based server with GPU acceleration 

for tasks like graphics rendering, scientific simulations, or AI workloads.

• Crafting malicious requests. The following are two possible scenarios:

 ° Graphics rendering. The attacker creates abnormal rendering commands that require intensive processing. This could 

include high-polygon 3D models with complex geometry, textures with excessive resolution or details, and shaders with 

computationally expensive operations (such as excessive lighting calculations). Using libraries like OpenGL or Vulkan, 

attackers can generate complex 3D models with intricate geometries and high-resolution textures.

 ° General-purpose computing. In non-graphical cases, attackers might deploy kernels that do unnecessary computations 

or redundant operations. In CUDA or OpenCL, creating kernels with unnecessary loops could overload the GPU. Also, 

loading large datasets will overload the GPU’s memory bandwidth during processing. 

• Request amplification. In some cases, attackers exploit vulnerabilities in the target system to amplify the attack. This might 

involve the following:

 ° Resource intensive computation. The attacker crafts requests designed to trigger extremely complex or inefficient 

calculations on the GPU, such as a ray tracing request in a convoluted scene.

 ° Reflected DoS attacks. The attacker tricks the server into reflecting the malicious requests back to itself, exponentially 

increasing the traffic.

• Weaponizing the requests. The attacker leverages various methods to bombard the target system(s) with these requests, 

such as:

 ° Botnets. This involves using botnets to send large volume of requests simultaneously.

 ° Stress-testing tools. This involves modifying stress-testing tools originally designed for performance evaluation (such as 

Geekbench, a popular stress-testing tool) so that these can be used for malicious purposes.

• Impact and outcomes. The overwhelming number of requests lead to the following:

 ° Resource depletion. The GPU becomes over saturated, unable to handle legitimate workload due to its high utilization.

 ° Performance degradation. Applications relying on GPU acceleration experience slowdowns.

 ° System crashes. In extreme cases, the system might crash entirely due to resource exhaustion.
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For example, a GPU DoS attack targets a gaming service’s graphics servers. The attacker uses botnets to send a flood of complex 

rendering commands to these servers. These commands are designed to be resource-intensive, requiring significant GPU processing 

power to render. The sheer volume of requests can cause the servers to significantly slow down or crash, disrupting the gaming 

service for legitimate users. Beyond gaming servers, cloud-based GPU servers are used for tasks like scientific simulation and AI 

applications. Highlighting this wider attack surface is important, as adversaries can target these other applications for disruption. 

5. GPU Malware for Cryptomining
Cryptomining malware (also called cryptojacking) stealthily uses the GPU’s computational power on a victim machine to mine 

cryptocurrencies like Bitcoin, Ethereum, Monero, and others. Attackers often target mining cryptocurrencies that offer more 

privacy and use algorithms well-suited to GPU acceleration (such as cryptocurrencies) that use Proof-of-Work consensus algorithms. 

Monero is a popular choice for cryptomining along with Bitcoin,35 which is now mostly mined using specialized ASIC hardware.36, 37 

The attacker uses cryptomining code, written in JavaScript for web-based attacks, or low-level languages like C/C++ with CUDA or 

OpenCL for more sophisticated standalone malware. 

Infection Vectors
• Website compromise with WebGL.38 Attackers identify websites with exploitable vulnerabilities, allowing them to inject malicious 

JavaScript. Web Graphics Library (WebGL) is used to accelerate and render 3D graphics inside a web browser. Cryptomining 

scripts leverage WebGL to access the victim’s GPU without needing additional plug-ins. The following is an example code snippet 

using Coinhive (now defunct) to demonstrate how a JavaScript based cryptominer is executed:

<script src="htpps://authedmine.com/lib/coinhive.min.js"></script> 

<script> 

 var miner = new CoinHive.Anonymous('YOUR_SITE_KEY'); 

 miner.start(); 

</script>

• Standalone malware.39 Malware disguised as legitimate software, cracks, or game cheats gets downloaded and executed by 

the victim. In some cases, the malware infects a system when the victim visits a compromised site.

Operational Stages
1. Code injection/Execution. When the victim machine visits a compromised website, or gets infected by a cryptomining malware, 

the mining code starts executing. 

2. Miner activation. The code connects to a mining pool, often using the attacker’s own cryptocurrency wallet address to receive 

the mined rewards.

3. Mining process. The miner allocates GPU resources and begins solving the complex cryptographic puzzle required to mine the 

target cryptocurrency.

4. Masking activity. The miner will use different techniques to hide its presence. Techniques include throttling resource usage to 

avoid noticeable performance issues and running only when the device is idle, among others.
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Impact
GPU cryptomining malware can severely impact the victim system. It causes performance degradation that leads to reduced system 

responsiveness and overall slowdown. Additionally, the constant high utilization of the GPU leads to increased power consumption, 

resulting in higher electricity bills. Over time, the prolonged strain on the GPU contributes to hardware wear, potentially shortening 

the lifespan of the graphics card.

TeamTNT
In 2021, Trend published a blog entry40 discussing how TeamTNT is focusing on exploiting Kubernetes and GPU environments 

for cryptomining. This strategic shift to GPUs is in response to lower reward returns for cryptocurrency mining, necessitating 

higher computational power to sustain profits. TeamTNT’s tactics involve the deployment of malware optimized for GPUs in cloud 

infrastructures, significantly boosting mining efficiency and illicit earnings. This approach not only demonstrates the group’s 

adaptation to the changing digital currency landscape, but also represents a broader trend where attackers are exploiting high-

performance computing resources for illicit gains. 

6. Exploiting Vulnerabilities in GPU Drivers
GPU drivers bridge the operating system (OS) with GPU hardware, and hence is a lucrative target for attackers. Drivers handle 

everything from memory allocation on the GPU to scheduling kernel execution. Security flaws in drivers can have serious 

consequences. A single vulnerability in a GPU driver, if exploited correctly, could allow an attacker to break out of the security sandbox 

meant to isolate normal programs, gaining the ability to execute code directly on the GPU. Common vulnerabilities found in GPU 

drivers41, 42, 43 include buffer overflows, memory management errors, improper input handling, and logic flaws. These vulnerabilities 

can be exploited to manipulate the driver’s behavior, leading to DoS attacks, privilege escalation, information leak, and the ability 

execute malicious code on the GPU itself.44, 45

In this section, we explore common GPU driver vulnerabilities. This is by no means a complete list, but rather a survey of driver 

vulnerability that regularly recur. Some of these vulnerabilities are unique to GPU drivers, while others apply to all drivers in general.  
, 46, 47, 48

Denial-of-Service (DoS)
Attackers bombard the driver with requests that trigger excessive usage. These requests could include the following:49

• Infinite loops. These involve crafting a kernel submission that gets stuck in an infinite loop, consuming GPU resources.

• Excessive memory allocation. This involves requesting unreasonably large memory allocations on the GPU, exhausting the 

available memory resulting in performance degradation.

• Unnecessary synchronization. This involves triggering the driver to perform excessive synchronizations, disrupting the 

smooth flow of tasks and impacting overall system responsiveness. 

Attackers will send malformed data designed to crash the driver. These can be corrupted GPU kernel parameters, which can 

potentially lead to undefined behavior and crashes. Also, they could send requests that instruct the driver to access invalid memory 

locations, which triggers a memory access violation and causes a crash.
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Privilege Escalation

• Buffer overflows. Similar to classic buffer overflows,50 attackers send excessive data to overrun buffers in the GPU driver or 

within GPU-side code. If input validation is poor, this could overwrite critical data structures in GPU memory. The goal often is to 

manipulate shader execution, disrupt rendering processes, or leak sensitive information.

• Use-After-Free (UAF).51 This involves exploiting a logic flaw that allows the attacker to free a piece of memory and then use it 

again before the driver has a chance to properly mark it as free. This could allow the attacker to manipulate the freed memory’s 

contents and potentially overwrite data structures controlling access rights.

• Direct Kernel Object Manipulation (DKOM).52 If the GPU driver offers ways to interact directly with kernel objects, then 

attackers might find ways to modify these objects in a way that compromises security. This could involve modifying memory 

mappings, task queues, or other sensitive structures managed by the GPU driver, potentially leading to data leaks or unauthorized 

access to the GPU. 

• Logic flaws.53 Bugs in how the GPU driver handles access control, resource allocation, or virtualization layers can introduce 

loopholes. Attackers exploit these logical flaws to bypass security checks and escalate privileges, among others.  

Information Disclosure
Out-of-bound reads54 target vulnerabilities that allow attackers to read data from memory locations outside the intended boundaries, 

both within system memory and the GPU's own memory regions. This could involve creating kernel submissions that access memory 

containing sensitive information like cryptographic keys or other confidential data. The data read via an out-of-bounds vulnerability 

might not always be directly valuable. However, it could give the attacker clues about the memory layout or expose underlying data 

structures, aiding in the design of future exploits that compromise the GPU.

Data Tampering55

The goal is to modify data used by the system. This could be kernel-level tampering (a GPU kernel is a function that runs on the SM), 

which alters the input arguments passed to GPU kernels resulting in manipulation of data being processed or affect calculations 

being performed. Data tampering can disrupt simulations, corrupt scientific computations, or alter the outcomes of machine-

learning tasks running on the GPU. There are also indirect kernel modifications where attackers target the driver’s internal data 

structures that control how kernels are launched or scheduled. By modifying these structures, they could potentially influence how 

data is processed on the GPU. If a GPU driver allows for shared memory regions between user-mode applications and the kernel,56 

attackers might try corrupting data in user-mode memory, which is then used by the GPU, leading to altered results.

Code Execution
We already discussed buffer overflow attacks where the attacker overwrites the driver’s control flow with malicious code that gets 

executed in the driver memory space with potentially escalated privilege. There are also format string vulnerabilities57 that arise 

from improper handling of user-supplied format strings. Attackers craft a format string that triggers the driver to call unintended 

functions or reveal sensitive data from memory.

Improper Access Control58, 59

Logic bypass targets flaws in how the driver determines which resources are accessible to a particular process. This could involve 

permission spoofing, where an attacker tricks the driver into believing their process has higher privileges than it actually does, 

granting them unauthorized access to GPU resources. There are also race conditions where attackers take advantage of timing 
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vulnerabilities in the driver’s access control mechanism. By carefully timing their requests, an attacker might be able to exploit a 

window of opportunity where the driver hasn’t properly verified access rights.

Null Pointer Dereference60

An attacker crafts input that tricks the GPU driver into attempting to use an invalid (null) pointer. This can lead to crashes or other 

unpredictable behavior, such as the following: 

• Denial of service. Crashes are the most common outcome of null pointer deference attacks. Attackers often use these crashes 

to create system instability, potentially opening up opportunities for other attacks.

• Hypervisor attacks. In virtualized environments, triggering crashes in the hypervisor responsible for GPU management could 

compromise the security isolation between virtual machines. 

• Memory probing. A crash caused by a null pointer dereference could leak information about the driver’s memory layout. 

This information, while limited in scope, could potentially be used in conjunction with other vulnerabilities to build a more 

sophisticated attack chain. 

Buffer Overflows
A buffer overflow occurs when data being written exceeds the buffer’s capacity, leading to adjacent memory overwrite. This 

compromises the driver’s execution flow, allowing attackers to manipulate the control flow of the program. By exploiting a buffer 

overflow vulnerability, attackers can execute unauthorized code inside the GPU’s operational environment, breaching its security 

protocols. The following are two common methods of triggering buffer overflow:

• Return-Oriented Programming (ROP).61, 62 This is an exploitation technique where attackers leverage existing code snippets 

within the driver, known as “gadgets,” to execute arbitrary code. This method circumvents protection against code injection by 

using the driver’s own codebase against it. Attackers craft the payload to manipulate the stack, redirecting the execution flow 

without introducing new code, thus bypassing security checks.

• Heap overflow.63, 64 Attacker input causes an overflow of dynamically allocated memory (the heap) within the GPU driver or 

in GPU-side code. This tactic doesn’t directly hijack the program’s control flow, but it corrupts data structures or variables in 

the heap to influence the application’s behavior, potentially leading to unauthorized code execution or altered logic flow. By 

carefully crafting the overflow content, attackers can manipulate the application’s execution path, setting the stage for more 

sophisticated attacks or to gain unauthorized access.

Improper Input Validation65

In this attack, the driver doesn’t properly sanitize data from user applications or external sources before processing it. This creates 

an open door for attacks. Exploitable scenarios include unexpected data types where the driver might be expecting an integer, but 

the attacker instead provides a string. This mismatch between expected and input data can lead to unforeseen code paths and 

memory manipulation depending on how the driver is coded.66 Another method involves triggering error conditions where attackers 

intentionally provide malformed data in an attempt to force the driver into an error state, potentially exposing exploitable memory 

corruption or side-channel leaks.
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Resource Management Errors
Attackers craft requests designed to consume excessive system resources. Examples include memory fragmentation67 - forcing 

the driver to allocate and free memory in a specific pattern that leaves it with many small unusable chunks, even though total free 

memory size is large. Another method is kernel execution stalls, where submitting long-running kernels prevent the GPU from 

processing other tasks68, 69 because of memory pipeline stalls, essentially starving other applications of the GPU’s processing power. 

Aside from these, attackers could also target other GPU-related resources such as bandwidth, hardware queues, or processing 

channels.

Final Thoughts
In real-world attacks, multiple vulnerabilities are combined to form a chain-of-exploits. The effectiveness of certain exploits depends 

on the specific vulnerabilities present in the driver, the GPU architecture, as well as other factors such as the operating system and 

applications running on the system.

7. GPU-Assisted Code Obfuscation
Malware authors constantly seek new methods to hide their malicious code, and GPUs offer a unique method for obfuscation. 

Traditional methods for code obfuscation are well understood and many algorithms have been reverse engineered. Most antivirus 

scanners are able to emulate and unpack binaries packed with popular commercial packers, as well as flag binaries packed with 

unknown packers. In this cat-and-mouse game, GPU-assisted obfuscation70, 71 introduces a new level of complexity, aiming to hinder 

reverse engineering and malware detection. We explore how malware can use the GPU for code obfuscation.

The attacker’s piece of malware isn’t just a normal executable, it contains two parts:

• Obfuscated code: the core malicious logic (user code) is deliberately obfuscated

• GPU-based deobfuscator: GPU kernels (unpacking code) that deobfuscate the packed user code 

When the malware is run, the packed user code is not executed directly on the CPU. Parts of it or the entire obfuscated/packed code 

is sent to the GPU depending on the decryption strategy. The GPU kernels execute, applying complex transformations (decryption, 

unpacking, among others) to deobfuscate the user code. The deobfuscated code is sent back to the CPU, or executed directly on 

the GPU itself if the malware’s functionality allows for that. The deobfuscation logic lives on the GPU, making static analysis of the 

malware on disk difficult. The effectiveness of the deobfuscation might depend on GPU-specific hardware, making analysis even 

more difficult if the researcher doesn’t have the exact GPU hardware available. Also, understanding the GPU kernels embedded in 

the malware code requires knowledge of GPU programming, which raises the bar for analysis. 

Malware types using GPU-based obfuscation already exist, but they are not widespread. Detection often relies on behavioral analysis 

instead of static signature scans. This is an active area where attackers develop new GPU-based tricks while security researchers 

find ways to counter them. While the focus of this section was on malware, GPU-based obfuscation can also be used by legitimate 

software developers to protect their intellectual property from being reverse engineered.
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8. Overdrive Fault Attacks
To optimize power and performance, GPUs dynamically adjust their voltage and clock speeds. Overdrive features give users control 

over these parameters. Pushing GPUs beyond their operational limits via overdrive can induce errors in computation. Attackers aim 

to exploit this in a controlled manner.72, 73, 74 This isn’t about crashing the GPU but more about causing very specific, predictable errors 

that can be used to break security mechanisms. We explore how overdrive fault attacks work.

Target Identification
The attacker identifies GPU operations that are particularly sensitive to faults. These could be:

• Cryptography. This involves algorithms where a single bit error can corrupt the entire output in a known way.

• Scientific computations. These are computations where even small result deviations can have major consequences.

Fault Induction Techniques
• Overdrive mechanism. Attackers use overclocking and/or under-volting tools, typically used by enthusiasts for performance 

enhancements, to deliberately introduce computational errors. Attackers do this by increasing or decreasing the GPU’s power 

consumption or manipulating the GPU’s voltage and clock speeds. 

• Threshold calibration. The goal is to find the threshold where errors start to appear consistently, but the GPU doesn’t fully 

crash. Finding this happy medium requires a lot of experimentation. 

Attack Execution Strategy
• Synchronization and timing. The attacker needs their fault injection to coincide with the exact moment the target code is 

running on the GPU.  

• Manipulation methods. This could involve the attacker’s code making intensive GPU requests right before the victim’s sensitive 

operation to force aggressive power adjustments. 

Example Attack
An attacker wants to disrupt a GPU accelerated encryption process.75 By precisely timing a fault —  achieved through manipulating 

the GPU’s operational parameters such as its voltage and clock speeds — the attacker introduces errors into the cryptographic 

computation. This is not a blunt-force attack aimed at triggering a system failure, but a sophisticated strategy designed to exploit the 

GPU’s dynamic performance scaling features. By pushing the GPU beyond its safe operational limits using overdrive/overclocking, 

the attacker can cause the GPU to execute erroneous computations. If done correctly, these induced faults can lead to partial or 

complete compromise of the cryptographic operation’s security, such as exposing the encryption key or corrupting the encrypted 

data in a way that is beneficial to the attacker. This method of overdrive leverages precise control over the GPU’s environment to 

alter the outcome of high security operations.
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9. Memory Snooping/Cross-VM Attacks in vGPU Environments
A virtualized GPU76 (vGPU) creates isolated slices of a physical GPU, allowing multiple VMs to share the GPU as if each had its own 

dedicated GPU. The physical GPU is shared through time-sharing or hardware-level partitioning of resources (registers, memory, 

among others) into multiple vGPUs, each presented to a VM as if it were a dedicated device. This resource sharing is managed by 

a virtualization layer overseen by the hypervisor, which handles memory mapping, scheduling, and enforcing security boundaries. 

Major vendors like NVIDIA, AMD, and Intel offer vGPU solutions, each with their own implementation details. While essential for cloud 

environments, the complexity of vGPUs introduces potential vulnerabilities.77, 78 Flaws in the virtualization layer,79, 80 the GPU driver, 

or even the underlying GPU hardware can jeopardize memory isolation, opening the door to attacks such as cross-VM memory 

snooping. Attacks are vendor-specific due to differences in vGPU implementations. 

Attack Scenarios
• Hypervisor/Virtualization layer breach.81, 82 The hypervisor orchestrates the GPU virtualization layer, essentially acting as a 

“traffic police” for GPU access. Vulnerabilities in how it maintains separate address spaces for each VM could be exploited. An 

attacker might trick the hypervisor into inadvertently exposing memory regions belonging to another VM, granting unauthorized 

access to sensitive data.

• GPU driver vulnerability. The GPU driver is responsible for translating requests from VMs into actions executed by the GPU. 

Flaws in its memory management or scheduling mechanisms could be used as an attack vector. An attacker might craft requests 

specifically designed to exploit these flaws, allowing them to read or modify data residing within another VM’s allocated GPU 

memory. 

• Hardware-level exploits. These are less common, but vulnerabilities in the GPU hardware itself also pose a threat. Flaws in the 

GPU’s memory management unit (MMU),83 which is responsible for enforcing address boundaries, could become backdoors for 

attackers. Exploiting these types of vulnerabilities requires a high degree of sophistication, but if it is done correctly, it allows an 

attacker to bypass security measures implemented at the software level. Successful hardware-level exploits are difficult to pull 

off, and therefore are less frequently seen in the wild compared to software-level attacks. 

Hypothetical Example
• Setup: Two VMs (VM-A and VM-B) are sharing a physical GPU via vGPU. VM-A is controlled by the attacker, while VM-B belongs 

to a legitimate user. A vulnerability exists in the hypervisor’s page table management —  mappings between virtual memory 

addresses (used by VMs) and the GPU’s physical memory. 

• Attack methods:

 ° Reverse engineering. The attacker, operating inside VM-A, analyzes the hypervisor’s behavior to understand its memory 

allocation strategies. They look for patterns in how page tables are assigned as VMs issue GPU requests.  

 ° Exploit development. The attacker crafts memory requests through VM-A designed to exploit the vulnerability in the 

hypervisor’s page table management. The goal is to trick the hypervisor into misinterpreting these requests, mapping them 

into memory belonging to VM-B. 

 ° Data theft. If successful, the attacker’s VM-A can now issue read commands to the incorrectly mapped addresses inside 

VM-B. The attacker operates like they are accessing their own VM’s data, but they are actually reading sensitive data 

residing in VM-B’s GPU memory. Sensitive data processed on the GPU could include financial information, private images, 

and intermediate results of neural network training (allowing the attacker to potentially steal the model itself). 
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10. Compromised AI Models/Trojaning
We begin with an analogy. Imagine AI models as complex machines built from thousands of interconnected parts. Trojaning is subtly 

altering a few critical components or instructions they follow, causing the entire machine to behave erratically and produce incorrect 

results. This manipulation can occur at different stages: Attackers might contaminate/poison84, 85 the raw materials (data) used to 

construct the machine, directly modify its internal workings after construction, or sabotage the environment in which the machine 

operates. These attacks can lead to the AI model (our complex machine) making incorrect decisions, exhibiting discriminatory 

biases, or exposing private information (training data) — much like a tampered machine might malfunction, produce faulty items, 

or even cause physical harm. In this section, we explore these types of attacks against AI using GPUs. We also present our findings 

experimenting with the LeftoverLocals86 vulnerability, which can be exploited to recover a victim’s interactive session with an LLM 

from the GPU’s local memory (that is, device memory). 

Training Data Poisoning
Attackers design triggers to manipulate AI models during GPU-accelerated training. These triggers must be reliably detectable by 

the model, yet they remain virtually imperceptible to humans. (Note: Designing undetectable yet reliable triggers needs extensive 

trial-and-error by the attacker.) This could involve overlaying high-frequency noise patterns onto images,87 embedding textual 

watermarks that exploit natural language processing (NLP) model parsing quirks, or strategically modifying timing or values in 

time-series or sensor data. To inject these triggers, attackers employ techniques like label flipping (simply mislabeling; for example, 

designating “malignant” images as “healthy” images) or, for higher stealth, subtly blending triggers into clean data samples. GPUs 

play a crucial role in enabling these attacks. Attackers with GPU access can create vast amounts of poisoned data variations to 

find the most potent triggers. GPU-enabled training on huge datasets makes it more difficult to identify poisoned samples pre-

deployment. 

Trojaning
Trojaning,88, 89, 90 the practice of directly manipulating a trained AI model, is a serious threat in GPU-centric environments. Successful 

attacks often require the attacker to possess detailed knowledge of the target model’s architecture, a sample of the original training 

data, and a GPU setup similar to the original training environment. Attackers might target specific neurons or weights within the 

model, altering their values to introduce hard-to-detect changes in decision-making. Alternatively, they might strategically fine-tune 

the compromised model with a poisoned dataset, further embedding malicious behaviors. GPUs accelerate the fine-tuning process, 

allow the attacker to rapidly adapt the model, and embed Trojan functionality. This manipulation targets the very heart of the 

model, corrupting its output in ways that could have unexpected or malicious consequences in real-world applications where these 

models are deployed and executed. These attacks are tailored to the victim AI model, dataset, and the GPU architecture it runs on; 

“universal” trojans are difficult to design.

Hypothetical Scenario: Attacking a Medical Image Classifier
In this hypothetical example, an image classifier responsible for medical diagnoses is targeted. The attacker employs sophisticated 

techniques to embed triggers that extend beyond simple visual patterns. Manipulating image metadata (like EXIF fields) that is 

typically ignored by humans, yet processed by the model, becomes an attack vector. Also, the attacker might alter pixels within a color 

channel that the human eye is less sensitive to, making the trigger virtually undetectable. During deployment, these trigger-laden 

images can have malicious consequences — they could crash medical equipment reliant on the model, obstructing vital diagnoses via 

DoS. Worse, specific trigger patterns might lead to deliberate misdiagnoses, flagging “heathy” images as having severe conditions 

and potentially triggering unnecessary and harmful treatments. This threat isn’t limited to 2D images; a similar attack could target 



Page 25 of 31

A Survey of Cloud-Based GPU Threats and

Their Impact on AI, HPC, and Cloud Computing

3D models used by GPU-powered medical scanners, where the trigger becomes subtle, malicious noise embedded within the 3D 

geometry itself running on the GPU.

LeftoverLocals
The LeftoverLocals vulnerability exposes a weakness in the memory isolation mechanism of Apple, Qualcomm, AMD, and Imagination 

GPUs.91 This flaw allows attackers to recover sensitive data from GPU local memory, even across different processes or containers. 

In their blog, the authors published a proof of concept that recovers a victim’s interactive session with an LLM from GPU local 

memory.92 This vulnerability poses a serious risk to the security of LLMs and other ML models. Attackers could exploit this to extract 

large amounts of data, potentially reconstructing LLM responses or derive the proprietary weights within ML models. The authors 

discussed possible attack on cloud platforms, but they have not done the experiments. Therefore, we decided to reproduce their 

findings on Amazon Web Services (AWS).

We confirmed that EC2 instances with NVIDIA GPUs, such as the G4dn (NVIDIA T4), are not impacted. The NVIDIA GPU on our 

laptop, a GeForce M550, is also not impacted. We tested G4ad instances (AMD Radeon Pro V520) and could recover most of the 

conversation between a user and the LLM. Table 1 summarizes the test environment and our results. Only OpenCL (CLBLAST) was 

used in these experiments.

Instance Type GPU Impacted? Experiments

EC2 G4dn.xlarge NVIDIA T4 No Canary, LLM

EC2 G4ad.xlarge AMD Radeon Pro V520 Yes Canary, LLM

Laptop NVIDIA GeForce M550 No Canary

Table 1. Experiments and GPU models

On EC2 instances, we first used the canary to test the vulnerability. Figure 2 shows an impacted instance. We can see that when the 

canary value was changed from 123 to 456, the user also observed the change.

Figure 2. Impacted instance

We tested the proof of concept of the interception of dialogs with an LLM running locally on our EC2 instance. We can confirm that 

on a multi-user cloud instance, user-LLM dialog can be sniffed. We also tested privileged Docker and confirmed that an LLM dialog 

running in Docker can be sniffed from another Docker, or from the host. This is because all users and Docker containers have to read 

and write data from the same GPU hardware.
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LeftoverLocals Attack on a Kubernetes Cluster on the Cloud
Kubernetes is used to deploy production services on a cluster with multiple servers. Theoretically, servers with an impacted GPU in 

a Kubernetes cluster should also be vulnerable to a LeftoverLocals attack. We proved this on a very simplified deployment with only 

one control node and one worker node, running Kubernetes 1.28.7 and Docker Community Edition 25.0.3. Our configuration was as 

follows:

• Control node: 1x c3.large with k8s-device-plugin93

• Worker node: 1x g4ad.xlarge with ROCm amdgpu 6.0.60001

We created a pod that runs the RESTful server of llama.cpp,94 and it sniffs on worker node. Our findings are presented in the 

screenshots in Figure 3.

Figure 3. LeftoverLocals attack on an LLM running in a Kubernetes cluster

The first screenshot shows that the llama.cpp container is successfully launched in a pod. In the second screenshot, we used cURL to 

pose a question to the LLM, while another process sniffed the conversation on the host. We asked the same question multiple times, 

and the answer was mostly recovered, as displayed in the second screenshot. Our successful experiments with the LeftoverLocals 

vulnerability underscore the critical need for rigorous security audits across all components of the AI/ML development stack.95
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